Speaker
Description
The isotope $^{124}$Xe is exceedingly rare and long-lived. Still, its two-neutrino and neutrinoless double-weak decays offer exciting opportunities for neutrino and nuclear physics. The double-weak decays with neutrinos provide constraints for nuclear matrix element calculations on the proton-rich side of the nuclear chart [C. Wittweg, B. Lenardo, A. Fieguth and C. Weinheimer, EPJ C 80 (2020) 1161]. What makes $^{124}$Xe special is the theoretical possibility of three different neutrinoless decay modes – either via double-electron capture in a nuclear resonance, or involving the emission of one or two positrons. These decays could be a key to understanding the mass and nature of the neutrino as well as the dominance of matter over antimatter in the Universe. Together with the observation of neutrinoless double-beta decays in other isotopes, $^{124}$Xe could allow to disentangle the underlying decay mechanism. The poster will introduce the neutrinoless and two-neutrino decays of $^{124}$Xe and discuss the detection prospects with upcoming experiments such as LZ, XENONnT, nEXO and DARWIN.
Reference to paper (DOI or arXiv) | 10.1140/epjc/s10052-020-08726-w |
---|