
Introducción a ROOT
Sonja Orrigo

Curso de Técnicas Experimentales Avanzadas en Física Nuclear

Master Inter-universitario de Física Nuclear, Curso 2025-2026

Copyright © Sonja Orrigo - 2026

 ROOT es un proyecto Open Source que se empezó en 1995

 El proyecto es desarrollado por una colaboración entre CERN y

Fermilab/USA, más muchos otros colaboradores part-time

 Además muchos usuarios registrados (6000 en el fórum RootTalk)

contribuyen con feedback, comentarios y en solucionar bugs

o Main ROOT page: http://root.cern.ch

o Class Reference Guide: http://root.cern.ch/root/html

o User Guides and Manuals: https://root.cern.ch/root-user-guides-and-manuals

o Tutorials: https://root.cern.ch/courses

http://root.cern.ch/
http://root.cern.ch/root/html
https://root.cern.ch/root-user-guides-and-manuals
https://root.cern.ch/courses

 Es un framework modular de software científico que se utiliza

comúnmente para análisis de datos en física nuclear y de altas energías

 Utiliza mayormente el lenguaje de programación C++: desarrollado en

C++; interprete nativo de C++; pero se puede usar también python

ROOT

 Es una herramienta muy poderosa y versátil que permite de manipular, procesar y analizar

largas cantidad de datos

 Permite una amplia variedad de métodos de análisis, representaciones de datos, fits, …

 Extensas capacidad de visualización de datos científicos en 2D y 3D

Varias maneras de utilizar ROOT
 El lenguaje de los comandos y programas es C++

 ROOT contiene un interprete de C++: CINT en ROOT5, CLING en ROOT6

 Dependiendo de las exigencias de los usuarios, ROOT se puede utilizar en distintas maneras:

o ROOT command line

 Empezando una sesión de ROOT en un terminal, el interprete de ROOT ejecuta cada línea

de comando que se escribe: ejecuta una línea a la vez

 Ventaja en comparación con la compilación: se ve el resultado sin ninguna espera

 Desventaja: interpretar los comandos es mucho más lento que ejecutar código compilado

⇒ La línea de comandos es útil en fase de escritura del código, para testear los

comandos y hacer rápidos checks de los datos, mientras que los programas más largos

van compilados $ root $ root –l Starting ROOT
root [0] Int_t number = 2; The ROOT prompt
root [1] cout<<“number = “<<number<<endl;
root [#] .q Ending ROOT

Varias maneras de utilizar ROOT
o ROOT macros

 Si tienes varias líneas de comandos para ejecutar es más cómodo ponerlas en un

fichero que se pueda editar y ejecutar varias veces en ROOT: una macro

 Una macro es un fichero .C o .cc donde escribir secuencialmente los comandos

 La macro es interpretada línea a línea para el interprete CINT/CLING

⇒ no es compilada, equivale a utilizar las líneas de comandos

 Importante: en la macro cada línea de código se tiene que terminar con ;

Unnamed macros (no parameters) ←(ONLY UP TO ROOT 5)
$ root -l macro.C Execute the macro

root [0] .x macro.C Execute the macro

Named macros (you can pass parameters to the function)
root [0] .L analysis.C Load the macro in the memory
root [1] analysis(20) Call the macro to execute it

root [0] .x analysis.C(20) Load and execute the macro

{
commands…

}

void analysis(int N)
{

commands…
return;

}

Varias maneras de utilizar ROOT
o Compiled ROOT macros on the fly

 Ejecutar código compilado es muchos más rápido que interpretar línea a línea

 Además mediante la compilación se pueden detectar errores que no se perciben

interpretando línea a línea

 Compilar es importante para los programas más largos y/o lentos

 El mismo fichero .C o .cc se puede compilar,

pero la macro tiene que tener un nombre

 La compilación esta echa por

ACLiC (The Automatic Compiler of Libraries for CINT)

Named macros ONLY
root [0] .L analysis.C++ Load the macro in the memory and compile it
root [1] analysis(20) Call the macro to execute it

root [0] .x analysis.C(20)++ Load, compile and execute the macro

void analysis(int N)
{

commands…
return;

}

Varias maneras de utilizar ROOT
o Stand-alone application

 La manera más sofisticad es construir una aplicación stand-alone

 ROOT es básicamente una colección de clases de C++

 Estas se pueden utilizar para construir nuevas aplicaciones que se pueden

compilar y ejecutar del todo independientemente desde el ROOT originario

 Para cumplir con los estándares de C++, se incluye en el código

una función main() que solo es vista por el compilador g++

y no para CINT

Compile the program
$ g++ -o analysis analysis.cc `root-config --cflags --glibs`

Execute it outside ROOT
$./analysis

void analysis()
{

commands…
return;

