Chair: Sandhya Choubey
Chair: Carlo Giunti
The forthcoming Euclid survey will be able to map the Large Scale Structure with unprecendent precision, with the aim of tightly constraining the standard cosmological model and its most common extensions. The great sensitivity of Euclid can however also be exploited to test our most fundamental assumptions at the basis of the cosmological investigation.
In this talk I will present two recents...
The XENON1T dark matter experiment, operated at the INFN Laboratori Nazionali del Gran Sasso, achieved the lowest electronic recoil background among all dark matter experiments, which is $76 \pm 2\,\mathrm{events}/(\mathrm{t}\cdot\mathrm{y}\cdot\mathrm{keV})$ below 30 keV. An excess of electronic recoils was found below 7 keV and most prominent between 2 and 3 keV. The excess could be induced...
The KArlsruhe TRItium Neutrino experiment (KATRIN) is searching for the signature of the neutrino mass in the endpoint region of the tritium beta-decay spectrum. KATRIN combines a high-intensity gaseous molecular tritium source with a high-resolution spectroscopy using electrostatic filter with magnetic adiabatic collimation to reach the target neutrino-mass sensitivity of 0.2 eV/$c^2$,...
The lepton flavour asymmetries of the Universe are observationally almost unconstrained before the onset of neutrino oscillations. We calculate the cosmic trajectory during the cosmic QCD epoch in the presence of large lepton flavour asymmetries. By including QCD thermodynamic quantities derived from functional QCD methods in our calculation our work reveals for the first time the possibility...
Project 8 is a direct neutrino mass experiment that has developed a new technique, Cyclotron Radiation Emission Spectroscopy (CRES), to make a differential measurement of the tritium $\beta^{-}$ spectrum. Project 8 aims to use the advantages of CRES to surmount the systematic and statistical limitations of current-generation direct neutrino mass measurement methods, proceeding in a phased...
DEAP-3600 is a single-phase liquid argon (LAr) dark matter detector operating 2 km underground at SNOLAB in Sudbury, Canada. The detector consists of 3.3 tonnes of LAr in a spherical acrylic vessel viewed by an array of 255 photomultiplier tubes. DEAP-3600 has been taking data stably since November 2016. DEAP-3600 is sensitive to nuclear recoils from dark matter particles, which cause the...
The Electron Capture in $^{163}$Ho experiment, ECHo, is a running experiment for the determination of the neutrino mass scale via the analysis of the end point region of the $^{163}$Ho electron capture spectrum. In the first phase, ECHo-1k, about 60 MMCs pixels enclosing $^{163}$Ho ions for an activity of about 1Bq per pixel have been operated for several months. The goal of this first phase...
The Scintillating Bubble Chamber (SBC) Collaboration is rapidly developing liquid-noble bubble chambers to detect sub-keV nuclear recoils. Demonstrations in liquid xenon at the few-gram scale have confirmed that this technique combines the event-by-event energy resolution of a liquid-noble scintillation detector with the world-leading electron-recoil discrimination capability of the bubble...
In the context of TeV-scale lepton number violating (LNV) interactions, we illustrate the interplay between leptogenesis, neutrinoless double beta (0νββ) decay, and LNV searches at proton-proton colliders. Using a concrete model for illustration, we identify the parameter space where standard thermal leptogenesis is rendered unviable due to washout processes and show how 0νββ decay and...
The assessment of the absolute neutrino mass scale is still a crucial challenge in today’s particle physics and cosmology. Beta or electron capture decay spectra end-point measurements are currently the only experimental methods which can provide a model-independent measurement of the absolute neutrino mass scale.
While KATRIN is successfully pushing the mass sensitivity below 1 eV, there is...
Chair: Martin Hirsch
Chair: Junpei Shirai
After PandaX-II experiment, we started to build PandaX-4T detector with 4 ton liquid xenon in the sensitive volume at China Jinping Underground laboratory. PandaX-4T experiment has completed detector construction, and detector commissioning has begun since the end of the year 2020. Through the commissioning, we are optimizing the detector operation conditions, testing various calibration...
Quantum fluctuations created during cosmic inflation act as seeds of all structure in the universe. The strongest fluctuations lead to the formation of primordial black holes, a dark matter candidate. I present a study where these fluctuations are analyzed numerically within the framework of stochastic inflation. This method allows us to probe nonperturbative effects and include backreaction...
Highly magnetized neutron stars with magnetic fields of $10^{15-16}$ G are promising candidates to be the observed soft gamma repeaters and X-ray pulsars. On the other hand, oscillations of perturbed neutron stars are closely related to the composition, structure, and equation of state of the star. Thus far, the numerical study of oscillations of magnetized neutron stars has not yet realized...
The bubble chambers of the PICO collaboration use the acoustic signal generated from nucleations to classify nuclear recoil events from alpha decays in the bulk fluid. The success of these detectors in probing the potential WIMP-proton cross section comes in part from the low energy threshold that can be achieved. This nucleation threshold, based on the Seitz model, is dependent on fluid type,...
We revisit the two real singlet extension of the Standard Model with a $Z_2\times Z_2^\prime$ symmetry. One of the singlet scalars $S_2$, by virtue of an unbroken $Z_2^\prime$ symmetry, plays the role of a stable dark matter candidate. The other scalar $S_1$, with spontaneously broken $Z_2$-symmetry, mixes with the SM Higgs boson and acts as the scalar mediator. We analyze the model by putting...
Pulsar magnetospheres admit non-stationary vacuum gaps that are characterized by non-vanishing $\bf {E \cdot B}$. The vacuum gaps play an important role in plasma production and electromagnetic wave emission. We show that these gaps generate axions whose energy is set by the gap oscillation frequency. The density of axions produced in a gap can be several orders of magnitude greater than the...
Located just below the Polar circle, Callio Lab is one of the northernmost underground laboratories in Europe [1,2]. The underground research centre has developed from underground physics (formerly known as the Centre for Underground Physics in Pyhäsalmi, CUPP [3]). Over the years, its strategy has been shifted to a multi-and transdisciplinary research centre, now known as Callio Lab.
The...
The large-scale diffuse $\gamma-$ray flux observed by Fermi-LAT in the 1-100 GeV energy range is parameterized as a power law with spectral index $\Gamma$ that depends on the distance from the Galactic center.
This feature, if attributed to the diffuse emission produced by cosmic rays (CR) interactions with the interstellar gas, can be interpreted as the evidence of a progressive CR spectral...
In this talk I consider CPT violating neutrino oscillations in its most general form, i.e. assuming different oscillation parameters for neutrinos and antineutrinos. In this scenario the measurement of oscillation parameters is much more difficult than in the standard case. I will discuss the implication on the recent CP measurements in T2K and NOvA, and also discuss how well current...
DarkSide run since mid-2015 a 50-kg-active-mass dual-phase Liquid Argon Time Projection Chamber (TPC), filled with low radioactivity argon from an underground source and produced world-class results for both the low mass (M_WIMP<20 GeV/c^2) and high mass (M_WIMP>100 GeV/c^2) direct detection search for dark matter.
The next stage of the DarkSide program will be a new generation experiment...
DARWIN is a planned 50 ton liquid xenon time-projection-chamber with the primary goal of searching directly for dark matter. It aims to measure nuclear recoils induced by Weakly Interacting Massive Particles (WIMPs) down to WIMP-nucleon cross sections of 1e-48 cm2 at which neutrinos become an irreducible background.
Thanks to its low energy threshold at a few keV, its ultra-low expected...
The WIMP search in 231 live-days of data collected by the DEAP-3600 experiment showed no event candidates, resulting in a world-leading upper limit on the spin-independent dark matter-nucleon cross-section for an argon target. The present study reanalyzed that null result within a Non-Relativistic Effective Field Theory (NREFT) framework, and further examined the impact of potential dark...
An update of facilities and science in the UK's deep underground science facility. For more than three decades astro-particle physicists have been operating experiments to search for Dark Matter 1100m below ground in a purpose-built low-background facility at Boulby mine in the North East of England. Dark Matter studies continue at Boulby. The facility currently supports various smaller Dark...
The recently identified TeV source class of pulsar halos may be numerous and bright enough to constitute a large fraction of the sources that will be observed with the Cherenkov Telescope Array (CTA), especially in the context of the Galactic Plane Survey (GPS), one of the Key Science Projects of CTA. In this study, we examine the prospects offered by CTA for the detection and characterization...
DEAP-3600, hosted at SNOLAB, has been designed for the search of WIMPs, Weakly Interacting Massive Particles; its target of 3.3 t of liquid argon makes it the largest direct detection experiment. In addition to its sensitivity to WIMPs, DEAP-3600 is sensitive to super-massive dark matter candidates with masses up to the Planck scale. For particles with masses above 10^{16} GeV and...
The nature of the GeV gamma-ray Galactic center excess (GCE) in the data of Fermi-LAT is still under investigation. Different techniques, such as template fitting and photon-count statistical methods, have been applied in the past few years in order to disentangle between a GCE coming from sub-threshold point sources or rather from diffuse emissions, such as the dark matter annihilation in the...
The Deep Underground Neutrino Experiment (DUNE) is a next generation, long-baseline neutrino oscillation experiment which will utilize high-intensity $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ with peak neutrino energies of ~2.5 GeV produced at Fermilab, over a 1285 km baseline, to carry out a detailed study of neutrino mixing. The neutrino beam has an initial design intensity of 1.2 MW, but has a...
One of the most important achievements in the field of particle physics is the discovery of neutrino oscillations. Despite already awarded Nobel Prize, neutrino oscillation experiments still have a lot to offer, primarily the discovery of CP violation in the lepton sector is anticipated. The parameters entering the expression for neutrino oscillation probabilities are neutrino mixing...
Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for Dark Matter, and in addition, they would be copiously produced at the sun’s core. A...
Neutrinos emitted from a core-collapse supernova (SN) may undergo fast flavor
conversions almost immediately above the core, resulting in drastic
consequences for the supernova explosion mechanism and nucleosynthesis.
These fast flavor oscillation dynamics are independent of the neutrino mass,
growing at the scale of the large neutrino-neutrino interaction strength (10^5 km^ −1
) of the dense...
Neutrino emission from supernova has played a transformative role in the development of neutrino physics and our understanding of how the star works. Interaction of accelerated cosmic rays in the supernova ejecta and the circumstellar material will produce high-energy neutrinos. Current and future cubic kilometer neutrino telescopes can identify high-energy neutrinos from a supernova in the...
The next generation long-baseline neutrino oscillation experiment, Hyper-Kamiokande, will consist of a 260 kt underground water Cherenkov detector, placed 295 km from the neutrino source at J-PARC. This is generated by a 1.3 MW proton beam striking a target. In addition, a suite of near detectors, both on and off-axis will be used. With this, Hyper-Kamiokande aims to perform precision...
The multi-tonne XENONnT detector is the next step in the evolution of the XENON project. The experiment, aimed at direct detection of WIMPs, utilizes 5.9t of instrumented liquid xenon. Dedicated screening results of all detector materials were used to project the expected overall background in the detector, while improvements in suppressing intrinsic backgrounds from electronic recoil sources...
The JUNO observatory, a 20 kt liquid scintillator detector to be completed in 2022 in China, belongs to the next-generation of neutrino detectors, which share the common features of having a multi-ton scale and an energy resolution at unprecedented levels.
Beside the ambitious goal of neutrino mass ordering determination, the JUNO Collaboration plans also to perform a wide series of other...
The Jiangmen Underground Neutrino Observatory is a 20 kton and 3\%/$\sqrt{E ({\rm MeV})}$ multi-purpose liquid scintillator detector located at a 700 m underground laboratory in the south of China (Jiangmen city, Guangdong province). The exceptional energy resolution and the massive fiducial volume of the JUNO detector offer great opportunities for addressing many essential topics in neutrino...
KM3NeT is a multi-purpose neutrino observatory currently being deployed at the bottom of the Mediterranean Sea. It consists of two detectors: ORCA and ARCA (for Oscillation and Astroparticle Research with Cosmics in the Abyss). ARCA will instrument 1 Gton of seawater, with the primary goal of detecting cosmic neutrinos with energies between several tens of GeV and PeV. Due to its position in...
LABChico will be an underground laboratory in Mineral del Chico, Comarca Minera, Hidalgo UNESCO Global Geopark, in Mexico inside a decommissioned mine with an approximate rock overburden of 100 meters. This laboratory currently under development and with construction planned by the end of 2021, will be primarily focusing on research in low background gamma assay for neutrino and dark matter...
Utilizing six powerful nuclear reactors as antineutrino sources and eight identically designed underground detectors for a near-far relative measurement, the Daya Bay Reactor Neutrino Experiment has achieved unprecedented precision in measuring the neutrino mixing angle θ13 and the neutrino mass squared difference |Δm231|. With the largest sample of reactor antineutrino interactions ever...
Astrophysical neutrinos present a unique opportunity to search for physics beyond Standard Model. Beyond Standard Model induced interactions of neutrinos during their propagation yield distinct signatures in their observables in neutrino detectors. Energy, flavor, arrival direction, and the arrival time of neutrinos can be modified when new physics is present. In particular, new physics...
Unusual masses of black holes being discovered by gravitational wave experiments pose fundamental questions about the origin of these black holes. Black holes with masses smaller than the Chandrasekhar limit $\approx$ 1.4 M$_\odot$ are essentially impossible to produce through stellar evolution. We propose a new channel for production of low mass black holes: stellar objects catastrophically...
The Modane Underground Laboratory (LSM) is located 1700 m (4800 m.w.e) below Fréjus peak (Alpes chain) mountain in the middle of the Fréjus tunnel between France/Italy. The LSM is a multi-disciplinary platform for the experiments requiring low radioactivity environment. Several experiments in Particle and Astroparticle Physics, low-level of High Purity of Germanium gamma ray spectrometry,...
In this talk I will discuss a simple model of maximal axion misalignment. Maximally-misaligned axions with masses larger than 10^{-22} eV constitute an attractive DM candidate with interesting phenomenology. On the other hand, maximally-misaligned axions with masses m=O(1-100)H_0 generically behave as dark energy with a decay constant that can take values well below the Planck scale, avoiding...
A major worldwide effort is underway to procure the radiopure argon needed for DarkSide-20k (DS-20k), the first large scale detector of the new Global Argon Dark Matter Collaboration. The Urania project will extract and purify underground argon (UAr) from CO2 wells in the USA at a production rate of about 300 kg/day. Additional chemical purification of the UAr will be required prior to its use...
