Speaker
Description
The WIMP search in 231 live-days of data collected by the DEAP-3600 experiment showed no event candidates, resulting in a world-leading upper limit on the spin-independent dark matter-nucleon cross-section for an argon target. The present study reanalyzed that null result within a Non-Relativistic Effective Field Theory (NREFT) framework, and further examined the impact of potential dark matter halo substructures motivated by the observations of stellar distributions from the Gaia satellite and other astronomical surveys. Constraints were set on the coupling strength of the effective operators O1, O3, O5, O8, and O11, considering isoscalar, isovector, and xenonphobic scenarios, as well as on the NREFT-derived specific interactions: millicharge, magnetic dipole, electric dipole, and anapole. The effects of halo substructures on each of the operators was explored as well, showing that the O5 and O8 operators are particularly sensitive to the velocity distribution, even for heavy WIMPs.
Reference to paper (DOI or arXiv) | https://doi.org/10.1103/PhysRevD.102.082001 |
---|