}

ifndef __CINT__
int main()
{
analysis();
return 0;
}
endif

Picture credits: L. Fiorini

Varias maneras de utilizar ROOT
o Graphical interfaces

ROOT Object browser (TBrowser), Graphical user-interface (GUI), Editor, Fit Panel…
 Permiten un utilizo más interactivo: abrir ficheros, explorarlos, mirar los trees, plotear

objetos, editarlos, cambiar el estilo, fitear…
root[] new TBrowser()

La ventana grafica se llama TCanvas

Varias maneras de utilizar ROOT
o ROOTBook
 ROOT interactivo en el navegador web (parecido a un notebook de Mathematica):

https://root.cern.ch/notebooks/HowTos/HowTo_ROOT-Notebooks.html

HowTo ROOT-Notebooks: pure C++ notebook

 ROOT contiene

muchísimas librerías y

clases de objetos

 En este curso nos

enfocaremos en los

objetos típicamente

utilizados en análisis de

datos en física:

 Funciones

 Histogramas

 Graphs

 Trees

 Variables en ROOT

 Colors

 Markers

TCanvas

TCanvas (const char *name, const char *title, Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh)
root [] TCanvas *c1 = new TCanvas("c1", "Ventana grafica",200,10,700,900)

(name, title, x0, y0, x1, y1)
root [] c1->Divide(1,2)
root [] c1->cd(1)
root [] c1->cd(2)
root [] c1->SaveAs(“file.png")
root [] c1->SaveAs(“file.pdf")
root [] c1->SaveAs(“file.C")

 Canvas: La Canvas es una ventana grafica donde se dibujan todos los objetos de ROOT:
“area mapped to a window directly under the control of the display manager”

 La clase correspondiente de ROOT se llama TCanvas
 Si la Canvas no existe, ROOT la crea automáticamente al dibujar un objeto
 Las Canvas se pueden dividir en Pads

Tutorials

Funciones
 Función: Correspondencia que asocia a cada elemento de un primero conjunto uno y un solo

elemento de un segundo conjunto. Es. una línea recta: y = a x + b

 Utilizando la clase TF1 se pueden definir funciones 1D

 Las clases TF2 y TF3 permiten crear funciones 2D y 3D

Example credits: ROOT Tutorial, L. Fiorini, http://ific.uv.es/~fiorini/ROOTTutorial/root_tutorial.pdf

o Función creada como value-type (instancia de un objeto)

o Función creada como pointer (punta a la instancia del objeto)

root [] f1->Draw()
root [] f1->

sin(x)

Funciones: ejemplos

Example credits: ROOT Tutorial, L. Fiorini, http://ific.uv.es/~fiorini/ROOTTutorial/root_tutorial.pdf

root [] f1->Draw()

 Histograma: Un histograma es un grafico que representa el numero de sucesos que

pertenecen a una categoría (intervalo de una variable)

 Los intervalos en que se divide el eje de la variable se llaman bines

 Tener cuidado en la elección del numero de bines (binning) del histograma

 Las clases de histogramas en ROOT heredan desde la clase TH1 y son de varios tipos,

se utilizan más TH1F y TH1D

 Hay también histogramas en 2D y 3D

Histogramas

Variable
Variable

Co
un

ts
Bin

 Los histogramas son una de las clases de ROOT más importantes para los físicos
Histogramas

o Histograma creado como value-type (instancia de un objeto)

o Histograma creado como pointer (punta a la instancia del objeto)
root [] TH1F h2("hist2",“A new histogram",50,-25,25)

root [] TH1F *h = new TH1F("hist",“Histogram",10,0,10)

root [] h->Rebin(2)

“histogram title”, 10, 0, 10)

“histogram title” is the title of the histogram

Example credits: ROOT Tutorial, L. Fiorini,
http://ific.uv.es/~fiorini/ROOTTutorial/root_tutorial.pdf

root [] TH1F *h

 Se pueden definir histogramas en 2D utilizando las clases TH2F y TH2D
Histogramas 2D

root [] TH2D h2d("h2d",“A 2-dimensional histogram",binX,x1,x2,binY,y1,y2)
root [] gStyle->SetPalette(1)
root [] h2d->Draw(“colz”)
root [] h2d->Draw(“lego”)

root [] TH2F *hID2 = new TH2F("hID2","F11-ID2 Oikawa's AnaRoot",800,1.8,2.6,4000,10,50)
root [] hID2->GetXaxis()->SetRangeUser(1.895,1.913)
root [] hID2->GetYaxis()->SetRangeUser(29.4,30.4)