We propose a method to establish time reversal symmetry violation at future neutrino oscillation experiments in a largely model-independent way. We introduce a general parametrization of flavour transition probabilities which holds under weak assumptions and covers a large class of new-physics scenarios. This can be used to search for the presence of T-odd components in the transition...
Gamma ray-bursts (GRBs) are among the least understood and most powerful transients occurring in our Universe. Different dissipation and emission processes have been proposed over the years to interpret their origin. However, we still lack an exhaustive theoretical explanation due to the failure of existing models in addressing all observations in the spectral and temporal domains. GRBs are...
Beyond their unprecedented sensitivity to dark matter (DM), as I will demonstrate, large direct detection experiments constitute impressive neutrino telescopes. This opens a new window into astronomy, leading to possible insights into major problems such as the origin of supermassive black holes. Furthermore, DM experiments can be exploited as novel tools in multi-messenger astronomy for...
Neutrinos play an important role in astrophysical and cosmological environments.
In this talk I will discuss recent progress in neutrino flavor evolution in dense media, including core-collapse supernovae and binary neutron star mergers remnants. I will remind decoherence effects in vacuum and then discuss neutrino decoherence and other effects due to strong gravitational fields, nearby...
The HAWC telescopes has recently revealed new spectra for gamma-ray sources in the Galactic plane. In this talk I will review the possibility of detecting these sources at KM3 detectors. I will consider, with particular emphasis, the 2HWC J1825-134 source. Amongst the HAWC sources, it is indeed the most luminous in the multi-TeV domain and therefore is one of the first that should be searched...
Testing the unitarity of the PMNS matrix can give insights into the existence of additional neutrino generations which would render the 3x3 leptonic mixing matrix non-unitarity. Current oscillation data mostly constrains the electron and muon row of the mixing matrix whereas the tau row still allows for large unitarity violation. Here we will focus on new unitary constraints on the tau row...
We formulate an alternative approach based on unitarity triangles to describe neutrino oscillations in presence of non-standard interactions (NSI). Using perturbation theory, we derive the expression for the oscillation probability in case of NSI and cast it in terms of the three independent parameters of the leptonic unitarity triangle (LUT). The form invariance of the probability expression...
NOvA is a leading long-baseline neutrino experiment thanks to the powerful - nearly 700 kW - NuMI beam, which directs predominantly muon neutrinos from Fermilab, Illinois towards Ash River, in northern Minnesota. The experiment consists of two detectors placed 809 km apart, both about 14 mrad off-axis from the beam center. The detectors, one near and one far, were each formed from plastic...
LUX-ZEPLIN (LZ) is a direct dark matter detection experiment currently being commissioned at the 4850’ level of the Sanford Underground Research Facility in Lead, South Dakota. The detector comprises a position sensitive xenon time projection chamber surrounded by an instrumented xenon “skin” and liquid scintillator active vetoes. An active mass of 7 tonnes of xenon is used, from which a...
Primordial black holes hypothetically generated in the first instants of life of the Universe are potential dark matter candidates. Focusing on Primordial Black Holes masses in the range $[5 \times10^{14} - 5 \times 10^{15}]$g, we point out that the neutrinos emitted by Primordial Black Holes evaporation can interact through the coherent elastic neutrino-nucleus scattering producing an...
Strong bounds from direct detection experiment put stringent limit on the dark matter mass which forces us to go beyond WIMP model of dark matter. In recent years the light mass dark matter particles gain lots of attention among the particle physicists. In this talk I will discuss about light gauge bosons motivated from U(1) extension of standard model and axions which can be a possible dark...
Dark photon as an ultralight dark matter candidate can interact with the Standard Model particles via kinetic mixing. We propose to search for the ultralight dark photon dark matter using radio telescopes with solar observations. The dark photon dark matter can efficiently convert into photons in the outermost region of the solar atmosphere, the solar corona, where the plasma mass of photons...
PandaX-4T is a tonne-scale dark matter direct searching experiment, utilizing 4 tonne liquid xenon as target material in sensitive volume. The experiment is located at China Jinping Underground Laboratory, with overburden of 2400 meter water equivalent. Recently, the PandaX-4T experiment has finished assembling on site, and started commissioning of the sub-systems. In this talk, I will talk...
In Twin Higgs models which contain the minimal particle content required to address the little hierarchy problem (i.e. fraternal models), the twin tau has been identified as a promising candidate for dark matter. In this class of scenarios, however, the elastic scattering cross section of the twin tau with nuclei exceeds the bounds from XENON1T and other recent direct detection experiments. In...
We show that it is possible to reveal the nature of neutrino by measuring the Majorana phase at the DUNE experiment. The Majorana phase is activated in the neutrino oscillation framework ($\nu \rightarrow \nu$ and and $\bar{\nu}\rightarrow \bar{\nu}$) due to the introduction of a decoherence environment. Being that depending on the value of the Majorana phase and the intensity of...
We report a search for electron antineutrinos at KamLAND with an energy range of 8.3--30.8 MeV via the inverse beta decay.
In 4528 days of KamLAND data, we found 18 event candidates and no significant excess over estimated backgrounds.
From data interpretation, with the assumption of some supernova relic neutrino spectrum predictions, we give upper flux limits of...
The PICO collaboration searches for WIMPs using large superheated liquid detectors, or bubble chambers. Recent results from the complete exposure of the PICO-60 C$_3$F$_8$ detector at SNOLAB set the world’s most stringent limits on WIMP-proton spin-dependent interactions. I will present the current status of the construction and physics potential of the next generation, tonne-scale experiment...
The LIGO/Virgo collaborations have reported the results of their searches for gravitational-waves from the first half of their third observing run. 39 events were added to the first Gravitational-Wave Transient Catalog (GWTC-1), reaching the total number of 50. Thus, an additional search for counterparts is necessary. The data from Baksan Underground Scintillation Telescope (BUST) are used to...
The evidence for the existence of dark matter, so far is based on its gravitational effects. Nevertheless, many theoretical models assume other non-gravitational very-weak interactions between dark matter and ordinary matter, and to test this hypothesis, different experiments are trying to directly detect dark matter signals at particle accelerators.
PADME (Positron Annihilation into Dark...
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10^15 − 10^17 g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments DUNE and THEIA. We will show that...
The addition of spatial dimensions compactified to submillimeter scales serves as an elegant solution to the hierarchy problem. As a consequence of the extra-dimensional theory, primordial black holes can be created by high-energy particle interactions in the early universe. While four-dimensional primordial black holes have been extensively studied, they have received little attention in the...
Detectable number of nuclear recoil (NR) events can occur from neutrinos from supernova (SN) bursts through the coherent elastic neutrino-nucleus scattering (CE$\nu$NS) process in large scale liquid xenon detectors designed for direct dark matter search depending on the SN mass and distance. In this presentation, we show that in addition to the direct NR events due to CE$\nu$NS process, the SN...
Core collapse supernovae (CCSN) are among the most precious multi-messenger events of the extreme Universe. These events are extremely rare, and it will be crucial to gather all the physics possible from the data of the next event. The SNEWS public alert system was designed to provide an early alert to astronomers and other observers about the observation of neutrinos from a Galactic CCSN,...
China Jinping underground laboratory (CJPL) is located in the Jinping Mountain, Sichuan Province, southwest China, with a rock overburden of about 2400m. The laboratory is operated by Tsinghua University and Yalong River Hydropower Development Company, LTD. The scientific project at CJPL is mainly focused on dark matter detection, nuclear astrophysics and low background screening techniques....
LUX-ZEPLIN (LZ) is a dark matter direct detection experiment currently being commissioned at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The experiment utilizes a two-phase time projection chamber (TPC) to look for dark matter interactions. The active region of the detector consists of 7 tonnes of liquid xenon with a 5.6 tonne fiducial volume, and is expected to...
Macroscopic dark matter is almost unconstrained over a wide ``asteroid-like'' mass range, where it could scatter on baryonic matter with geometric cross section. When such an object travels through a star, it produces shock waves which reach the stellar surface, leading to a distinctive transient optical, UV and X-ray emission. I shall talk about how this signature can be searched for on a...
Motivated by various excesses observed by Fermi-LAT and AMS, we perform a detailed analysis of QCD uncertainties on particle spectra from dark-matter annihilation (or decay) into jets. When annihilated to SM particles, the final-state products undergo various complicated processes such as QED and QCD bremsstrahlung, hadronization, and hadron decays. These processes contain some intrinsic...
We investigate the potential of core-collapse supernovae (SNe) to constrain axion-like particles (ALPs) coupled to nucleons and electrons. ALPs coupled to nucleons can be efficiently produced in the SN core via nucleon-nucleon bremsstrahlung and, for a wide range of parameters, leave the SN unhindered producing a large ALP flux. For masses exceeding 1 MeV, these ALPs would decay into...
T2K is a long baseline experiment providing world-leading measurements of the parameters governing neutrino oscillation. T2K data enable the first 3 sigma exclusion for some intervals of the CP-violating phase \delta_{CP} and precision measurements of the atmospheric parameters \Delta_m^{2}{32}, sin^2(\theta{23}).
T2K exploits a beam of muon neutrinos and antineutrinos at the Japan Particle...
ANDES is an international effort to build a world class deep underground laboratory at the border between Argentina and Chile in the planned Agua Negra tunnel. With 1750 m of overburden, horizontal access, and 70 000 m3 of volume, it should offer an attractive option in the southern hemisphere to the underground science community. As the construction of the tunnel and laboratory is...
In this talk, I will propose the use of the Earth as a transducer for ultralight dark-matter detection. In particular I will point out a novel signal of kinetically mixed dark-photon dark matter: a monochromatic oscillating magnetic field generated at the surface of the Earth. Similar to the signal in a laboratory experiment in a shielded box (or cavity), this signal arises because the lower...
MAGIC is a system of two 17 meter Imaging Air Cherenkov Telescopes, located at the Observatorio Roque de los Muchachos at an altitude of 2200 meters on the Canary island of La Palma. It detects gamma rays in the very high energy regime between a few tens of GeV and tens of TeV. In this presentation, I will show the latest highlights achieved by the powerful low energy threshold of the...
A new underground facility called Yemilab with a depth of 1,000 m will be constructed for studies on neutrinos and dark matter search. The new underground facility is located within the site of an iron mine in Jeongseon-gun, Gangwon-do, South Korea. Since the mine has a vertical shaft with a diameter of 6 m and a length of 600 m, the facility uses this shaft. The construction of the new...
The Sanford Underground Research Facility (SURF) has been operating since 2007 supporting underground research in rare-process physics, as well as offering research opportunities in other disciplines. SURF laboratory facilities include a Surface Campus as well as campuses at the 4850-foot level (1500 m, 4300 m.w.e.) that host a range of significant physics experiments, including the LUX-ZEPLIN...
Located in Sardinia close to Lula, the region of the Sos Enattos mine is understudies to host the third generation of gravitational wave interferometer: Einstein Telescope (ET). The Sar-Grav laboratory, a seed of ET, will host underground experiments, cryogenic payloads, low frequency and cryogenic sensor development that need low seismic and anthropogenic noise. Indeed, the Sos Enattos mine...
We revise cosmological mass bounds on hadronic axions in low-reheating cosmological scenarios, with a reheating temperature $T_{\rm RH}\le 100$ MeV, in light of the latest cosmological observations. In this situation, the neutrino decoupling would be unaffected, while the thermal axion relic abundance is suppressed. Moreover, axions are colder in low-reheating temperature scenarios, so that ...
Neutrino decay modifies neutrino propagation in a unique way; not only is there flavor changing as there is in neutrino oscillations, there is also energy transport from initial to final neutrinos. The most sensitive direct probe of neutrino decay is currently IceCube which can measure the energy and flavor of neutrinos traveling over extragalactic distances. For the first time we calculate...
The detection of rare events requires transmitting the extremely weak signal, in which electronic substrates with low background levels and strong binding forces are extremely important. Polytetrafluoroethylene (PTFE) and its homologue poly (perfluoroethylene, FEP) are excellent low background and high dielectric layers in electronic substrates widely applicated in rare event detection...
While most direct Dark Matter detection experiments measure only the recoil energies of (elastic) WIMP-nucleus scattering events deposited in underground laboratory detectors, "directional" DM detection experiments aim to provide 3-dimensional information (recoil tracks and/or head-tail senses) of WIMP-scattered target nuclei, as a promising experimental strategy for discriminating WIMP...
Neutrino Oscillations are one of the most important discoveries of the last thirty years. Many experiments looking at neutrinos from different sources were able to measure with a good precision almost all the oscillation parameters. However, considering parameters uncertainties, there is still room for the possibility of the presence of Beyond Standard Model (BSM) effects. Some of the most...
With radiopurity controls and small design modifications a kton-scale liquid argon time projection chamber similar to DUNE could be used for enhanced low energy physics searches. This includes improved sensitivity to supernova and solar neutrinos, and even weakly interacting massive particle dark matter. This talk will present initial simulation studies to optimize the design and evaluate...
The Deep Underground Neutrino Experiment (DUNE) is an upcoming neutrino physics experiment that will answer some of the most compelling questions in particle physics and cosmology. The DUNE far detectors employ silicon photomultipliers (SiPMs) to detect light produced by charged particles interacting in a large liquid argon time projection chamber (LarTPC).
The SiPMs are photosensors...
TeV DM candidates are gradually earning more and more attention within the community. Among others, extra-dimensional brane-world models may produce thermal DM candidates with masses up to 100 TeV, which could be detected with the next generation of very-high-energy gamma-ray observatories such as the Cherenkov Telescope Array (CTA). In this work, we study the sensitivity of CTA to branon DM...
AMoRE is an international project to search for neutrinoless double beta decay of $^{100}$Mo with enriched Molybdenum-based crystals that are instrumented for phonon-scintillation detection. AMoRE-I, the present phase of the project, utilizes thirteen $^{48depleted}$Ca$^{100}$MoO$_4$ and five Li$_2$$^{100}$MoO$_4$ crystals with a total mass of 6.2 kg with heat and light detection channels and...
