Some topics of Bayesian Inference

Europe/Madrid
Alberto RAMOS, Bryan Zaldivar
Description

The course will consist of 10 hours, 2h per day. The outline is the following:

1. Markov Processes; Markov Chain Monte Carlo; Hybrid (a.k.a. Hamilton) Monte Carlo. 

2. Fundamentals of Bayesian Inference. Laplace Approximation 

3. Variational Inference; Kullback-Leibler divergence. Working example with Tensorflow v2 (python)

4. Inference in function space: Gaussian Processes, Implicit Processes.

5. Approximate Bayesian Computation (ABC). Likelihood-free method. Normalizing flows.

 

Many of the topics will be accompanied by coding examples.

 

****** DAY, TIME, ROOM, SPEAKER ***

- Monday, 11:00 - 13:00.  1001-Primera-1-1-1 - Paterna. Seminario. Alberto Ramos

- Tuesday, 9:30 - 11:30.  1001-Primera-1-1-1 - Paterna. Seminario. Bryan Zaldivar 

Wednesday, 11:00 - 13:00. 1001-Primera-1-1-1 - Paterna. Seminario. Bryan Zaldivar

Thursday, 09:30 - 11:30. 1001-Primera-1-1-1 - Paterna. Seminario. Bryan Zaldivar

Friday, 14:30 - 16:30. 1001-Primera-1-1-1 - Paterna. Seminario. Bryan Zaldivar

Registration
Participants
Bryan Zaldivar
The agenda of this meeting is empty
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×