Speaker
Description
The term Tensor Network (TN) States designates a number of ansatzes that can efficiently represent certain states of quantum many-body systems. In particular, ground states and thermal equilibrium of local Hamiltonians, and, to some extent, real time evolution can be numerically studied with TN methods. Quantum information theory provides tools to understand why they are good ansatzes for physically relevant states, and some of the limitations connected to the simulation algorithms.
While originally introduced in the context of condensed matter physics, where they have become a state-of-the-art technique for strongly correlated one-dimensional systems, in the last years it has been shown that TNS are also suitable to study lattice gauge theories and other quantum field problems.