The ICARUS detector will search for LSND like neutrino oscillations exposed at shallow depth to the FNAL BNB beam in the context of the SBN program. In the approved FNAL SBN experiment the impact of cosmic rays is mitigated by a $4\pi$ Cosmic Ray Tagger (CRT) detector encapsulating the TPCs inside the pit and by a ~3 m concrete overburden both for the near and the far detectors. Cosmic...
Borexino is a large liquid scintillator experiment located at the underground INFN Laboratori Nazionali del Gran Sasso, in Italy. It was designed and built with the primary goal of real-time detection of low energy solar neutrinos, and in more than ten years of data taking it has measured all the neutrino fluxes produced in the proton-proton-chain, i.e. the main fusion process accounting for...
The isotope $^{124}$Xe is exceedingly rare and long-lived. Still, its two-neutrino and neutrinoless double-weak decays offer exciting opportunities for neutrino and nuclear physics. The double-weak decays with neutrinos provide constraints for nuclear matrix element calculations on the proton-rich side of the nuclear chart [C. Wittweg, B. Lenardo, A. Fieguth and C. Weinheimer, EPJ C 80 (2020)...
COSINE-100 is a WIMP dark matter search experiment using ultra low-background NaI(Tl) crystals as a goal to revisit DAMA/LIBRA experiment. COSINE-100 is running with a 106 kg array of low-background NaI(Tl) crystals with approximately 3 counts/kg/day/keV, which is about three times higher than DAMA/LIBRA’s crystals. For the unambiguous conclusion of the DAMA/LIBRA's observation, it is...
It was shown for the first time in [1] that neutrino spin and spin-flavor oscillations can be engendered by weak interactions of neutrinos with a medium in the case when there are the transversal matter currents or transversal matter polarization. The existence of these effects was confirmed in [2]. In [3,4] we developed the quantum treatment of these phenomena and different possibilities for...
Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy. The main goal of Borexino is to measure solar neutrinos via elastic scattering off electrons in the liquid scintillator. The electrons are then detected by the photo-multiplier tubes via isotropically emitted scintillation photons. However, in the first few nanoseconds after a...
Electromagnetic properties of neutrinos can be a manifestation of new physics [1].
We study the electromagnetic contribution to elastic neutrino-nucleon and
neutrino-nucleus scattering processes. Following our approach developed for the
case of elastic neutrino-electron [2] and neutrino-proton [3] collisions, in our
formalism we account for possible electromagnetic form factors of...
The ENUBET experiment, included in the CERN Neutrino Platform effort as NP06/ENUBET, is developing a new neutrino beam based on conventional techniques in which the flux and the flavor composition are known with unprecedented precision ($\mathcal{O}$(1%)). Such a goal is accomplished monitoring the associated charged leptons produced in the decay region of the ENUBET facility. Positrons and...
Extensions of the Standard Model with charged Higgs, having a non-negligible coupling with neutrinos, can have interesting implications vis-à-vis neutrino experiments. Such models can leave their footprints in the ultra-high energy neutrino detectors like IceCube in the form of neutrino non-standard interactions (NSIs) which can also be probed in lower energy neutrino experiments. We consider...
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) experiment is a 26-ton gadolinium-loaded water Cherenkov detector located on the Booster Neutrino Beam at Fermilab. The experiment has a two-fold motivation: to perform a physics measurement and to advance new detector technologies. The measurement of final state neutron multiplicity from neutrino interactions in water as a...
Neutrino Nucleus Elastic Scattering ($\nu A_{el}$) offers a unique laboratory to study Quantum Mechanical superpositions in electroweak interactions, towards which several experimental programs are being actively pursued. In the TEXONO experiment, we are currently focused to measure the $\nu A_{el}$ cross-section for the reactor neutrinos (E$_\nu$ <10 MeV) at Kuo-Sheng Reactor Neutrino...
The PICOLON (Pure Inorganic Crystal Observatory for Low energy Neutr(al)ino) experiment is searching for WIMP dark matter with ultra-pure NaI(Tl) crystals at the underground laboratory in Kamioka observatory. Here, the quenching factor (QF) is the scintillation light yield ratio of nuclear recoil and electron recoil at the same energy deposit, and the QF of the NaI(Tl) is required to determine...
Neutrino scattering on condensed matter systems at low-energy transfer can serve both as a tool for searching the BSM physics, for example, such as neutrino electromagnetic interactions [1], and as a test of the Standard Model at low-energy scale [2]. In the case of low-energy elastic neutrino scattering by electrons and nuclei in a liquid or a solid target, it is necessary to take into...
We present a simple extension of the Standard Model with three right-handed neutrinos in a SUSY framework, with an additional U(1) abelian flavor symmetry with a non standard leptonic charge for lepton doublets and arbitrary right-handed charges. We show how it is possible to provide the correct prediction for the mixing angles of the PMNS matrix and for the parameter with a moderate fine...
The phenomenon of neutrino oscillations emerges due to coherent superposition of neutrino mass states. An external environment can modify a neutrino evolution in a way that the coherence will be violated. Such a violation is called quantum decoherence of neutrino mass states and leads to the suppression of flavor oscillations. In our previous studies (see [1] and reference therein) we...
We report new results on interactions of sub-GeV dark matter particles with electrons using data from a small dual-phase xenon time projection chamber operated at the Earth's surface [1]. We consider scattering both on electrons and nuclei in the Earth’s crust, atmosphere, and shielding materials to compute the attenuation of the dark matter flux by the atmosphere and the [2]. With an exposure...
We study the capabilities of the DUNE near detector to probe deviations from unitarity of the leptonic mixing matrix, the 3+1 sterile formalism and Non-Standard Interactions affecting neutrino production and detection. We clarify the relation and possible mappings among the three formalisms at short-baseline experiments, and we add to current analyses in the literature the study of the νμ→ντ...
The CUORE experiment is a closely packed array of 988 cryogenic calorimeters aimed at investigating lepton number violation via neutrino-less double beta decay (0νββ) in 130Te. We present the latest results on searches for the double beta decay (DBD) of 130Te to the first 0+ excited state of 130Xe in the 0νββ and Standard Model channels and discuss future perspectives. The de-excitation gamma...
The experimental searches for supernova relic neutrino are conducted below 30 MeV, where atmospheric neutrino interactions are the dominant background. Neutrino interactions in this low energy region have a large uncertainty due to complicated nuclear effects, for example, a momentum distribution of a nucleon in nucleus, Pauli blocking and de-excitation of a residual nucleus. Sophisticated...
In view of the next generation experiment CUPID, many R&D tests are
ongoing to define the detector design. CUPID aims to search for
neutrinoless double beta decay in a "zero background" environment,
rejecting alpha particles thanks to the simultaneous detection of heat
and scintillation light. It is of primary importance to optimize the
light collection to perform an efficient particle...
We have been developing an alpha-ray detector based on a time-projection-chamber in a low radioactivity background, in order to image the radioisotope concentration on the material surface. In underground particle physics, current detectors are required massive volume of target using ultra-pure material without radioactive impurities. However, uranium or thorium impurities on the surface of...
Two-neutrino double beta decay (2$\nu\beta\beta$) is a rare radioactive decay that is a weak process of second-order. It has been observed in neutrino-less double beta decay (0$\nu\beta\beta$) search experiments to verify the Majorana nature of neutrino. Precise observation of 2$\nu\beta\beta$ is important to reduce the theoretical uncertainty in the calculation of nuclear matrix elements...
The DEAP-3600 detector is a large single-phase liquid-argon detector for WIMP dark matter. The experiment has run successfully at SNOLAB since 2016 and has world leading limits for WIMP-argon interactions. We use pulse-shape discrimination (PSD) to separate electromagnetic events (Ar-39 beta decay, gamma rays, ...) from the nuclear recoil events from WIMP-nuclear scattering. PSD is effective...
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment based on liquid argon time projection chamber (LArTPC) technology. In July 2020, DUNE’s single-phase (SP) prototype ProtoDUNE-SP (PD-SP) at CERN finished its two-year Phase-1 running, which successfully collected test-beam data and cosmic ray data. A key aspect of LArTPC...
We implement a minimal linear seesaw model (LSM) for addressing the Quasi-Dirac (QD) behaviour of heavy neutrinos, focusing on the mass regime of $M_{N} < M_{W}$.
Here we show that for relatively low neutrino masses, covering the few GeV range, the same-sign to opposite-sign dilepton ratio, $R_{\ell \ell}$, can be anywhere between 0 and 1, thus signaling a Quasi-Dirac regime. Particular...
The development of cryogenic calorimeters to search for neutrinoless double-beta decay (0$\nu$DBD) has given in the last years increasingly promising results.
To achieve a nearly background-free condition, scintillating crystals for 0$\nu$DBD have been developed. Thanks to the light-assisted particle discrimination, this technology demonstrated the complete rejection of the dominant alpha...
In this work, we study the potential of the Cherenkov Telescope Array (CTA) for the detection of Galactic dark matter (DM) subhalos. We focus on low-mass subhalos that do not host any baryonic content and therefore lack any multiwavelength counterpart. If the DM is made of weakly interacting massive particles (WIMPs), these dark subhalos may thus appear in the gamma-ray sky as unidentified...
We study the impact of production of heavy neutral leptons (HNL) from meson decays on the number of neutrino charged current (CC) events that will be detected at the DUNE ND LArTPC. If the masses of the HNLs are below the kaon mass, then a decreased number of CC events at the DUNE LArTPC will be observed. This decrease is used to set upper limits on the mixing parameters of the HNLs. We find...
The Majorana nature of neutrinos is the key to understand the matter-antimatter asymmetry in our Universe. For now, searching for the neutrino-less double beta (0$\nu\beta\beta$) decay is the only realistic way to proof that neutrinos are Majorana particles.
The KamLAND-Zen experiment is 0$\nu\beta\beta$ decay search with $^{136}$Xe and ultra-low radioactive detector KamLAND. Since 2019, we...
Rare event searches share the need to isolate signal from background events, therefore experiments must develop good energy resolution detectors.
In this scenario, CUORE (Cryogenic Underground Observatory for Rare Events) exploits an array of 988 TeO$_{2}$ crystals operated as Low-Temperature Detectors (LTDs) at 10 mK. The main goal of the experiment is to search for neutrino-less double beta...
We search for scalar and tensor non-standard interactions using (anti)-electron neutrino disappearance in oscillation data. We found a slight preference for non-zero CP violation, coming from both tensor and scalar interactions. The preference for CP violation is lead by Daya Bay low-energy data with a significance that reaches $\sim1.7\sigma$ in the global analysis (and $\sim2.1\sigma$ when...
(Poster contribution, TAUP conference, 26.8. – 3.9.2021, Valencia, Spain)
-Tobias Sterr (1), for the JUNO OSIRIS Group
1 Eberhard Karls Universität Tübingen, Physikalisches Institut, Germany
The Online Scintillator Internal Radioactivity Investigation System (OSIRIS) is a 20-ton liquid scintillator detector currently under construction at the Jiangmen Underground Neutrino Observatory (JUNO)...
The LUX-ZEPLIN (LZ) detector will consist of 7 tonnes (5.6 tonnes fiducial) of liquified xenon in a dual-phase Time Projection Chamber (TPC), which is sensitive to the nuclear recoil induced by Weakly Interacting Massive Particles (WIMPs). Among the various type of background particles, neutrons pose a great threat to the WIMPs searches due to the indistinguishable nuclear recoil. The outer...
DarkSide-20k is a rare-event search experiment dedicated to finding signals of dark matter particles. The DarkSide-20k time projection chamber detector registers ionisation and scintillation signals originating from the particles interacting with the liquid argon detector medium. It is enclosed in a single-phase liquid argon neutron veto tank, equipped with Gd-loaded panels for capturing...
A novel algorithm for a Bayesian analysis of multi-site rare events
CUORE (Cryogenic Underground Observatory for Rare Events) is a ton-scale experiment located at the LNGS with the main scientific goal of searching for neutrinoless double beta decay in $^{130}$Te. The detector consists of $\mathrm{TeO}_2$ crystals operated as cryogenic calorimeters. The use of natural tellurium allows us to...
We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix which are realised in several well-known radiative models. Either structure implies a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective...
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino accelerator experiment. It aims for precise measurements of the neutrino oscillation parameters, in particular the violation of the charge-parity symmetry and the neutrino mass hierarchy. DUNE consists of a Far Detector (FD) complex with four multi-kiloton liquid argon detectors, and a Near Detector...
NOvA is a long-baseline neutrino experiment studying neutrino oscillations with Fermilab’s NuMI beam. A convolutional neural network (CNN) that analyzes topological features is used to determine neutrino flavor in both the near and far detectors and observe the disappearance of muon neutrinos and the appearance of electron neutrinos. Alternative approaches to flavor identification using...
Borexino, located at the Laboratori Nazionali del Gran Sasso in Italy, is a liquid scintillator detector that measures solar neutrinos via their forward elastic scattering off electrons . The scintillation process of detection makes it impossible to distinguish electrons scattered by neutrinos from the electrons emitted from the decays of radioactive backgrounds. Due to the unprecedented...
After the latest measurement of the CEvNS process with a LAr detector, it has been shown that this interaction can be used as a powerful tool to perform tests of both the standard model and new physics scenarios. So far, one of the biggest challenges to perform precise measurements has been the determination of systematic uncertainties related, for instance, to quenching and form factors. We...
Doping Liquid Argon (LAr) with Xenon is a well known technique to shift the light emitted by Argon (128 nm) to a longer wavelength to ease its detection. The largest Xenon doping test ever performed in a LArTPC was carried out in ProtoDUNE Single Phase (ProtoDUNE-SP) at the CERN Neutrino Platform. From February to May 2020, a gradually increasing amount of Xenon was injected to compensate for...
The recent release of a Nature paper on twelve Galactic sources, and the detection of photons up to 1.4 PeV revealed the enormous physics potential of LHAASO.
In this contribution, we will briefly illustrate the LHASSO Observatory and its potential and latest published results.
Do neutrinos have sizable self-interactions? This fundamental question, whose answer directly affects future precise astrophysical and cosmological observations, is difficult to directly test in the laboratory. For the last years, neutrino telescopes have been identified as unique tools to explore neutrino self-interactions. The actual discovery of astrophysical neutrinos and the advent of...
The Boulby Underground Screening (BUGS) facility has been in operation since 2014. Initially comprising 2 low background germanium detectors, this has expanded to include now 6 low and ultra-low background germanium detectors, two XIA Ultralo-1800 detectors and will soon include a low background radon emanation assay facility. With these facilities underground and with plans for cleanliness...
