Description
Chair: Rebeca Gozzini
Unusual masses of black holes being discovered by gravitational wave experiments pose fundamental questions about the origin of these black holes. Black holes with masses smaller than the Chandrasekhar limit $\approx$ 1.4 M$_\odot$ are essentially impossible to produce through stellar evolution. We propose a new channel for production of low mass black holes: stellar objects catastrophically...
Beyond their unprecedented sensitivity to dark matter (DM), as I will demonstrate, large direct detection experiments constitute impressive neutrino telescopes. This opens a new window into astronomy, leading to possible insights into major problems such as the origin of supermassive black holes. Furthermore, DM experiments can be exploited as novel tools in multi-messenger astronomy for...
Strong bounds from direct detection experiment put stringent limit on the dark matter mass which forces us to go beyond WIMP model of dark matter. In recent years the light mass dark matter particles gain lots of attention among the particle physicists. In this talk I will discuss about light gauge bosons motivated from U(1) extension of standard model and axions which can be a possible dark...
Dark photon as an ultralight dark matter candidate can interact with the Standard Model particles via kinetic mixing. We propose to search for the ultralight dark photon dark matter using radio telescopes with solar observations. The dark photon dark matter can efficiently convert into photons in the outermost region of the solar atmosphere, the solar corona, where the plasma mass of photons...
The evidence for the existence of dark matter, so far is based on its gravitational effects. Nevertheless, many theoretical models assume other non-gravitational very-weak interactions between dark matter and ordinary matter, and to test this hypothesis, different experiments are trying to directly detect dark matter signals at particle accelerators.
PADME (Positron Annihilation into Dark...
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10^15 − 10^17 g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments DUNE and THEIA. We will show that...
The addition of spatial dimensions compactified to submillimeter scales serves as an elegant solution to the hierarchy problem. As a consequence of the extra-dimensional theory, primordial black holes can be created by high-energy particle interactions in the early universe. While four-dimensional primordial black holes have been extensively studied, they have received little attention in the...
Macroscopic dark matter is almost unconstrained over a wide ``asteroid-like'' mass range, where it could scatter on baryonic matter with geometric cross section. When such an object travels through a star, it produces shock waves which reach the stellar surface, leading to a distinctive transient optical, UV and X-ray emission. I shall talk about how this signature can be searched for on a...
Motivated by various excesses observed by Fermi-LAT and AMS, we perform a detailed analysis of QCD uncertainties on particle spectra from dark-matter annihilation (or decay) into jets. When annihilated to SM particles, the final-state products undergo various complicated processes such as QED and QCD bremsstrahlung, hadronization, and hadron decays. These processes contain some intrinsic...
In this talk, I will propose the use of the Earth as a transducer for ultralight dark-matter detection. In particular I will point out a novel signal of kinetically mixed dark-photon dark matter: a monochromatic oscillating magnetic field generated at the surface of the Earth. Similar to the signal in a laboratory experiment in a shielded box (or cavity), this signal arises because the lower...