Conveners
Particle Physics
- Emma Torró Pastor (IFIC)
Particle Physics
- Maria Moreno Llácer (IFIC (CSIC-UV), Valencia)
Particle Physics
- Emma Torró Pastor (IFIC)
Particle Physics
- Maria Moreno Llácer (IFIC (CSIC-UV), Valencia)
Description
Particle Physics
Supernova (SN) explosions are the most powerful cosmic factories of all-flavors, MeV-scale, neutrinos. Their detection is of great importance not only for astrophysics, but also to shed light on neutrino properties. Since the first observation of a SN neutrino signal in the 1987, the international network of SN neutrinos observatories has been greatly expanded, in order to detect the next...
New gauge bosons coupling to leptons are simple and well-motivated extensions of the StandardModel. We study the sensitivity to gauged L_\mu−L_e, L_e−L_\tau and L_\mu−L_\tau both with the existing beam dump mode data of MiniBooNE and with the DUNE near detector. We find that including bremsstrahlung and resonant production of Z^\prime which decays toe±andμ±final states leads to a significant...
In the context of lepton flavor universality violation (LFUV) studies, we study different observables related to the b→cτν¯τ semileptonic decays. These observables are expected to help in distinguishing between different NP scenarios. Since the τ lepton is very short-lived, we consider three subsequent τ-decay modes, two hadronic πντ and ρντ and one leptonic μν¯μντ, which have been previously...
The existence of dark sectors is an exciting possibility to explain the origin of Dark Matter (DM). In addition to gravity, DM could interact with ordinary matter through a new very weak force. This new interaction could be mediated by a new massive vector boson, called dark photon (A’). If A’ exists, it could be produced through the kinetic mixing with a bremsstrahlung photon from a...
Exploring the mechanism that explains the origin of the masses of elementary particles, fermions and gauge bosons, remains one of the main objectives of the Particle Physics program of the LHC. One experimental probe consists of measuring the strength of the interaction between the Higgs boson and the Top quark, named top-Yukawa coupling, using the full dataset collected by the ATLAS...
The fact that the top quark’s lifetime is smaller than its hadronization and depolarization timescales makes its production and decay kinematic properties an important probe of physical processes beyond the Standard Model (SM). The challenging analysis of the fully differential top-quark decay will probe the tWb vertex structure using single-top-quark events at a center-of-mass energy of 13...
Particle Physics' experiments are currently searching for events whose probability is extremely low, such as the neutrinoless double beta decay or dark matter candidates such as WIMPs. This is what causes the need to perform highly sensitive experiments in subterranean facilities that shield from cosmic rays and environmental radiation. However, there is a radiation which is always present,...
In this talk we present a quantum algorithm application for Feynman loop integrals. We propose a proper modification of Grover's algorithm for the identification of causal singular configurations of multiloop Feynman diagrams. The quantum algorithm is implemented in two different quantum simulators, the output obtained is directly translated to causal thresholds needed for the causal...
Neutrinos are the most elusive particles in the Standard Model. Despite being so abundant in the Universe, we still do not know many of their properties: how massive are they? how many neutrinos are there? is there CP violation in the leptonic sector? do they have a connection to the dark matter, or new interactions that we are unaware of? In this talk I will present an overview of neutrino...
Finding the organising principle of the flavour sector is one of the big challenges in particle physics:
a) why are there three generations of fermions?
b) why is the up quark about 100,000 times lighter than the top quark, although they have the same gauge quantum numbers?
c) why do the three generations of quarks hardly mix, whereas the three lepton generations have large mixing?
d) could...
One of the goals of particle physics is to explain the structure of matter at the smallest distance scales. For decades, the properties of the basic building blocks of matter have been investigated in ever greater detail. However, even today some profound but simple questions, such as the origins of dark matter in the universe, remain unanswered. The attempt to understand the material world...
Discovering the Compact Muon Solenoid Experiment at CERN
Would you like to know what we do at the European Organization for Nuclear Research with proton collisions?
Learn about amazing physics driven by high level physicists from all over the world.
Discover a huge breadth of research topics, from the discovery of the Higgs boson to searches of the unknown.
In the last few years flavor experiments have been reporting deviations with respect to the expected predictions from the Standard Model. These anomalies share some patterns of lepton flavor universality violation and seem to suggest new physics at the (hopeful) TeV scale. Many attempts have been already pursued in our community trying to understand these signals, employing from any sort of...