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the IceCube data on atmospheric neutrino fluxes under the assumption of a VEP and obtain updated constraints on the parameter space with the benchmark choice that neutrinos with different masses couple with...
Blazars are potential candidates of cosmic-ray acceleration up to ultrahigh energies (𝐸 > 1 EeV). For an efficient cosmic-ray injection from blazars, 𝑝𝛾 collisions with the extragalactic background light (EBL) and cosmic microwave background (CMB) can produce neutrino spectrum with peaks near PeV and EeV energies, respectively. We analyze the contribution of these neutrinos to the diffuse...
S.E.A. Orrigo, J.L. Tain, J. Agramunt, A. Algora, E. Nacher, A. Tolosa
Instituto de Física Corpuscular (IFIC), CSIC-Univ. Valencia, Spain
A. Tarifeño-Saldivia, F. Calviño, N. Mont, A. De Blas, R. García, G. Cortés
Institute of Energy Technologies (INTE), Technical University of Catalonia (UPC), Barcelona, Spain
L.M. Fraile, A. Domínguez Bugarín
*Grupo de Física Nuclear & IPARCOS,...
Recent calculations have demonstrated that we may attempt the direct detection of dark matter in the laboratory through gravitational interaction alone. This is in particular relevant around the well-motivated Planck mass scale (10^19 GeV or 22 micro-gram). The Windchime collaboration is working towards a large array of dedicated sensors, based on MEMS accelerometers. Paired with...
In the environment with dense neutrino gases such as in core-collapse supernovae (CCSNe), the neutrino self-interactions are potentially dominant, and collective flavor conversions occur near the core. In particular, the crossings in the neutrino angular distribution can induce fast flavor conversion. The coherent scatterings off heavy nuclei in the preshock region of CCSNe can create tiny...
COSINE-100 is a direct detection dark matter experiment that is testing DAMA/LIBRA's claim of dark matter discovery. Located in South Korea's Yangyang Underground Laboratory, COSINE-100 comprises 106 kg of sodium iodide detectors surrounded by a ~2000 L liquid scintillator veto. In this talk, I will present new results from an annual modulation search using three years of data and the impact...
The Telescope Array (TA) is an ultra-high energy cosmic ray detector, the largest in the Northern Hemisphere, sensitive to cosmic rays with energies from 1 PeV to above 100 EeV. The main detector is a hybrid detector consisting of an array of 507 surface detectors covering 700 km$^2$ overlooked by three fluorescence telescope detector stations. The energy range has been extended at the low end...
It has been suggested that certain antiferromagnetic topological insulators contain axion quasiparticles (AQs), and that such materials could be used to detect axion dark matter (DM). In the first part of this talk we show that one can detect AQs with transmission spectroscopy. The transmission coefficients including material losses are computed by applying appropriate boundary conditions. We...
The most promising indirect search for the existence of axion dark matter uses radio telescopes to look for narrow spectral lines generated in the magnetospheres of neutron stars. Unfortunately, a large list of theoretical uncertainties has prevented this search strategy from being accepted as robust. In this talk I will present a novel end-to-end pipeline that traces individual photon...
Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) both probe the physics of the early universe. BBN accounts for the cosmic origin of the lightest chemical elements, such as helium-4 and deuterium. Having precisely measured nuclear data and the neutron lifetime as inputs, BBN abundance predictions depend on two cosmological parameters: the cosmic baryon-to-photon ratio...
Gravitational waves could be gravitationally lensed just like light. Strong lensing makes gravitational waves appear as repeated events with different amplitudes within our detectors. We will investigate recent forecasts for observed lensed event rates, including sub-threshold searches. We will also discuss a pressing issue related to the current lensed event searches: the rising probability...
The MAJORANA DEMONSTRATOR experiment operated two modular arrays of p-type point contact high purity germanium (HPGe) detectors, of which 30 kg is enriched to 88% in Ge-76, to search for neutrinoless double beta decay. The data-taking campaign for double beta decay with enriched detectors was successfully concluded in March 2021, and data-taking with natural detectors is still ongoing. The...
Neutrinoless double-beta decay (0ν2β) is a hypothetical rare nuclear transition. Its observation would provide an important insight about the nature of neutrinos (Dirac or Majorana particle) demonstrating that the lepton number is not conserved. BINGO aims to set the technological and conceptual grounds for future bolometric 0ν2β experiments. It is based on a dual heat-light readout, i.e. a...
The science case for a broad program of gravitational wave (GW) detection across all frequency bands is exceptionally strong. At present, there is a dearth of coverage by existing and proposed searches in the GW frequency band lying between the peak sensitivities of PTAs and LISA, roughly 0.1-100 microhertz. In this talk, I will outline a conceptual mission proposal to access this band. I will...
The SABRE (Sodium-iodide with Active Background REjection) experiment aims to detect the annual modulation of the dark matter interaction rate by means of ultra-high purity NaI(Tl) crystals immersed in a liquid scintillator (LS) active veto. It focuses on the achievement of a very low background to carry out a model-independent test of the long-standing DAMA/LIBRA result with sufficient...
Core-collapse supernovae (SNe) have been identified as a promising target to probe the existence of axion-like-particles (ALPs). The cumulative signal from all past SNe events would contain an ALP component and create a diffuse flux with energies $\mathcal{O}(50)$ MeV. We update the calculation of this flux by including SNe with different masses following the expected mass distribution,...
Today, the situation in direct dark matter detection is puzzling: The DAMA/LIBRA experiment observes an annual modulation signal at high statistical significance and fitting to the expectation of a cold dark matter halo in the milky way. However, in the so-called standard scenario on dark matter halo and dark matter interaction properties, the DAMA/LIBRA signal contradicts the null-results of...
Neutrino non-standard interactions (NSI) are known to modify the picture of neutrino decoupling from the cosmic plasma. These NSI alter flavour oscillations through matter effects and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of...
The future of Gravitational Waves (GWs) is bright. LIGO and Virgo have detected more than 70 signals from black hole and/or neutron star mergers. All measured signals come in-band at around 30 Hz as suspension control noise, fueled by many cross couplings between angular and translational degrees of freedom, is dominant below 30 Hz. It is impossible to know, but exciting to imagine what...
CUPID is a next-generation tonne-scale bolometric neutrinoless double beta decay experiment to probe the Majorana nature of neutrinos and discover Lepton Number Violation if the effective neutrino mass is greater than 10 meV. CUPID will be built on experience, expertise and lessons learned in CUORE, and will be installed in the current CUORE infrastructure in the Gran Sasso underground...
In this talk I will study the case where dark matter emerges from a complex scalar field charged under a U(1) global symmetry, which is spontaneously broken. Our analysis considers different explicit symmetry breaking terms motivated by discrete symmetries. I will show results which demonstrate that in some regions of the parameter space these scenarios may be distinguished by combining...
Scotogenic models are among the most popular possibilities to link dark matter
and neutrino masses. In this work we discuss a variant of the Scotogenic model
that includes charged fermions and a doublet with hypercharge 3/2. Neutrino
masses are induced at the one-loop level thanks to the states belonging to the dark sector. However, in contrast to the standard Scotogenic model, only the scalar...
A liquid scintillator containing a tetrakis (isopropyl acetoacetato) zirconium (Zr(iPrac)$_{4}$) has been developed for ZICOS experiment which will search for neutrinoless double beta decay (0$\nu\beta\beta$) events using $^{96}$Zr isotope. The liquid scintillator has 10wt.% concentration of Zr(iPrac)$_{4}$, which corresponds to 1.4wt.% of natural zirconium.
In order to investigate a...
In spite of the extensive search for the detection of the dark matter (DM), experiments have so far yielded null results: they are probing lower and lower cross-section values and are touching the so-called neutrino floor. A way to possibly overcome the limitation of the neutrino floor is a directional sensitive approach: one of the most promising techniques for directional detection is...
We are going to present the CYGNO project for the development of an high precision optical readout gaseous TPC for directional Dark Matter search and solar neutrino spectroscopy, to be hosted at Laboratori Nazionali del Gran Sasso. CYGNO (a CYGNus TPC with Optical readout) fits into the wider context of the CYGNUS proto-collaboration, for the development of a Galactic Nuclear Recoil...
The detection of a dark matter (DM) particle would deeply contribute to the understanding of the Universe and would shine light on new Physics. The WIMP is an extensively studied DM candidate that would induce nuclear recoils inside a detector. The largest direct projects searching for WIMPs will soon reach the “neutrino floor”, a boundary beyond which a WIMP signal cannot be distinguished...
Liquid argon (LAr) is one of the most promising targets for the search of WIMP-like dark matter. LAr dual-phase time projection chamber (LAr TPC) is a leading technology, able to detect both the scintillation and ionization signals. The correlation in the two signal channels provides a possible handle to measure the recoil direction of the nuclei: if confirmed, this would allow inferring the...
Gravitational-wave detectors are very sensitive instruments that suffer from a huge number of noises. If we aim to observe gravitational waves with Earth-based detectors, we need to take care of every source that can prevent the observation.
Seismic noise poses a huge challenge to the sensitivity in the the low frequency band and it is tackled with suspensions and active controls. The low...
Seismic noise, the related gravitational gradient noise (Newtonian noise) and the thermal noise of the suspension last stage and of the test masses determine the sensitivity of current gravitational-wave detectors at low frequencies. Seismic and Newtonian noises can be mitigated by installing the detectors under the ground, while the thermal noise can be reduced by cryogenically cooling down...
Neutrinoless double-$\beta$ decay (0$\nu\beta\beta$) is an experimentally sensitive avenue to probe the nature (Majorana versus Dirac) and exact mass of neutrinos. This work [1] quantitatively explores the interplay between exposure and background levels in 0$\nu\beta\beta$ experiments at their design stage. In particular, background reduction will be playing increasingly important and...
Dark matter Axion search with riNg Cavity Experiment (DANCE) was proposed. To search for axion-like dark matter, we aim to detect the rotation and oscillation of optical linear polarization caused by axion-photon coupling with a bow-tie ring cavity. DANCE can improve the sensitivity to the axion-photon coupling constant for axion mass $< 10^{-10}$ eV by several orders of magnitude compared to...
The Gerda experiment searched for the lepton number violating neutrinoless double-beta (0νββ) decay of 76Ge. Observation of this decay would provide answers to fundamental problems in particle physics and cosmology, including the origin of neutrino masses and baryon asymmetry in the universe. The Gerda experiment achieved the most stringent lower limit on the half-life of the 0νββ-decay of 1.8...
keV-scale gauge-singlet fermions, allowed to mix with the active neutrinos, are elegant dark matter (DM) candidates. They are produced in the early universe via the Dodelson-Widrow mechanism and can be detected as they decay very slowly, emitting X-rays. In the absence of new physics, this hypothesis is virtually ruled out by astrophysical observations. In this talk, I will demonstrate that...
Potassium-40 (K-40) is a long-lived, naturally occurring radioactive isotope. The decay products are prominent backgrounds for many rare event searches, especially those involving NaI-based scintillators (ex. DAMA, ANAIS-112, COSINE-100, SABRE, COSINUS etc.). The branching ratio of the electron capture directly to the ground state of Argon-40 has never been experimentally measured and presents...
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for 0νββ decay that has been able to reach the one-tonne mass scale. The detector, located at the LNGS in Italy, consists of an array of 988 TeO2 crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of...
The search for neutrinoless double beta decay could cast light on one critical piece missing in our knowledge i.e. the nature of the neutrino mass. Its observation is indeed the most sensitive experimental way to prove that neutrino is a Majorana particle. The observation of such a potentially rare process demands a detector with an excellent energy resolution, an extremely low radioactivity...
Gravitational waves excite quadrupolar vibrations of elastic bodies. Monitoring these vibrations was one of the first concepts proposed for the detection of gravitational waves by Joseph Weber. At laboratory scale, these experiments became known as resonant-bar detectors, which form an important part of the history of GW detection. Due to the dimensions of these bars, the targeted signal...
ANAIS (Annual modulation with NaI(Tl) Scintillators) is a direct dark matter detection experiment aiming at the confirmation or refutation of the DAMA/LIBRA positive annual modulation signal in the low energy detection rate, using the same target and technique. ANAIS−112, located at the Canfranc Underground Laboratory in Spain, is operating an array of 3×3 ultrapure NaI(Tl) crystals with a...
Axions emerge naturally from the Peccei-Quinn (PQ) mechanism which addresses the absence of CP violation in the strong interaction, and they can make up the cold dark matter in the universe. If PQ symmetry breaking had occurred after inflation, the axion mass would likely range from ∼ 40 μeV to ∼ 1 meV, which is yet to be explored experimentally.
The MAgnetized Disc And Mirror Axion...
Based on: JCAP 03 (2021) 084 (arXiv: 2012.07519)
We have updated the constraints on flavour universal neutrino self-interactions mediated by a heavy scalar, in the effective 4-fermion interaction limit. We use the relaxation time approximation to modify the collisional neutrino Boltzmann equations, which is known to be very accurate for this particular scenario. Based on the latest CMB data...
We consider heavy sterile neutrinos $\nu_s$ with mass in the range $10~\mathrm{MeV}≤m_s≤m_π∼135~\mathrm{MeV}$, which are thermally produced in the Early Universe, in collisional processes involving active neutrinos, and freezing out after the QCD phase transition. Notably, if these neutrinos decay after the active neutrino decoupling, they generate extra neutrino radiation and contribute to...
The NEXT (Neutrino Experiment with a Xenon TPC) collaboration searches for the neutrino-less double beta decay (ββ0ν) of 136Xe at the Laboratorio Subterráneo de Canfranc (LSC) (Huesca, Spain). The observation of such a lepton-number-violation process would prove the Majorana nature of neutrinos, providing also information on the neutrino mass scale. A first large-scale prototype of a...
Neutrino decay interaction with scalar majorons naturally arises from Standard Model extensions to model neutrino mass generation. The interaction if present during the CMB epoch has the potential to disrupt neutrino free streaming and hence the CMB anisotropy spectra. This has been previously studied as a cosmological constraint on neutrino lifetime. In this work, we model the decay...