Fits
 Fit: Un fit (ajuste) es un procedimiento que permite de comparar un conjunto de datos con

una función y determinar los parámetros que mejor se adaptan a los datos

 El valor de χ²/ndf nos da una medida de la calidad del fit

 Numero de grados de libertad ndf = numero de los puntos meno el numero de parámetros

de la función de fit

Picture credits: M. Floris

Fits de histogramas
Fit of a histogram
root [] TF1 *fitfunction = new TF1("fitfunction","gaus",x1,x2)
root [] h->Fit("fitfunction","R")

Getting χ² and ndf

root [] fitfunction->GetChisquare()
root [] fitfunction->GetNDF()

Fit Panel
 Además de las líneas de comandos y macros, se

puede utilizar el FitPanel en manera interactiva

 En ROOT se pueden utilizar funciones predefinidas

y también definidas por el usuario

Graphs

TGraph(n,x,y)
root [] TGraph *graph = new TGraph()
root [] graph->SetPoint(i,x,y)
TGraphErrors(n,x,y,dx,dy)
root [] TGraphErrors *grapherr = new TGraphErrors()
root [] grapherr->SetPoint(i,x,y)
root [] grapherr->SetPointError(i,dx,dy)
TGraphAsymmErrors(n,x,y,dxL,dxR,dyL,dyR)
root [] TGraphAsymmErrors *graphaserr = new TGraphAsymmErrors()
root [] graphaserr->SetPoint(i,x,y)
root [] graphaserr->SetPointError(i,dxL,dxR,dyL,dyR)

 Graph: Un graph es un grafico donde se representan los valores
de una variable en función de los valores de otra variable. Es. scatter plot (x.y)

 Se pueden crear graphs con o sin errores y también
con errores asimétricos, utilizando las clases
TGraph, TGraphErrors y TGraphAsymmErrors

Fits de graphs
Fit of a graph
root [] TF1 *bestfit = new TF1("bestfit","pol1",x1,x2)
root [] GraphErrors->Fit("bestfit","R")

Getting χ² and ndf

root [] bestfit->GetChisquare()
root [] bestfit->GetNDF()

Trees
 Los resultados de las medidas tomadas durante los experimentos usualmente tienen una

estructura como de enormes tablas

 Trees: Los trees de ROOT implementan estas tablas “generalizadas”, donde las columnas
pueden contener grandes y complexas estructuras de datos (objetos de cualquier clase)

 La clase de ROOT se llama TTrees

Picture credits: L. Fiorini

Trees
 Los Trees están estructurado en Branches y Leaves

BigRIPSBeam

Trees
root [] tree->Draw(“variable1”, ”CONDITION”)
root [] tree->Draw(“variable1”, ” variable1>10”) 1D-histogram binned automatically
root [] tree->Draw(“variable1>>histo1D(binX,x1,x2)”, ””)
root [] tree->Draw(“variable1>>histo1D(binX,x1,x2)”, ”variable1>10”)

root [] tree->Draw(“variable2:variable1”, ”CONDITION”, ”OPTION”) 2D-histogram
root [] tree->Draw(“variable2:variable1”, ”variable2>0”, ”colz”)
root [] tree->Draw(“variable2:variable1>>histo2D(binX,x1,x2,binY,y1,y2)”, ””, ””)

Writing a Tree to file
root [] TFile *file = TFile::Open(“mytree.root”,”RECREATE”);
root [] TTree *mytree = new TTree(“mytree”,”title”);
root [] Float_t var1;
root [] tree->Branch(“var1”, &var1, “var1/F”);
root [] var1 = 2.16;
root [] tree->Fill();
root [] tree->Print();
root [] tree->Write();
root [] file->Close();

Credits: M. Floris

Reading a Tree from file
root [] TFile *file = TFile::Open(“mytree.root”);
root [] TTree *tree = (Ttree*)file->Get(“mytree”);
root [] Float_t var1;
root [] tree->SetBranchAddress(“var1”, &var1);
root [] Int_t nentries = tree->GetEntries();
root [] for(Int_t i=0;i<nentries;i++) {

tree->GetEntry(i);
cout << var1 << endl;

}

	� Introducción a ROOT
	Slide Number 2
	ROOT
	Slide Number 4
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Slide Number 11
	Slide Number 12
	TCanvas
	Tutorials
	Funciones
	Funciones: ejemplos
	Histogramas
	Histogramas
	Histogramas 2D
	Fits
	Fits de histogramas
	Fit Panel
	Graphs
	Fits de graphs
	Trees
	Trees
	Slide Number 27
	Trees
	Writing a Tree to file
	Reading a Tree from file

