Speaker
Description
It was shown for the first time in [1] that neutrino spin and spin-flavor oscillations can be engendered by weak interactions of neutrinos with a medium in the case when there are the transversal matter currents or transversal matter polarization. The existence of these effects was confirmed in [2]. In [3,4] we developed the quantum treatment of these phenomena and different possibilities for the resonance amplification of oscillations were discussed, the neutrino standard and also non-standard interactions were accounted for. In the present paper we further develop the quantum theory of neutrino spin and spin-flavour oscillations in moving magnetized matter with a special focus on the effects of matter polarization. Both the case of Dirac and Majorana neutrinos are considered. As an astrophysical application we consider the effect of the electron matter component polarization generated by strong magnetic field of a neutron star. This research has been supported by the Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research” and also by the Russian Foundation for Basic Research under Grant No. 20-52-53022-GFEN-a.
[1] A. Studenikin, Neutrinos in electromagnetic fields and moving media, Phys. At. Nucl. 67 (2004) 993.
[2] A. Kartavtsev, G. Raffelt, H. Vogel, Neutrino propagation in media: Flavor, helicity, and pair correlations, Phys. Rev. D 91 (2015) 125020.
[3] P. Pustoshny, A. Studenikin, Neutrino spin and spin-flavor oscillations in transversal matter currents with standard and non-standard interactions, Phys.Rev. D98 (2018) 113009.
[4] P. Pustoshny, V. Shakhov, A. Studenikin, Neutrino spin and spin-flavor oscillations in matter currents and magnetic fields, PoS EPS-HEP2019 (2020) 429.