An observation of Neutron-antineutron ($n-\bar{n}$) oscillations, would directly imply physics beyond the Standard Model violating baryon number by two units $|\Delta B| = 2$ and hence might provide a close link to the mechanism behind the observed baryon asymmetry of the Universe. In this talk, I will discuss the consequences of such a discovery in the near future, e.g. at the Deep...
nEXO is a 5 tonne monolithic liquid xenon (LXe) time projection chamber (TPC) planned to search for the neutrinoless double beta decay of $^{136}$Xe with an estimated half-life sensitivity of $> 10^{28}$ years at 90% C.L.. Advancements were made in terms of detector design, signal modelling and data analysis to support a refined estimate of the sensitivity and discovery potential of the nEXO...
COSINE-100 and ANAIS-112 are rejecting the annual modulating signal of DAMA/LIBRA. However, their background is higher than that of DAMA/LIBRA.
It is essential to verify the seasonal variations using NaI(Tl) detectors, which have a lower background than DAMA/LIBRA.
PICOLON (Pure Inorganic Crystal Observatory for LOw-energy Neutr(al)ino) aims to search for cosmic dark matter by high purity...
In the primordial Universe, neutrino decoupling occurs only slightly before electron-positron annihilations. This leads notably to an increased neutrino energy density compared to the standard instantaneous decoupling approximation, parametrized by the effective number of neutrino species $N_\mathrm{eff}$. A precise calculation of neutrino evolution is needed to assess its consequences on BBN,...
We investigate a dark sector containing a pair of light non-degenerate scalar particles, with masses in the MeV-GeV range, coupled to the visibile sector through heavier mediators. The heaviest dark state is long-lived, and its decays offer new testable signals. We analyze the prospects for detection with the proposed beam-dump facility SHiP, and the proposed LHC experiments FASER and...
The Precision Reactor Oscillation and SPECTrum experiment, PROSPECT, is a reactor antineutrino experiment located at the High Flux Isotope Reactor (HFIR). The detector is deployed on surface with minimal overburden at very short baseline from the highly enriched uranium reactor core. With this configuration, PROSPECT detector can be used to explore different variety of physics topics, from...
Large liquid xenon Time Projection Chambers (TPC) with multi-ton of active mass, such as PandaX-4T, have hundreds of kilogram of Xe-136 and can be used to search for neutrinoless double beta decay (NLDBD). PandaX-4T is taking commissioning data as for now at China JinPing Underground Laboratory (CJPL). We will present the detector performance at high energy and the physics potential to search...
Testing the DAMA/LIBRA annual modulation result independently of dark matter particle and halo models has been a challenge for twenty years. Using same target material, NaI(Tl), is required and presently two experiments, ANAIS-112 and COSINE-100, are running for such a goal. However, a precise knowledge of the detector response to nuclear recoils is mandatory because this is the channel where...
Search for double beta decay processes (EC/EC, β+/EC, β+β+) of 106Cd was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the low-background multi–detector spectrometer TGV-2 and enriched 106Cd. The detector part of the TGV-2 is composed of 32 HPGe planar type detectors with the sensitive volume of 2040 mm2 x 6 mm each. The total sensitive volume of the...
The mixing of three active neutrino flavors is parameterized by the unitary PMNS matrix. If there are more than three neutrino flavors and if the extra generations are heavy iso-singlets, the effective $3\times 3$ mixing matrix for the three active neutrinos will be non-unitary. We have analyzed the latest T2K and NO$\nu$A data with the hypothesis of non-unitary mixing of the active neutrinos....
Pseudo-Nambu-Goldstone bosons (pNGBs) are attractive dark matter (DM) candidates since they are coupled to the Standard Model (SM) predominantly through derivative interactions. Thereby, they naturally evade the strong existing limits inferred from DM direct detection experiments. Working in an effective field theory that includes both derivative and non-derivative DM-SM operators, we perform...
The NEOS aims to search for sterile neutrinos by detecting reactor antineutrinos at a very short baseline in Korea. The NEOS detector (1 ton GdLS) is deployed at the tendon gallery of the Hanbit reactor unit 5 (2.8 GW thermal power), 24 m away from the reactor core. In NEOS-I, the prompt energy spectrum from inverse-beta-decay was measured using 180 days of reactor-on data, where the "5 MeV...
The ICARUS collaboration employed the 760-ton T600 detector in a successful three-year physics run at the underground LNGS laboratories studying neutrino oscillations with the CNGS neutrino beam from CERN, and searching for atmospheric neutrino interactions. ICARUS performed a sensitive search for LSND-like anomalous νe appearance in the CNGS beam, which contributed to the constraints on the...
SNO+ is a multi-purpose neutrino experiment located at SNOLAB. Now filled with liquid scintillator after a challenging campaign of operations during the pandemic, SNO+ is studying backgrounds in the detector and embarking on a neutrino physics program including reactor, geo and solar neutrinos. The ultimate goal of SNO+ is to deploy roughly 4 tonnes of tellurium (0.5%) in the scintillator to...
The origin of neutrino masses is one of the unsolved puzzles in particle physics. One possibility is that neutrinos have Majorana masses.We can test the Majorana nature of neutrinos by searching for neutrinoless double-beta decay ($0\nu\beta\beta$) events.CANDLE is a project which targets $0\nu\beta\beta$ events from ${}^{48}$Ca using its high Q$_{\beta\beta}$-value of $4.27\,$MeV. We...
AMoRE is a search for neutrinoless double beta decay using Mo-100 enriched crystal scintillators at an ultra-low temperature. We have understood the major background sources and how they can be reduced from a pilot stage run in the Yangyang underground laboratory. AMoRE-I is currently running with twelve $^{48\textrm{depl}}$Ca$^{100}$MoO$_{4}$ and five Li$_{2}^{100}$MoO$_{4}$ crystals with a...
The Short-Baseline Near Detector (SBND) will be one of three liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is currently in the construction phase and is anticipated to begin operation in the second half of 2022. SBND is characterised...
Automated tools for the computation of amplitudes and cross sections have become the backbone of phenomenological studies beyond the standard model. We present the latest developments in MadDM, a calculator of dark-matter observables based on MadGraph5_aMC@NLO. The new version enables the fully automated computation of loop-induced annihilation processes, relevant for indirect detection of...
Strong gravitational lensing of gravitational waves can produce duplicate signals separated in time with different amplitudes. We consider the case in which strong lensing produces identifiable gravitational wave events and weaker sub-threshold signals hidden in the noise background. We present a search method for the sub-threshold signals using targeted template banks targeting specific...
I will present a recent application of the SN 1987A cooling bound to set a constraint on dark flavoured sectors. This is possible thanks to the fact that the protoneutron stars are hot and dense environments where hyperons can be efficiently produced. Therefore a decay of the form $Λ→nX^0$, where $X^0$ is a new bosonic dark particle, will be severely constrained. I will explain the ingredients...
There is currently interest in testing possible Lorentz invariance violation (LIV) in different physical processes. LIV effects have also been searched in the neutrino sector, mainly in neutrino oscillation experiments. However, there are LIV effects induced by a Lorentz-violating operator in the Standard Model extension (SME) theory, called countershaded operator, which does not affect the...
ASTAROTH is a novel R&D project which aims at improving the physics reach of future direct dark matter detection experiments based on NaI(Tl) scintillating crystals.
There is a strong need to test the long standing DAMA positive observation of an annual modulation that could be due to Dark Matter, with the same target material and in a model independent way.
ASTAROTH aim is to enhance the...
We present the latest results on the development of the Dark-PMT, a novel light Dark Matter (DM) detector. The detector is designed to be sensitive to DM particles with mass between 1 MeV and 1 GeV. The detection scheme is based on DM-electron scattering inside a target made of vertically-aligned carbon nanotubes. Vertically-aligned carbon nanotubes have vanishing density in the direction of...
The Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay (LEGEND) is a phased experimental effort to search for neutrinoless double-beta decay in $^{76}$Ge. The first phase uses existing resources building off the experiences of the Majorana and GERDA experiments, as well as new techniques like larger inverted coaxial detectors and an improved Argon detector system. It...
The MAJORANA DEMONSTRATOR has recently completed data-taking for its search for neutrinoless double-beta decay ($0\nu\beta\beta$) in $^{76}$Ge.
If observed, this beyond the standard model process that would prove the neutrino is a Majorana fermion and provide a path to leptogenesis in the early universe.
The experiment has completed operation of a modular array of 44 kg of high purity...
Nowadays, double beta decay searches are an important point of interest in neutrino physics: the observation of neutrinoless double beta (0$\nu$2$\beta$) decay will give essential information on neutrino masses and nature as well as on lepton number violation. The technological challenge for highly sensitive 0$\nu$2$\beta$ experiments includes the minimization of the background index in the...
The SABRE (Sodium-iodide with Active Background REjection) experiments aim to detect an annual rate modulation from dark matter interactions in ultra-high purity NaI(Tl) crystals. The SABRE south experiment is located at the Stawell Underground Physics Laboratory (SUPL), Australia, the first deep underground laboratory in the Southern Hemisphere, due to be completed in late 2021. SABRE South...
We have examined the consistency of electroweak breaking, neutrino and dark matter phenomenology within the minimal scoto-seesaw mechanism. The model provides a simple picture where the ''atmospheric'' mass scale arises from the tree-level ''missing partner'' seesaw, while the ``solar'' scale is induced radiatively by the dark sector, hence neutrino mass generation is intimately connected with...
Loïc-René LABIT, on behalf of the STEREO collaboration
During the last decades, several parameters describing the neutrino oscillation phenomenon have been characterized thanks to reactor neutrino experiments, in particular the precise measurement of the last-to-be-measured mixing angle $\theta_{13}$.
Following a reactor antineutrino flux re-estimation in 2011, a ∼6% deficit between observed...
CUPID-0 is the first pilot experiment of CUPID, a next-generation project to search for neutrinoless double beta decay (0νDBD) with scintillating bolometers.
The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from March 2017 to December 2018 (Phase I) and from May 2019 to February 2020 (Phase II), for a total...
The non-observation of conclusive dark matter signals raises the question whether WIMPs can still account for the dark matter of the universe. In this talk I will present results from a global analysis of effective field theory operators describing the interactions between WIMPs and Standard Model particles. In this bottom-up approach, the global fitting framework GAMBIT is used to...
Among various dark matter candidates, bosonic ultralight fields with masses below 1 eV are well motivated by cosmology because they behave as classical wave fields, rather than individual particles. Recently, a number of novel ideas have been proposed to search for ultralight dark matter candidates using laser interferometers at various scales. Those include our proposals to search for...
Conferencia de divulgación en L'Hemisfèric
Ciutat de les Artes i les Ciències de València
https://www.cac.es/es/museu-de-les-ciencies/Ciclos-y-conferencias/Actualidad/Conferencia-cazadores-de-materia-oscura.html
Chair: Carlos Delgado
For the next galactic supernova, operational neutrino telescopes will measure the neutrino flux several hours before their optical counterparts. Existing detectors, relying mostly on charged current interactions, are mostly sensitive to $\bar{\nu}_e$ and to a lesser extent to $\nu_e$. In order to measure the flux of other flavors...
Antimatter cosmic-ray measurements can advance our understanding of high-energy astrophysical phenomena in our own Galaxy. Over the last years, satellite experiments as the Alpha Magnetic Spectrometer on board the International Space Station measure antimatter cosmic ray fluxes, including antiprotons and recently antimatter nuclei. These measurements provide a novel probe to search for new...
Using the density matrix equations (DME) for high scale leptogenesis based on the type I seesaw mechanism, in which the CP violation (CPV) is provided by the low-energy Dirac or/and Majorana phases of the neutrino mixing (PMNS) matrix, we investigate the 1-to-2 and the 2-to-3 flavour regime transitions, where the 1, 2 and 3 leptogenesis flavour regimes in the generation of the baryon asymmetry...
The interpretation of indirect detection experiments searching for dark matter annihilations requires computationally expensive simulations of cosmic-ray propagation. We present a new method based on Recurrent Neural Networks (RNNs) that significantly accelerates simulations of secondary and dark matter cosmic ray antiprotons. This approach allows for an efficient marginalization over the...
TBC
The DAMIC experiment employs large area, thick charge-coupled devices (CCDs) to search for the interactions of low-mass dark matter (DM) particles in the galactic halo with silicon atoms in the CCD target. The low pixel noise provides DAMIC with sensitivity to ionization signals of only a few charges, for a remarkably low energy threshold. From 2017 to 2019, DAMIC collected dark-matter search...
The Super Cryogenic Dark Matter Search (SuperCDMS) experiment uses high-sensitivity silicon and germanium detectors to directly search for interactions from galactic dark matter (DM). New 1-gram silicon devices instrumented with ultra-high-resolution phonon sensors can be operated both with no electrical bias in the crystal, measuring the recoil energy, and with an applied electric field,...
The detection of neutrinos through the coherent elastic neutrino-nucleus scattering (CEνNS) process opens a new window to study the fundamental properties of this elusive particle and to probe physics beyond the Standard Model. The CONUS experiment – operational since April 2018 – is located at a distance of 17m from the 3.9GWth core of the nuclear power plant Brokdorf (Germany). It aims to...
CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) is a direct dark matter search experiment located at the Gran Sasso Underground Laboratory (Italy) that uses scintillating cryogenic calorimeters as target material for elastic DM-nucleus scattering. The current phase of the experiment, CRESST-III, is optimized for low-energy nuclear ...
DarkSide-LowMass is a tonne-scale liquid argon time projection chamber being planned by the Global Argon Dark Matter Collaboration (GADMC) to search for WIMP-like dark matter with masses below 10 GeV/c^2, achieving low thresholds with a design optimized for an electron-counting analysis. Building upon the success of DarkSide-50's light dark matter search, DarkSide-LowMass will aim to achieve...
In the present talk we continue our discussions [1-5] on neutrino electromagnetic properties and start with a short introduction to the derivation of the general structure of the electromagnetic form factors of Dirac and Majorana neutrinos.
Then we consider experimental constraints on neutrino magnetic and electric dipole moments, electric millicharge, charge radii and anapole moments from...
Virtual reality (VR) technologies present exciting opportunities for astrophysics education and outreach. VR turns abstract concepts into experienceable phenomena and can increase interest and engagement with physics and astronomy. However, we still lack knowledge about how to maximise the benefits of VR when we use these technologies in public outreach programs. In this talk, we will present...
