We examine a macroscopic system in a quantum superposition of two spatially separated localized states as a detector for a stream of weakly interacting relativistic particles. We do this using the explicit example of neutrinos with MeV-scale energy scattering from a solid object via neutral-current neutrino-nucleus scattering. Presuming the (anti-)neutrino source to be a nuclear fission reactor, we utilize the estimated flux and coherent elastic neutrino-nucleus cross section to constrain the spatial separation $\Delta x$ and describe the temporal evolution of the sensing system. Particularly, we find that a potentially measurable relative phase between quantum superposed components is obtained for a single gram scale mass placed in a superposition of spatial components separated by $10^{-14}$ m under sufficient cooling and background suppression.
IFIC seminar organizers