Ponentes
Descripción
Over the past few years, Low-Gain Avalanche Detectors (LGADs) have demonstrated excellent timing performance, showing great potential for use in 4D tracking of high-energy charged particles. Carbon co-doping is a key factor for enhancing LGAD performance, which are detectors with intrinsic amplification, in harsh radiation environments. This work presents a broad pre-irradiation characterization of the latest carbon-co-implanted (or carbonated) LGADs fabricated at IMB-CNM. The results indicate that the addition of carbon reduces the nominal gain of the devices compared with non-carbonated detectors. Furthermore, a comprehensive study is presented on how carbon co-implantation can either enhance or suppress the diffusion of the multiplication layer during LGAD fabrication, depending on the device structure and fabrication parameters.