Coherent elastic neutrino nucleus scattering (CE$\nu$NS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. The NUCLEUS experiment aims to measure CE$\nu$NS of reactor anti-neutrinos down to unprecedented low nuclear recoil energies. The novel gram-scale fiducial-volume cryogenic detectors feature an ultra-low energy threshold of $\sim$20...
The $\nu$GeN project is aimed to study neutrino scattering at the close vicinity of the reactor core of Kalinin Nuclear Power Plant (KNPP). Its main interests are connected with the detection of coherent elastic neutrino-nucleus scattering (CE$\nu$NS) and the search for the magnetic moment of neutrino. The experimental setup is constructed under reactor unit #3 of KNPP at a distance of about...
The Project 8 collaboration is seeking a direct measurement of the absolute neutrino mass scale from the distortion of the tritium beta decay spectrum near the endpoint with a sensitivity of $\sim 40\,\mathrm{meV/c^2}$. To this end, the collaboration has successfully established CRES, a frequency-based approach to detect electrons and determine their kinetic energy. This talk will present the...
Andromeda galaxy (M31) represents our nearest large neighbor spiral galaxy with a distance of 785 kpc. Its close proximity allows us to optically resolve its stellar disk and bulge as two separate components. Although M31 spans 3.2º x 1º on the sky in optical light, the determination of its extension in γ rays remains controversial. We analyze about 12 years of Fermi-LAT data using the code...
The International Particle Physics Group (IPPOG) is a global network active in informal education and outreach in particle physics and related research, including cosmic-ray and astro-particle physics. Since many years, IPPOG has been actively supporting the International Cosmic Day organized by DESY and the International Muon Week organized by Quarknet. In 2015 IPPOG started work on...
The search for dark matter (DM) weakly interacting massive particles with noble elements has probed masses down and below a GeV/c^2. The ultimate limit is represented by the experimental threshold on the energy transfer to the nuclear recoil. Currently, the experimental sensitivity has reached a threshold equivalent to a few ionization electrons. In these conditions, the contribution of a...
Primary very high energy (VHE, E>100 GeV) gamma-rays from distant (redshift z>0.1) extragalactic gamma-ray sources are partially absorbed on extragalactic background light (EBL) photons by means of the pair production process \gamma\gamma\rightarrow e^{+}e^{-} with the subsequent formation of intergalactic electromagnetic cascades through inverse Compton scattering of secondary electrons...
The International Masterclasses "Hands on Particle Physics" is an initiative sponsored by the International Particle Physics Outreach Group and hosted by CERN, Fermilab and multiple research centers around the world. It aims to make particle physics knowledge available to high school-grade students and to create an environment where the students can feel how it is to work on an international...
Since 1984 the Italian groups of the Istituto Nazionale di Fisica Nucleare (INFN) and Italian Universities, collaborating with the DOE laboratory of Fermilab (US) have been running a two-month summer training program for Italian university students. While in the first year the program involved only four physics students of the University of Pisa, in the following years it was extended to...
The ongoing search for dark matter continues to evolve, and the quest to reach lower cross-sections is leading to novel techniques. A novel low-background technology for the detection of low energy nuclear recoils involves the use of a bubble chamber which employs noble elements (such as argon and xenon) as the active mass to collect additional scintillation data simultaneously. With recent...
The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) uses fully depleted high-resistivity CCDs (charge coupled devices) with the aim of detecting the coherent elastic scattering of reactor antineutrinos with silicon nuclei and probing physics beyond the Standard Model. CONNIE is located at a distance of about 30 m from the core of the 3.8 GW Angra-2 nuclear reactor in Rio de Janeiro,...
One of the key challenges in astroparticle physics is the identification of the sources of cosmic rays at the highest energies (above 1 EeV). In this context, the search for neutral messenger particles in the ultra-high-energy (UHE) regime is of high interest. The sources of the gravitational waves (GWs) that can be observed with the current generation of GW detectors provide extreme...
The XENONnT experiment is an ultra-low background liquid xenon Time Projection Chamber at the Gran Sasso National Laboratory in Italy. Beyond its primary science goal to detect WIMP dark matter, XENONnT will be highly sensitive to a variety of rare neutrino processes. The previous XENON1T measured the half-life of the two-neutrino double-electron capture process of Xenon-124. In XENONnT, with...
Sterile neutrino is a simple and elegant dark matter candidate. In its minimal incarnation, the original Dodelson-Widrow mechanism that explains the relic abundance has been in strong tension with the indirect detection limits. I present the self interacting neutrino scenario, mediated by a Majoron-like scalar or vector boson, as a novel solution to the above tension. It can accommodate new...
We have measured, for the first time in pure Xe, non-excimer-based secondary scintillation, Neutral Bremsstrahlung (NBrS), in a dedicated setup based on a Gas Proportional Scintillation Counter.
The emission of NBrS by drifting electrons occurs even for electric field values below the gas excitation threshold. We have shown the presence of NBrS in the NEXT-White TPC, at present the largest...
The origin of gamma-ray radiation of extreme TeV blazars (ETBs) — active galactic nuclei with unusually hard observable spectra in the TeV energy region — is still poorly understood. This is especially unfortunate since ETB studies are important in extragalactic background light measurements, and extremely important in extragalactic magnetic field measurements and axion-like particle searches....
With the onset of the COVID pandemic in 2020 all outreach and educational activities with in-person participation had to stop. The ALICE collaboration adapted to the new situation and continued reaching out to the public using the multitude of online tools and platforms available. We will focus here on two of our main outreach activities, virtual visits and masterclasses.
With the...
Low energy anti-deuterons in cosmic rays are considered a golden channel for the search of Dark matter annihilations in the Galaxy.
Anti Deuteron Helium Detector (ADHD) project is aiming to study the signature offered by an high pressure Helium target for the identification of anti-deuterons in cosmic rays.
In particular exotic atoms are produced by stopping anti-protons/anti-deuterons in the...
We will discuss the physics reach of a low threshold (100 eV) scintillating argon bubble chamber sensitive to Coherent Elastic neutrino-Nucleus Scattering (CEνNS) from reactor neutrinos. We will focus on the sensitivity for a light Z′ gauge boson mediator, and also review the complementarity of such experiment with DM direct detection experiments when the DM interacts with the light mediator.
ESSnuSB project is a design study for an upcoming accelerator-based neutrino oscillation experiment which will be driven by the ESS proton accelerator. The primary goal of this experiment is to measure the leptonic CP-violation phase with high precision at the second oscillation maximum. In this presentation, I will discuss the physics sensitivities of the proposed ESSnuSB experiment. In...
Primordial non-Gaussianity (PNG) is claimed to be a smoking gun to differentiate between the vast collection of inflationary models. The current constraints on PNG, parametrized by $f_{NL}$, are obtained from the CMB, which has reached the cosmic variance limit. A promising way to look for PNG is using the Large Scale Structures (LSS) of the universe, with the potential of breaking the...
Nuclear and electron recoil measurements are a substantial tool for investigating novel neutrino physics phenomena at low-energies. In this talk I will discuss the current constraints on non-standard interactions (NSIs) and electromagnetic neutrino properties, obtained from the recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) by COHERENT as well as from the recent...
The NEWS-G collaboration has demonstrated the ability to competitively search for light Dark Matter (DM) using spherical proportional counters. SNOGLOBE, the current 1.4 m in diameter detector, was constructed with 99.99% pure copper (C10100). A 500μm ultra-pure copper layer was electroplated to the detector’s inner surface to further suppress backgrounds. Building on this experience, the...
The CDEX program pursues the direct detection of light dark matter candidates with an array of germanium detectors since 2009 at the deepest operating underground site located in Sichuan, China. Searches of modulation effect of light WIMPs [1], WIMPs-nucleus interaction via Midgal effect [2], dark photon model [3], solar axions and axion-like particles [4] as well as the...
The radio-observatory Square Kilometre Array (SKA) will have great potential to map the large-scale structure of the Universe. HI Intensity Mapping is one of the main planned surveys, that will map neutral hydrogen (HI) using large angular pixels, but which will be able to reconstruct the three dimensional LSS of the Universe at very large scales (0 < z < 6). We study the clustering of HI...
RES-NOVA is a new proposed experiment for the hunt of neutrinos from core-collapse supernovae (SN) via coherent elastic neutrino-nucleus scattering (CEvNS) using an array of archaeological lead (Pb) based cryogenic detectors. The high CEvNS cross-section on Pb and the ultra-high radiopurity of archaeological Pb enable the operation of a high statistics experiment equally sensitive to all...
LIGO, Virgo and KAGRA form the second-generation global network of gravitational wave detectors. From the first detection of the GW150914 binary black hole merger to the latest results from the recent O3 observing run, our observations are pushing frontiers in observational astrophysics. To continue inspiring the wider public with our findings, one key communications activity of the LVK...
We compare two competing relativistic approaches to the N-body simulation of the Universe large-scale structure. To this end, employing the corresponding alternative computer codes ("gevolution" and "screening"), we conduct a series of cosmological simulations in boxes of different sizes and calculate the power spectra of the scalar perturbation Φ, the frame-dragging vector potential B and...
The mechanisms of origin of ultrahigh-energy gamma radiation are poorly studied. One way to find out is to search for temporal and directional coincidences of high-energy galactic neutrinos with photons of similar energies. The results of such a search could provide indications of the hadronic origin of this radiation. In this paper, we report on the search for photons with energies above 300...
This work presents an IceCube search for high-energy neutrinos from Ultra-Luminous Infrared Galaxies (ULIRGs). ULIRGs are the most luminous infrared objects on the sky, with infrared luminosities exceeding $10^{12}$ solar luminosities. They are mainly powered by starbursts that exhibit star-formation rates larger than 100 solar masses per year. In addition, an active galactic nucleus (AGN) can...
We present a radio search for WIMP dark matter in the Large Magellanic Cloud (LMC). We make use of a recent deep image of the LMC obtained from observations of the Australian Square Kilometre Array Pathfinder (ASKAP), taken as part of the Evolutionary Map of the Universe (EMU) survey. LMC is an extremely promising target for WIMP searches at radio frequencies because of the large J-factor and...
Current gravitational wave (GW) surveys of binary black hole (BBH) mergers provide unprecedented probes of the dynamics in extreme gravitational fields and relativistic velocities.
It has been proposed that such compact objects may display exotic characteristics and could produce repeated GW pulses of widely uncertain morphology (echoes) in the post-merger phase. A detection of echoes would be...
For a perfect fluid, the quantity defined through mixed components of the stress-energy tensor $\widetilde{w}=(T_{i}^{\phantom{i}i}/3)/(-T_{0}^{\phantom{0}0})$ is independent on the choice of coordinates only for two values of the pressure to energy density ratio $w=p/\rho$: for radiation with $w=1/3$, and for dark energy with $w=-1$. With other choices of $w$, the quantity $\widetilde{w}$ is...
The recent discoveries of Gravitational Wave (GW) signals have attracted a lot of interest from the general public and scientific colleagues. It is crucial to properly communicate the excitement of the emerging field of GW science to the society and have the potential to engage and educate new generations of future scientists.
The EGO-Virgo Collaboration is active in many outreach and...
Super-Kamiokande (SK) is the world's largest underground water Cherenkov
detector. The latest phase of operations began in July 2020 when, in order
to improve neutron detection efficiency, about 13 tons of gadolinium (Gd)
sulfate octahydrate was dissolved into SK's pure water. Gd has a large
thermal neutron capture cross section and emits visible gamma rays. This
first loading marked the...
DAMIC-M is a low-energy threshold dark matter experiment using skipper charge-coupled devices (skipper CCDs) at the Laboratoire Souterrain de Modane (LSM) in France. The kg-scale detector is designed to search for both nuclear and electronic recoils from low-mass WIMP and hidden photon scatters on silicon within the large CCD array. The skipper amplifier readout allows for several...
In my presentation, I will discuss my study on middle school students’ understanding of Einsteinian physics with an emphasis on quantum physics that demonstrates the possibility of teaching physics from an Einsteinian standpoint. Firstly, I will show the age group dependence between students of year 7—10 by measuring students’ knowledge, and attitude towards physics. Secondly, I will...
The General Antiparticle Spectrometer (GAPS) is a balloon-borne detector designed to search for dark matter search by measuring low-energy (<0.25 GeV/n) cosmic-ray antinuclei (antiprotons, antideuterons, antihelium). GAPS uses a novel identification technique based on exotic atom formation and decay. GAPS will provide a high-statistics antiproton spectrum in an unexplored low-energy range. In...
The Hyper-Kamiokande experiment consists of a 260 kt underground water Cherenkov detector with a fiducial volume more than 8 times larger than that of Super-Kamiokande. It will serve both as a far detector of a long-baseline neutrino experiment and an observatory for astrophysical neutrinos and rare decays.
The long-baseline neutrino experiment will detect neutrinos originating from the...
Stellar mass binary black holes are the most important sources of gravitational waves for current LIGO-Virgo-Kagra detectors. We analyze about a thousand globular cluster (GC) models simulated using the MOCCA Monte Carlo code for star cluster evolution to study black hole - black hole interactions in these dense stellar systems that can lead to gravitational wave emission. We extracted...
Hyper-Kamiokande (Hyper-K) is a next-generation experiment for understanding the properties of neutrino mixing, astrophysical neutrinos, and searches for new physics through processes such as nucleon decay. It will utilize a water Cherenkov detector 8 times larger than the current Super-Kamiokande, and will benefit from an upgraded 2.5 times higher intensity J-PARC beam than T2K. An...
The International Dark Matter Day is celebrated worldwide on October 31 every year since 2017. In Argentina, it was organized for the first time in 2019 in an outreach effort coordinated by the ANDES deep underground laboratory. In 2019, we started a call for art students to propose an audiovisual piece on Dark Matter, asked about whether basic science was important for Argentina and...
The International Particle Physics Outreach Group (IPPOG) is a network of scientists, science educators and communication specialists working across the globe in informal science education and outreach for particle physics. The primary methodology adopted by IPPOG requires the direct involvement of scientists active in current research with education and communication specialists, in order to...
The Migdal in Galactic Dark mAtter expLoration (MIGDAL) experiment aims to make the first observation of the Migdal effect from fast neutron scattering using intense DT and DD generators, allowing the effect to be investigated over a wide range of nuclear recoil energies.
The experiment will use an Optical Time Projection Chamber equipped with glass-GEMs operating in 50-Torr CF4 based gas...
