Introduccion a ROOT

Sonja Orrigo

Curso de Técnicas Experimentales Avanzadas en Fisica Nuclear

Master Inter-universitario de Fisica Nuclear, Curso 2025-2026

PEIEIC - csic @

e
S R
NVRIGY

| NSTITUT DE Comar 5 SUPTRCR DE INVESTIGACIONIS CRNTINCAS

FiSICA
CORPUSCULAR

Copyright © Sonja Orrigo - 2026

Data Analysis Framework

= ROOQT es un proyecto Open Source que se empezd en 1995

= El proyecto es desarrollado por una colaboracién entre CERN y
Fermilab/USA, mas muchos otros colaboradores part-time

= Ademas muchos usuarios registrados (6000 en el férum RootTalk)

contribuyen con feedback, comentarios y en solucionar bugs

©)

©)

©)

©)

Main ROOT page: http://root.cern.ch

Class Reference Guide: http://root.cern.ch/root/html

User Guides and Manuals: https://root.cern.ch/root-user-guides-and-manuals

Tutorials: https://root.cern.ch/courses

http://root.cern.ch/
http://root.cern.ch/root/html
https://root.cern.ch/root-user-guides-and-manuals
https://root.cern.ch/courses

ata Analysis Framework Custom Search

Download Documentation News Support About Development Contribute

Getting Started Reference Guide Gallery

M pp s =13 TeV, W), > 108 b)
1<p <3GeVic

ROOT is ...

A modular scientific software framework. It provides all the functionalities needed to deal
with big data processing, statistical analysis, visualisation and storage. It is mainly written
in C++ but integrated with other languages such as Python and R.

Start from examples# or try it in your browser!

ﬁ Download or Read More .. Previous Resume Next

ROOT

= Esun framework modular de software cientifico que se utiliza
comunmente para analisis de datos en fisica nuclear y de altas energias
= Utiliza mayormente el lenguaje de programacion C++: desarrollado en

C++; interprete nativo de C++; pero se puede usar también python

Es una herramienta muy poderosa y versatil que permite de manipular, procesar y analizar
largas cantidad de datos
Permite una amplia variedad de métodos de analisis, representaciones de datos, fits, ...

Extensas capacidad de visualizacidn de datos cientificos en 2D y 3D

0 c1 M=l ES
File Edit View Options |nspect Classes Help
EygaLl |+ ERJIUN[S)+ EMANdAUCI0] | [Eygauin+ eygauifs)+ edanadsuiio] |
SURH | LEGO1 I

400
260
20H
260
20H
160
10

60

15/9/00

[__eygaun+ eygauifs]+ eandau(io) |

tpgaul + Epgaun[s]+ eandaufie) |

0 .

o4 £ 2 -1 i L 1

15/9/00

Varias maneras de utilizar ROOT

= Ellenguaje de los comandos y programas es C++
= ROOT contiene un interprete de C++: CINT en ROOT5, CLING en ROOT6
= Dependiendo de las exigencias de los usuarios, ROOT se puede utilizar en distintas maneras:
o ROOT command line
v" Empezando una sesién de ROOT en un terminal, el interprete de ROOT ejecuta cada linea
de comando que se escribe: ejecuta una linea a la vez
v’ Ventaja en comparacidn con la compilacion: se ve el resultado sin ninguna espera

v Desventaja: interpretar los comandos es mucho mas lento que ejecutar cédigo compilado

= La linea de comandos es util en fase de escritura del cédigo, para testear los

comandos y hacer rapidos checks de los datos, mientras que los programas mas largos

van compilados S root S root | Starting ROOT

root [0] Int_t number = 2; The ROOT prompt
root [1] cout<<“number = “<<number<<endl;
root [#] .q Ending ROOT

Varias maneras de utilizar ROOT

o ROOT macros
v’ Si tienes varias lineas de comandos para ejecutar es mas cdmodo ponerlas en un
fichero que se pueda editar y ejecutar varias veces en ROOT: una macro
v" Una macro es un fichero .C o .cc donde escribir secuencialmente los comandos
v La macro es interpretada linea a linea para el interprete CINT/CLING
—> no es compilada, equivale a utilizar las lineas de comandos

v' Importante: en la macro cada linea de cddigo se tiene que terminar con ;

Unnamed macros (no parameters) <—(ONLY UP TO ROOT 5) {

$ root -| macro.C Execute the macro commands...
root [0] .x macro.C Execute the macro j

Named macros (you can pass parameters to the function) void analysis(int N)
root [0] .L analysis.C Load the macro in the memory {

root [1] analysis(20) Call the macro to execute it commandes...

return;
root [0] .x analysis.C(20) Load and execute the macro]

Varias maneras de utilizar ROOT

o Compiled ROOT macros on the fly
v' Ejecutar cddigo compilado es muchos mas rapido que interpretar linea a linea
v' Ademas mediante la compilacidon se pueden detectar errores que no se perciben
interpretando linea a linea

v' Compilar es importante para los programas mas largos y/o lentos

v" El mismo fichero .C o .cc se puede compilar, void analysis(int N)
pero la macro tiene que tener un nombre {
commands...
v" La compilacién esta echa por return;
ACLiC (The Automatic Compiler of Libraries for CINT) }

