27-31 May 2024
ADEIT - Valencia
Europe/Madrid timezone

The kink effect of the nuclear charge radius in mean-field relativistic models

28 May 2024, 12:50
20m
ADEIT - Valencia

ADEIT - Valencia

Plaza Virgen de la Paz, 3, 46001 Valencia
oral contribution Session 6

Speakers

Saturnino Marcos Marcos (Universidad de Cantabria)Dr. Mercedes López-Quelle (Universidad de Cantabria)

Description

The significant alteration in the trend of the nuclear charge radius within certain isotopic families, when plotted against the mass number A, is called the kink effect (KE). The most typical example of the KE is found in the charge radii of Pb isotopes. This kink is reasonably well reproduced by the nuclear relativistic mean-field [1-4] and relativistic Hartree-Fock approximations [5], while non-relativistic Skyrme-Hartree-Fock (SHF) functionals with standard parametrisations [6] or Gogny forces [7] fail to reproduce it. Thus, new non-relativistic density functionals have been proposed to improve the description of the nuclear charge radii [8-16], trying to understand the mechanism responsible for the KE. However, the entire theoretical understanding has yet to be reached.
This communication aims to give a detailed and complete explanation of the KE in the most common relativistic models in the mean-field approximation. To do this, we analyse the contribution of the valence neutrons to the proton central potential. We show that relativistic effects due to the small component of the Dirac spinors are essential in the kink formation and also to achieve a good description of the charge radii in the lead isotopic family. We explain, in particular, why relativistic models tend to be more kinky than non-relativistic ones [16].
References
[1] M. M. Sharma, G. A. Lalazissis, P. Ring. Phys. Lett. B 317 (1993) 9.
[2] S. Marcos, L. N. Savushkin, M. López-Quelle, R. Niembro, P. Bernardos, Phys. Lett. B 507, (2001) 135.
[3] U. C. Perera, A. V. Afanasjev, and P. Ring, Phys. Rev. C 104, 064313 (2021).
[4] U. C. Perera, A. V. Afanasjev, Phys. Rev. C 107, 064321 (2023).
[5] R. Niembro, S. Marcos, M. López-Quelle, L. N. Savushkin, Physics of Atomic Nuclei 75, (2012) 269.
[6] N. Tajima, P. Bonche, H. Flocard, P.-H. Heenen, M. S. Weiss, Nucl. Phys. A 551 (1993) 434.
[7] T. Gonzalez-Llarena, J. L. Egido, G. A. Lalazissis, P. Ring, Phys. Lett. B 379 (1996) 13.
[8] P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995).
[9] M. M. Sharma, G. A. Lalazissis, J. König, P. Ring. Phys. Rev. Lett. 74 (1995) 3744.
[10] S. A. Fayans and S. V. Tolokonnikov, E. L. Trykov, and D.Zawischa, Nucl. Phys. A 676, 49 (2000).
[11] M. Goddard, P.D. Stevenson, and A. Rios, PRL 110, 032503 (2013).
[12] H. Nakada, T. Inakura, Phys. Rev. C 91 (2015) 021302(R).
[13] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).
[14] H. Nakada, Phys. Rev. C 100, 044310 (2019).
[15] W. Horiuchi and T. Inakura, Phys. Rev. C 105, 044303 (2022).
[16] T. Naito, T. Oishi, H. Sagawa, Z. Wang, Phys. Rev. C 107, 054307 (2023).

Primary author

Saturnino Marcos Marcos (Universidad de Cantabria)

Co-authors

Dr. Ramón Niembro de la Bárcena (Universidad de Cantabria) Dr. Mercedes López-Quelle (Universidad de Cantabria)

Presentation Materials

There are no materials yet.
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×