13 de mayo de 2024
ETSE
Europe/Madrid timezone

Machine Learning for maximizing the memristivity of single and coupled quantum memristors

13 may. 2024 12:00
30m
Room "Joan Pelechano" (ETSE)

Room "Joan Pelechano"

ETSE

Avinguda de l'Universitat, 46100 Burjassot, València

Ponente

Carlos Hernani Morales (ETSE, UV)

Descripción

We propose machine learning (ML) methods to characterize the memristive properties of single and coupled quantum memristors. We show that maximizing the memristivity leads to large values in the degree of entanglement of two quantum memristors, unveiling the close relationship between quantum correlations and memory. Our results strengthen the possibility of using quantum memristors as key components of neuromorphic quantum computing.

Materiales de la presentación

Todavía no hay materiales.
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×