Speaker
Description
In spite of the extensive search for the detection of the dark matter (DM), experiments have so far yielded null results: they are probing lower and lower cross-section values and are touching the so-called neutrino floor. A way to possibly overcome the limitation of the neutrino floor is a directional sensitive approach: one of the most promising techniques for directional detection is nuclear emulsion technology with nanometric resolution. The NEWSdm experiment, located in the Gran Sasso underground laboratory in Italy, is based on novel nuclear emulsion acting both as the Weakly Interactive Massive Particle (WIMP) target and as the nanometric-accuracy tracking device. This would provide a powerful method of confirming the Galactic origin of the dark matter, thanks to the cutting-edge technology developed to readout sub-nanometric trajectories. In this talk we discuss the experiment design, its physics potential, the performance achieved in test beam measurements and the near-future plans. After the submission of a Letter of Intent, a new facility for emulsion handling was constructed in the Gran Sasso underground laboratory which is now under commissioning. A Conceptual Design Report is in preparation and will be submitted in Summer 2021.
Your gender (free text) | Man |
---|