The Darkside experiment aims at the direct detection of Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs). It is a 20-tonne (fiducial) argon dual-phase Time-Projection Chamber (TPC) that exploits the cryogenic SiPM technology to identify unambiguously the nuclear recoils induced by WIMPs. The experiment is being installed at the LNGS and will start operation around...
The NEWS-G direct dark matter search experiment uses spherical proportional counters (SPC) with light noble gases to explore low WIMP masses. The first results obtained with an SPC prototype operated with Ne gas at the Laboratoire Souterrain de Modane (LSM) have already set competitive results for low-mass WIMPs. The forthcoming next phase of the experiment consists of a large 140 cm diameter...
The Surface Detector of the Pierre Auger Observatory, an array of 1600 water-
Cherenkov stations in a triangular grid with 1500 m separation between
stations, has the capability to detect neutrinos with energy above 10^17 eV. The
identification through the special characteristics of highly inclined showers is
efficiently performed for neutrinos of all flavours interacting deep in...
The coherent WaveBurst (cWB) pipeline implements a minimally-modelled search to find a coherent response in the network of gravitational wave detectors of the LIGO-Virgo Collaboration in the time-frequency domain. Here we describe an extension of the cWB analysis to detect spectral features beyond the main quadrupolar emission of gravitational waves during the inspiral phase of compact binary...
Advanced LIGO and Virgo have delivered a conclusive gravitational-wave signal consistent with compact binary mergers in the intermediate-mass black-hole range and as well as several lower significance triggers. These signals have challenged in several ways our vanilla analysis methods, all done within the “canonical” paradigm of quasi-circular black hole mergers. First, under such assumption,...
The concept of turnaround radius in an accelerating universe is generalized to arbitrarily large deviations from spherical symmetry, as needed for astronomical observations. As an application, the turnaround surface is characterized when deviations from spherical symmetry are small and is extended to scalar-tensor gravity. An independent approach for small non-sphericities using the Hawking...
The blazar Mrk421 (redshift z=0.031) is one of the brightest and closest BL Lac type objects, making it an ideal target to probe blazar jet physics. We present a detailed characterisation and theoretical interpretation of the broadband emission of Mrk 421, with a focus on the multi-band flux correlations. The extensive multi-wavelength observation campaign was organised in 2017, during which...
γ-ray bursts (GRBs) are transient cataclysmic events, whose role became central in the new multi-messenger era. In the present work I propose a novel investigation of the GRB emission mechanism, via time-resolved spectral analysis of the X-ray tails of bright GRB pulses observed with the XRT instrument onboard the Neil Gehrels Swift Observatory, discovering a unique relation between the...
The axion is a well-motivated candidate for the inflaton, as the radiative corrections that spoil many single-field models are avoided by virtue of its shift symmetry. However, axions generically couple to gauge sectors. As the axion rolls through its potential, this coupling can result in the production of a co-evolving thermal bath, a situation known as "warm inflation." Inflationary...
We present results on light weakly interacting massive particle (WIMP) searches with time-integrated (TI) and annual modulation (AM) analysis on data from a 1-kg mass p-type point-contact germanium detector of the CDEX-1B experiment at the China Jinping Underground Laboratory. Limits from WIMP-nucleus with Migdal effect and WIMP-electrons interactions with earth scattering correction will be...
One of the important developments in the field of neutrino astrophysics is a search for ultrahigh-energy (UHE) cosmic neutrinos (even above PeV–EeV energies), which are believed to be produced by reactions of UHE cosmic rays composed of protons and nuclei. These neutrinos can be detected with neutrino telescopes, such as IceCube, ANTARES, Baikal-GVD, and KM3NeT, and are expected to provide...
The TRISTAN project is the upgrade of the KATRIN experiment that aims at searching for sterile neutrino with mass in the keV range through precise measurements of the entire Tritium $\beta$-spectrum.
In order to achieve this goal, the current KATRIN detector must be replaced with a multipixel detector based on Silicon Drift Detectors (SDDs). SDDs, with their excellent energy resolution and...
The high-energy physics is experiencing an interesting twist of events as some basic principles related to cosmic-rays and atmospheric production of cascading earthbound particles appear becoming more mainstream, at least in other sciences. We offer a few examples to support the point. First, the corresponding author of this work is a geologist by education and yet in the process to cross the...
During the past decades experiments using liquid xenon as a detector material have grown rapidly in the fields of dark matter and neutrino searches. During the scale up of such detectors there is a big push to move the electronics closer to the detectors which are submerged in cryogenic noble gases. One such example is the development of ASICs operating in liquid xenon for the amplification...
The ANAIS-112 experiment is intended to test the observation of an annual modulation signal by the DAMA/LIBRA experiment using 112.5 kg of NaI(Tl) detectors operated in the Canfranc Underground Laboratory (Spain). Data taking is going on since August, 2017 and annual modulation results from the analysis of three years of data have been presented, being compatible with the absence of...
Some simple arguments are introduced for a possible explanation of the behaviour of the lateral shower age of proton-initiated showers. The corresponding analytical treatment based on the proposed argument is then illustrated. Using the Monte Carlo simulation code CORSIKA, we have validated how the different characteristics associated with the lateral shower age predicted in the present...
The Jiangmen Underground Neutrino Observatory (JUNO) is a neutrino medium baseline experiment under construction in southern China, expecting to begin data taking in 2023. The experiment has been proposed with the main goals of determining the neutrino mass ordering and measure three oscillation parameters with sub-percent precision. To reach these goals, JUNO is located about 53 km from two...
We study neutrino flux evolution in an extreme astrophysical environment peculiar to supernovae accounting for the collective effects and effects of an arbitrarily moving and polarized media and a strong magnetic field. The effect of the transversally moving matter on the flavour and spin-flavour oscillations in a magnetic field was considered in [1-3]. In the present paper we further develop...
We perform a three-dimensional self-consistent core-collapse supernova simulation using a binary evolution progenitor model of SN 1987A by Urushibara et al. (2018). This progenitor model is based on a slow-merger of 14 and 9 solar-mass stars and it satisfies most of the observational constraints such as red-to-blue evolution, lifetime, total mass and position in the Hertzsprung-Russell diagram...
The CRESST experiment searches for dark matter induced nuclear recoils inside $\rm CaWO_4$ based cryogenic calorimeters at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. To reliably identify a potential signal, a precise understanding of its background budget is crucial.
A potentially important background category are “cosmogenics”: radionuclides produced via interactions with...
The current experimentally measured parameters of the Standard Model (SM) suggest that our Universe lies in a metastable electroweak vacuum, where the Higgs field is prone to vacuum decay to a lower state with catastrophic consequences. Our measurements dictate that such an event has not taken place yet, despite the many different mechanisms that could have triggered it in our past light-cone....
In this work, we investigate the cosmological application of modified Chaplygin gas
(MCG) interacting with pressureless dark matter (DM) in the f(T) modified gravity
framework, where T is the torsion scalar in teleparallelism. The interaction term has
been chosen proportional to the MCG density with positive coupling constant. In the
Einstein general relativity (GR) framework, the interacting...
Axion-like particles (ALPs) are undiscovered pseudo-scalar particles that are candidates for ultralight dark matter. ALPs interact with photons slightly and cause the rotational oscillation of linearly polarized light. DANCE searches for ALP dark matter by amplifying the rotational oscillation with a bow-tie ring cavity.
The sensitivity of the current prototype experiment DANCE Act-1 is...
Radon contamination in water causes serious background for low energy physics in Super-Kamiokande experiment, especially, search for distortions of the solar neutrino energy spectrum induced by the MSW effect.
Continuous monitoring of radon concentration in water with < 1 mBq/m3 level is indispensable to reveal remaining source of radon including its time evolution and lower energy threshold...
Density inhomogeneities can be generated very early in the universe. They are one of the reasons for all the large-scale structures in the early universe. Density inhomogeneities play an important role in nucleosynthesis calculations and affect the phase transition dynamics. These inhomogeneities decay by particle diffusion in the early universe. We have studied the decay starting from the...
We study the effects of nonzero Dirac and Majorana CP-violating phases in neutrino oscillations in a magnetic field of astrophysical environments. It is shown that in the presence of strong magnetic fields and dense matter, nonzero CP phases can induce new resonances, particularly in the oscillations channels $\nu_e \leftrightarrow \bar{\nu}_e$, $\nu_e \leftrightarrow \bar{\nu}_\mu$ and $\nu_e...
Energy Response Model for JUNO Experiment
Miao Yu, on behalf of JUNO collaboration
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment with 20000 ton liquid scintillator (LS) detector under civil construction. The primary physics goal for JUNO is to determine the neutrino mass ordering by precisely measuring the fine oscillation pattern of reactor...
The Hyper-Kamiokande experiment is planned to start in 2027 aiming for precise measurement of neutrino oscillation using J-PARC neutrino beam including the search for CP violation. Hyper-Kamiokande detector is a 260 kiloton water Cherenkov detector and has large statical power, requiring systematic uncertainty at the 1% level or less on neutrino oscillation measurements. For this purpose, a...
Hyper-Kamiokande (HK) is a next generation multi-purpose neutrino and nucleon-decay experiment scheduled to begin operation in 2027. The experimental setup of HK will consist of the neutrino beam line and a suite of near detectors at J-PARC, and a far detector of the same name, HK. The far detector HK, filled with 260 kton of pure water is able to detect a Cherenkov light from the relativistic...
We have proposed the possibility of a cost-efficient way to improve the detector performance for water Cherenkov detectors, by reflecting the usually lost light falling between photo-detectors onto the other side of the tank with retro-reflectors. Using a detector simulation based on optical measurements of retro-reflectors, we developed a convolutional neural network based reconstruction...
Neutrons are one of the main sources of experimental background in underground laboratories. A good knowledge of their spectral distribution is required in order to assess the effect on low counting rate experiments in astrophysics, dark matter and neutrino research. The High Efficiency Neutron-Spectrometry Array (HENSA) has been developed in order to achieve the characterization of the...
We report on a search for non-Newtonian forces that couple to mass, with a characteristic scale of ${\sim}10~\mu$m, using an optically levitated microsphere as a precision force sensor. A silica microsphere trapped in an upward-propagating, single-beam, optical tweezer is utilized to probe for interactions sourced from a nanofabricated attractor mass with a density modulation brought into...
The question of whether the neutrino is identical to its anti-particle, i.e., a Majorana particle, is one of the most fundamental challenges in particle physics. This basic property is connected to the origin of the neutrino mass and could help explain the predominance of matter over antimatter in our Universe. Neutrinoless double-beta ($0\nu\beta\beta$) decay - a so-far unobserved radioactive...
Borexino is a liquid scintillator detector situated underground in the Laboratori Nazionali del Gran Sasso in Italy. Its physics program evolves around the study of solar and geo-neutrinos. By now, Borexino has measured neutrinos from the fusion processes in the pp chain and CNO cycle. Especially for the detection of pep and CNO neutrinos, an important background is formed by the cosmogenic...
The IceCube Neutrino Observatory is a cubic-kilometer detector at the geographic South Pole searching for astrophysical neutrinos. A realtime analysis framework is implemented for multi-messenger time-domain astronomy. When the data acquisition system identifies candidate neutrinos of astrophysical origin, an alert is sent to the multi-messenger community for rapid follow-up observations. The...
The study aims to reconstruct the scalar field model of Dark Energy (DE) namely tachyon, k-essence and dilation scalar field models of DE through holographic dark fluid under Chern-Simon's Modified Gravity. $\Lambda$CDM fixed point is attained in case of tachyon scalar field model under this cosmological settings $[1-8]$. Some constraints have been derived on the interaction term as Tsallis...
We present here the model dependent and independent sensitivity studies for NaI detectors designed to test the DAMA result and compare the predicted limits from SABRE with the present performance of both COSINE and ANAIS. We find that the strongest discovery and exclusion limits are set by a detector with the lowest background (assuming equal run times), and also note that our method correctly...
Despite overwhelming astrophysical evidence for the existence of Dark Matter and intense efforts towards its detection, no clear signal has been found so far. Nonetheless, monumental advancements have been made in the field which allowed to put significant constraints on the parameter space for possible particle candidates. For this reason, various statistical methods have been employed and...
SK-Gd experiment has been started with gadolinium (Gd) added to ultra-pure water in Super-Kamiokande. SK-Gd dramatically improves the sensitivity to supernova relic neutrino searches by tagging neutrons. Cosmic-ray muons flying into Super-Kamiokande induce hadronic showers. Those break oxygen nuclei in water and produce unstable radioactive isotopes and neutrons, which are major background...
The next generation helioscopes BabyIAXO and IAXO will search for evidence of axions and axion-like particles (ALPs) produced in the center of the Sun. In the helioscope a strong magnetic field would convert ALPs via the generic ALP-photon coupling into photons. A very promising candidate for the focal plane X-ray detectors are low temperature metallic magnetic calorimeters (MMCs). Combining...
The ‘Migdal effect’ is an atomic physics effect that leads to the emission of a bound-state electron from atomic or molecular systems when the atomic nucleus is suddenly perturbed. This effect has been used by several experimental collaborations to extend the sensitivity of dark matter direct experiments to sub-GeV mass dark matter candidates. The MIGDAL (Migdal In Galactic Dark mAtter...
One of the elements that was synthesized primordially in the standard Big Bang Nucleosynthesis is Lithium. Lithium, being fragile gets easily destroyed at relatively low temperatures in the mixing process between stellar surface and hot internal layers. So that, at the end of the stellar lifetime the lithium content is believed to be depleted. Series of experimental measurements on lithium...
In the constrained sequential dominance (CSD), tri-bimaximal mixing (TBM) pattern in the neutrino sector has been explained, by proposing a certain Yukawa coupling structure for the right-handed neutrinos of the model. However, from the current experimental data it is known that the values of neutrino mixing angles are deviated from the TBM values. In order to explain this neutrino mixing, we...
In this talk I will discuss how large volume detectors can be used to search for new physics generated via up-scattering within the Earth itself. The production of new particles can be sourced by dark matter, neutrinos, or any other particle capable of penetrating into the Earth's surface. I will focus on neutrino portals and their prospects at experiments such as Super-Kamiokande, Borexino...
nEXO is a future 5-tonne scale Liquid Xenon experiment looking for neutrino-less double beta decay of isotope Xe-136. To attain the projected half-life sensitivity of ~10^28 years, at least 1% of energy resolution is required at the Q-value (Qββ = 2.458 MeV) of the decay.
nEXO has planned to employ Silicon Photomultipliers (SiPMs) along the barrel of the cylindrical Time Projection Chamber...
