19-21 noviembre 2024
Madrid
Europe/Madrid timezone

Proton range determination at relevant energies for proton therapy

19 nov. 2024 16:30
10m
Transferencia Tecnología Transferencia de Tecnología

Ponente

Juan Francisco González Linares (IEM (CSIC))

Descripción

This study consists of a proof-of-concept based on the use of CEPA4 scintillator [1, 2] of IEM pCT scanner [3, 4] to verify the range of a proton beam at energies relevant for proton therapy performed at Centrum Cyklotronowe Bronowice (Krakow, Poland). The aim of this work is to test the sensitivity of proton range verification method based on the detection of gamma radiation in vivo resulting from the interaction of the proton beam with a PMMA block, on the basis of
F. Hueso-Gonz´alez’s simulations [5]. This innovative experimental proof-of-concept has provided results that confirm the sensitivity of the method (with errors of less than 2 mm) thanks to statistical adjustments based on the identification of deexcitation gamma-rays in 12C. In addition, this method
is compared with the proton beam range verification by detecting scattered protons and secondary neutrons produced in PMMA [6].
[1] O. Tengblad et al. “LaBr3(Ce):LaCl3(Ce) Phoswich with pulse shape analysis for high energy gamma-ray and proton identification”. En: Nuclear instruments and methods in physics research. Section A 704 (mar. de 2013), p´ags. 19-26. doi: 10.1016/j.nima.2012.11.094.
[2] E. N´acher et al. “Proton response of CEPA4: A novel LaBr 3 (Ce)–LaCl 3 (Ce) phoswich array for high-energy gamma and proton spectroscopy”. En: Nuclear instruments and methods in physics research. Section A 769 (ene. de 2015), p´ags. 105-111. doi: 10.1016/j.nima.2014. 09.067.
[3] J. A. Briz et al. “A prototype of pCT scanner: first tests”. En: EPJ web of conferences 253
(ene. de 2021), p´ags. 09008-09008. doi: 10.1051/epjconf/202125309008.
[4] A. N. Nerio et al. “Evaluation of water equivalent thicknesses using the IEM-CSIC scanner prototype”. En: EPJ web of conferences 290 (ene. de 2023), p´ags. 08004-08004. doi: 10.1051/epjconf/202329008004.
[5] F. Hueso-Gonz´alez y T. Bortfeld. “Compact Method for Proton Range Verification Based on Coaxial Prompt Gamma-Ray Monitoring: A Theoretical Study”. En: IEEE transactions on radiation and plasma medical sciences 4 (mar. de 2020), p´ags. 170-183. doi: 10.1109/trpms.
2019.2930362.
[6] K. S. Ytre-Hauge et al. “A Monte Carlo feasibility study for neutron based real-time range verification in proton therapy”. En: Scientific Reports 9 (feb. de 2019). doi: 10.1038/s41598-019-38611-w.

Abstract

This study consists of a proof-of-concept based on the use of CEPA4 scintillator [1, 2] of IEM
pCT scanner [3, 4] to verify the range of a proton beam at energies relevant for proton therapy
performed at Centrum Cyklotronowe Bronowice (Krakow, Poland). The aim of this work is to test
the sensitivity of proton range verification method based on the detection of gamma radiation
in vivo resulting from the interaction of the proton beam with a PMMA block, on the basis of
F. Hueso-Gonz´alez’s simulations [5]. This innovative experimental proof-of-concept has provided
results that confirm the sensitivity of the method (with errors of less than 2 mm) thanks to statistical
adjustments based on the identification of deexcitation gamma-rays in 12C. In addition, this method
is compared with the proton beam range verification by detecting scattered protons and secondary
neutrons produced in PMMA [6].
[1] O. Tengblad et al. “LaBr3(Ce):LaCl3(Ce) Phoswich with pulse shape analysis for high energy
gamma-ray and proton identification”. En: Nuclear instruments and methods in physics re-
search. Section A 704 (mar. de 2013), p´ags. 19-26. doi: 10.1016/j.nima.2012.11.094.
[2] E. N´acher et al. “Proton response of CEPA4: A novel LaBr 3 (Ce)–LaCl 3 (Ce) phoswich array
for high-energy gamma and proton spectroscopy”. En: Nuclear instruments and methods in
physics research. Section A 769 (ene. de 2015), p´ags. 105-111. doi: 10.1016/j.nima.2014.
09.067.
[3] J. A. Briz et al. “A prototype of pCT scanner: first tests”. En: EPJ web of conferences 253
(ene. de 2021), p´ags. 09008-09008. doi: 10.1051/epjconf/202125309008.
[4] A. N. Nerio et al. “Evaluation of water equivalent thicknesses using the IEM-CSIC scanner
prototype”. En: EPJ web of conferences 290 (ene. de 2023), p´ags. 08004-08004. doi: 10.1051/
epjconf/202329008004.
[5] F. Hueso-Gonz´alez y T. Bortfeld. “Compact Method for Proton Range Verification Based on
Coaxial Prompt Gamma-Ray Monitoring: A Theoretical Study”. En: IEEE transactions on
radiation and plasma medical sciences 4 (mar. de 2020), p´ags. 170-183. doi: 10.1109/trpms.
2019.2930362.
[6] K. S. Ytre-Hauge et al. “A Monte Carlo feasibility study for neutron based real-time range
verification in proton therapy”. En: Scientific Reports 9 (feb. de 2019). doi: 10.1038/s41598-
019-38611-w.

Autor primario

Juan Francisco González Linares (IEM (CSIC))

Materiales de la presentación

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×