The Scintillating Bubble Chamber (SBC) Collaboration is developing a novel detection technique aimed at detecting low-mass (0.7-7 GeV/$c^2$) WIMP interactions and coherent elastic neutrino-nucleus scattering (CE$\nu$NS) of reactor neutrinos. Using a target volume composed of superheated argon with xenon doping, the nucleation signal from electron recoils (the limiting factor for low-threshold...
The CALIPSO project deals with the development and optimization of low temperature (~10 mK) solid state detectors. The goal of the project is to propose new strategies for improving the time resolution of cryogenic scintillating calorimeters, read with NTD thermistors. We will test new NTD-detector coupling techniques and optimize the NTD operation to make the response faster. In parallel, we...
Unified theories such as string theory suggests spontaneous Lorentz Invariance Violation(LIV) by introducing a new spacetime structure at the Planck Scale ($m_p \sim 10^{19}$ GeV). This effect can be observed at low energies with strength of $\sim 1/m_p$ using perturbative approach. In the Minimal Standard Model Extension (SME) framework, the neutrino mass-induced flavor oscillation gets...
The lateral density distributions (LDD) of inclined cosmic ray air shower are asymmetric and the corresponding iso-density contours are of increasing eccentric ellipses with zenith angles of different showers. The polar asymmetry of the iso-density contours introduces a significant shift of the EAS core, which is quantitatively expressed as a gap length (GL) parameter between the EAS core and...
Here we report the current sensitivity of the large proportional counter to a $^{124}$Xe 2$\nu$ECEC filled with xenon gas up to 5 atm. One of the main procedures for detecting ECEC decays of $^{124}$Xe in an experiment using a gas target is identifying three charge ionization clusters released during the absorption of two X-ray quanta and Auger electrons from a daughter atom. The developed new...
KamLAND-Zen is a liquid scintillator detector searching for neutrinoless double beta decay of Xenon-136. Recently, KamLAND-Zen set world-leading limits on this elusive process. One of the primary challenges of this search is the rejection of backgrounds from radioactive isotopes introduced by cosmic-ray spallation. We developed a state-of-the-art neural network classifier, called KamNet, to...
The COSINUS experiment aims for probing the nature of the long-standing annual modulation signal observed by the DAMA/LIBRA collaboration. After successful years of detector prototyping, the construction of a dedicated experimental facility will start this year in Hall B of the LNGS underground laboratory. At the heart of the setup, NaI crystals – the same material as used in DAMA/LIBRA – will...
It is believed that the running (for instance, COHERENT) and forthcoming terrestrial neutrino experiments will be sensitive to the neutrino charge radius [1] that is one of the neutrino fundamental electromagnetic characteristics [2] predicted [3] to be non-zero even in the Standard Model. In this work we continue our studies [4] on neutrino oscillations accounting for diagonal and...
CYGNO is developing a gaseous Time Projection Chamber (TPC), which will be hosted at Laboratori Nazionali del Gran Sasso, Italy, and will rely on a triple Gas Electron Multiplier (GEM) stack for charge multiplication and electroluminescence (EL) production. The EL will be collected with a high resolution scientific camera for particle identification and 2D track reconstruction, with the aim of...
The observation of neutrinos from SN1987A had improved our understanding of
the mechanism of the supernova explosion and neutrino properties. Now, several state-of-the-art neutrino detectors are running. There is a chance to reveal the explosion mechanism and neutrino properties in more details. In this study, we search for neutrino events from supernovae with KamLAND, which is a 1kt liquid...
The in-situ production of long-lived isotopes by cosmic muon interactions may generate a non-negligible background for the search for rare events in the deep subsurface, defining a minimum depth requirement. Monte Carlo studies for a GERDA-like experiment at LNGS-depth identified the delayed decay of $^{77(\mathrm{m})}$Ge as the dominant in-situ cosmogenic background in the search for the...
Coherent Elastic Neutrino Nucleus Scattering (CE$\nu$NS) is a novel technique to look for new physics beyond the Standard Model. We study the prospects of probing a transition magnetic moment in CE$\nu$NS experiments, and the potential to shed light on the Dirac vs Majorana nature of neutrinos. We show the NUCLEUS experiment as an example, and demonstrate that properties of a potential sterile...
The number of the objectives of the TAIGA Astrophysical complex includes the study of the flux of charged cosmic rays and diffuse gamma rays with energies above 100 TeV. This complex is located in the Tunka Valley, about 50 km from Lake Baikal at the site of the Tunka-133 Cherenkov facility. TAIGA includes the TAIGA-HiSCORE wide-angle Cherenkov array, the network of Imaging Atmospheric...
Americium-Beryllium (AmBe) is a typical source to be use for a calibration of neutron detection efficiency in underground astroparticle experiments. It has been considered to emit a neutron and 4.4 MeV gamma ray simultaneously, which allows us to select events with a neutron by tagging the 4.4 MeV gamma-ray signal. This time, we focus on the higher energy component around 5-10 MeV in a...
CTA (Cherenkov Telescope Array) is the next generation ground-based
observatory for gamma-ray astronomy at very-high energies. Once
completed, CTA will outperform present-day facilities by an order of
magnitude in sensitivity, and significantly enlarge the accessible energy
range and survey capabilities. Deployed in the CTA north site, on the
island of La Palma (Spain), LST-1 is the...
Many astrophysical phenomena are foreseen to emit GW transient signal with long duration (since few up to few hundreds seconds), such as fallback accretion, accretion disk instabilities, nonaxisymmetric deformations in magnetars. The theoretical predictions for those astrophysical processes cover a wide range of signal morphologies and in most cases are poorly known. In such cases, we need...
We estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster, both from interactions of cosmic rays (CR) with the intra-cluster medium, or as a product of annihilation or decay of dark matter (DM) particles in case they are weakly interactive massive particles (WIMPs). The observation of Perseus constitutes one of the...
Starburst galaxies (SBGs) and more in general starforming galaxies represent a class of galaxies with a high star formation rate (up to 100 Mo/year). Despite their low luminosity, they can be considered as guaranteed “factories” of high energy neutrinos, being “reservoirs” of accelerated cosmic rays and hosting a high density target gas in the central region. The estimation of their point-like...
Dwarf spheroidal galaxies (dSphs) are ideal targets for Dark Matter (DM) indirect searches due to their high DM content and their negligible expected astrophysical background. In this presentation, we report on the combined analysis of the observations of 20 dSphs by Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in the search for DM, focusing on the Weakly Interacting Massive...
We report the observation of new properties of primary cosmic-ray neon (Ne), magnesium (Mg), silicon (Si) and iron (Fe) nuclei measured in the rigidity range from 2 GV to 3 TV by the Alpha Magnetic Spectrometer on the International Space Station. The properties of the light primary cosmic-ray helium (He), carbon (C) and oxygen (O) nuclei will be also discussed, showing that Ne, Mg, Si and...
The Relic Axion Detector Exploratory Setup (RADES) detector employs rectangular cavities joined by irises to search for axion dark matter between 8 and 9 GHz present in the galactic halo using the haloscope technique. The first results for an axion search in the mass range 34.6738 μeV < $m_a$< 34.6771 μeV using a detector made of 5 sub cavities joined by inductive irises installed at CAST will...
In this talk we present in-depth state-of-the-art parameter estimation studies of several gravitational wave events with open LIGO-Virgo data.
We use the fourth generation of phenomenological waveform models, the frequency domain IMRPhenomX and the time domain IMRPhenomT families which include higher harmonics and precession, and constitute the computationally most efficient...
We propose a new approach to explore the neutral-current non-standard neutrino interactions (NSI) in atmospheric neutrino experiments using oscillation dips and valleys in reconstructed muon observables, at a detector like ICAL that can identify the muon charge. We focus on the flavor-changing NSI parameter $\varepsilon_{\mu\tau}$, which has the maximum impact on the muon survival probability...
Due to its optical and electrical properties polytetrafluoroethylene (PTFE) is an important construction material for many rare event searches. The radioactive contamination of PTFE thus needs to be as low as possible. We present a cross-sectional study investigating the radioactive contamination of PTFE samples from major European suppliers of raw PTFE. The bulk contaminations of the samples...
The discovery of diffuse sub-PeV gamma-rays by the Tibet ASγ collaboration promises to revolutionize our understanding of the high-energy astrophysical universe. It has been shown that this data broadly agrees with prior theoretical expectations. We study the impact of this discovery on a well-motivated new physics scenario: PeV-scale decaying dark matter (DM). Considering a wide range of...
Rapidly spinning neutron stars are promising sources of persistent gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital...
Atomic Compton scattering effect significantly contributes to low-energy electronic recoils below its k-shell energy for the direct dark matter detection. Searches on ADM models, dark photon models, leptophilic dark matter models as well as the conventional WIMPs for background understandings are vitally required to clarify the effect. We employed the relativistic impulse approximation (RIA)...
Detectors with low thresholds for electron recoil (ER) open a new window to direct searches of sub-GeV dark matter (DM) candidates. These experimental studies need important theory inputs: the DM scattering rates at detectors through some assumed DM-electron interactions. In this talk, I will present the results of our study on DM-atom scattering through DM-electron interactions at leading...
Dark Matter (DM) constitutes most of the matter in the presently accepted cosmological model for our Universe. However, despite the increased sensitivity of direct and indirect DM searches, and the latest LHC run at 13 TeV centre of mass energy, no signal from DM particles has been detected so far, leading to exclusion limits on the parameter space of DM models. Conventional indirect searches...
The cosmic-ray flux of positrons ($e^+$) is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsar wind nebulae (PWNe) can significantly contribute to the excess of the $e^+$ cosmic-ray flux has been consolidated after the observation of a $\gamma$-ray emission at TeV energies of a few degree size around Geminga and Monogem PWNe.
In this work...
Precise knowledge of the spectra of secondary cosmic-ray isotopes provides a powerful tool to constrain cosmic-ray propagation models. In particular, $^3$He isotopes in cosmic rays are produced by interactions of primary $^4$He with the interstellar medium; similarly, lithium and beryllium are mainly produced by the fragmentation of heavier primary cosmic-ray nuclei. Among light isotopes, the...
In this work we develop a formalism to describe the scattering of dark matter (DM) particles by electrons bound in crystals for general forms of non-relativistic DM-electron interactions. Our novel response to the study of DM-electron interactions allows probing DM with mass down to a fraction of an MeV in a model independent way.
Using a state of the art DFT calculation we apply our...
There is compelling cosmological and astrophysical evidence of dark matter comprising 27% of the energy budget of the Universe. However, dark matter has never been observed in direct detection experiments. The long-time favorite model of Weakly Interacting Massive Particles saw a large experimental effort with steady progress over recent decades. Since also these large-scale searches remain...
A fraction of the dark matter in the solar neighborhood might be composed of non-galactic particles with speeds larger than the escape velocity of the Milky Way. The non-galactic dark matter flux would enhance the sensitivity of direct detection experiments, due to the larger momentum transfer to the target.
In this note, we calculate the impact of the dark matter flux from the Local Group...
A new experiment collects data, since November 2019, at a depth of 210 m.w.e. in the Callio Lab [1] in the Pyhasalmi mine [2] in Finland. The setup, called NEMESIS (New EMma Experiment Searching for Indirect Signals), incorporates infrastructure from the EMMA experiment [3] with neutron and large-area plastic scintillator detectors of the MAZE system [4]. The experiment's primary aim is to...
Dynamical mass measurements inform us of the local dark matter density, which is a crucial quantity for direct and indirect dark matter searches. Thanks to the Gaia mission, the kinematics of the Milky Way are mapped with a greater depth and precision than ever before. Despite this, a strong consensus has not emerged regarding our galaxy’s gravitational potential and matter density...
We present Einstein equations in the so-called Fully Constrained Formulation (FCF). This formulation has two different sectors: the elliptic sector formed by the Hamiltonian and Momentum constraints together with the equations derived from the gauge choice, and the hyperbolic sector which encodes the evolution of the rest of degrees of freedom of the spacetime metric including the...
Borexino is a 280t liquid scintillator detector at the Laboratori Nazionali del Gran Sasso (LNGS), Italy. Its main goal is the precision spectroscopy of solar neutrinos down to energies of ~190 keV and for this task it features a high radio-purity and a high light yield of ~10,000 scintillation photons per 1 MeV deposited energy. The solar neutrinos are measured by their elastic scattering off...
The Scotogenic model is an economical setup that induces Majorana neutrino masses at the 1-loop level and includes a dark matter candidate. We discuss a generalization of the original Scotogenic model with arbitrary numbers of generations of singlet fermion and inert doublet scalar fields. First, the full form of the light neutrino mass matrix is presented, with some comments on its derivation...
Dark matter (DM) in cosmic structures is expected to produce signals originating from its particle physics nature, among which the electromagnetic emission represents a relevant opportunity. One of the major candidates for DM are weak-scale particles, however no convincing signal of them has been observed so far. For this reason, alternative candidates are getting increasing attention, notably...
Rare event search experiments mostly placed inside underground laboratories demand very accurate measurements of ambient radiation contribution from charged cosmic particles from radioactive decay and nuclear processes in the surrounding rock components. Therefore careful analysis of rock components and specific background measurement experiments along with simulation studies form the first...
The excess of gamma rays in the data measured by the Fermi Large Area Telescope from the Galactic center region is one of the most intriguing mysteries in Astroparticle Physics. This Galactic center excess (GCE), has been measured with respect to different interstellar emission models, source catalogs, data selections and techniques. Although several proposed interpretations have appeared in...
Dark matter is one of the cornerstones of the standard cosmological model although we do not know its fundamental nature. Huge effort has been made in order to perform a direct detection of this dark matter component but up to now we have only seen it interacting gravitationally. In this regard the indirect detection is a promising method to search for dark matter, where we try to look at...
The next-generation neutrino experiment JUNO will determine the solar oscillation parameters - $\sin^2 \theta_{12}$ and $\Delta m^2_{21}$ - with great accuracy, in addition to measuring $\sin^2\theta_{13}$, $\Delta m^2_{31}$ and the mass ordering. In parallel, the continued study of solar neutrinos at Hyper-Kamiokande will provide complementary measurements in the solar sector. In this talk, I...