Named macros ONLY

root [0] .L analysis.C++ Load the macro in the memory and compile it
root [1] analysis(20) Call the macro to execute it

root [0] .x analysis.C(20)++ Load, compile and execute the macro

v
v
v

Varias maneras de utilizar ROOT

o Stand-alone application

La manera mas sofisticad es construir una aplicacion stand-alone

ROOT es basicamente una coleccidon de clases de C++

Estas se pueden utilizar para construir nuevas aplicaciones que se pueden

compilar y ejecutar del todo independientemente desde el ROOT originario

Para cumplir con los estandares de C++, se incluye en el cédigo
una funcién main() que solo es vista por el compilador g++

y no para CINT

Compile the program
S g++ -0 analysis analysis.cc “root-config --cflags --glibs’

Execute it outside ROOT
S ./analysis

void analysis()

{

commands...
return;

}

ifndef __ CINT__
int main()

{
analysis();
return 0;

}
endif

Varias maneras de utilizar ROOT

o Graphical interfaces

ROOT Object browser (TBrowser), Graphical user-interface (GUI), Editor, Fit Panel...

v Permiten un utilizo mas interactivo: abrir ficheros, explorarlos, mirar los trees, plotear

objetos, editarlos, cambiar el estilo, fitear...

La ventana grafica se llama TCanvas

v

root[] new TBrowser()

MEE B
File Edil View Options Inspect Classes top|| Feue wiew options
swyle | ginning | ‘ dedx:|ogp I 3 d 9 . o PR sm— =3 tutonials 2 o e R IS s RN
e P | Ct ure cre |tS 5 L. F 1OFINI s 01238 All Folders Contents of *nome/anuchiniroolMutorials”
5 - [Croot =
Ling ——— C
[CIPROOF Sessions
IS [1 = |1 homedonuchiniroot 3 e
| P—— vI :_lcvs S hksimple rb hiabels1 C
- j::DME
= -
Tifle ———————————— autn
dedxlogp oase g:" @
Clowid hprod.C heerv.C
ok Dchip
[f“ 2D & 3D Lot
Ccintex
Type: |Surfl vl Cciarens D _]
Coords: | Cartesian v| =
S |_40§| oty hsimple py haimpie rb
' cont hsimple.C
I Erors Front @ceache | =l
F Palette [Back 334 Objects, | selected. [hadd.C
Bar |
i1 00 ﬂ @ oo ﬁ B2 ROOT Dbject Browser =10 x|
E"T F"'- ‘ File View Options Help
Maker | 3 Particles =l !,,I';.- £E |7 Qlﬁxl?l E Option | -I
MR [l Folders Contents of "/ROOT Files/Kinematics rool/Even0rreek/Paricles”
Fri Sep 23 10:14:26 2005 =
e 3 Jroot T Energy() RER) 3 GetFirstDaughter()
L [- - (L1PROOF Sessions 3 GetPirstMother() § GetlastDaughter() i GethDaughtersi)
e :-: mml:'m:l - .I| ;‘l!arslcem chiuserfigrasseofsum Qaetsﬁummmmr() *IaFrimarv() *f‘()
rrEEEs e s [IAOOT ks iy PO BRO
ST a (_hist2.root | * Aho() 'lT() * TAH3D
FrEEEEN . . .]
mrEEEC : = ?K"ﬂmx:ﬁu’”m | Arattrine Altobiect s Thetal)
l! [! S—— © ek | 3 TCalcass It Daughter[2] Y3
e I':’éiﬁm e F-amr'“‘ { g Mother2) it fPaaCode e fPolarPhi
- SRR g rrolaets P iRy
=F = P2 T f5tatus Code B
e R B e
e I Weight
Kl |
= ‘ = 34 Obiects. [fPx 4

Varias maneras de utilizar ROOT

o ROOTBook

v" ROOT interactivo en el navegador web (parecido a un notebook de Mathematica):

https://root.cern.ch/notebooks/HowTos/HowTo ROOT-Notebooks.html

HowTo ROOT-Notebooks: pure C++ notebook

The manual switch to C++ mentioned above can be done by typing:
In [16]: ROOT.toCpp ()

Notebook is in Cpp mode

Now our notebook behaves as the ROOT prompt, with no need of any magic.

In [17]: cout << "From this point on..." << endl;

From this point on...

In [18]: cout << "... it's only C++ ..." << endl;

. it's only C++ ...

In [19]: cout << "... With the usual goodies!" << endl;
std::unordered map<int, string> m = {{1, "one"}, {2, "two"},
{3, "three"}}

. With the usual goodies!

(std::unordered map<int, std::string> &) { 3 => "three", 1
=> Ilonell, 2 => "tWO" } v

e

ROQOT contiene
muchisimas librerias y

clases de objetos

En este curso nos
enfocaremos en los
objetos tipicamente
utilizados en analisis de
datos en fisica:

v Funciones

v’ Histogramas

v Graphs

v' Trees

Root CORE Classes

F

Base [cont|meta ZIP ||Unix| winnT || Net | __cint |
G
|Fh3rsic?| eom 1Matrix l,, Hist I|| Traa |I

Alien ||ﬂnhr

RXML | Chirp

:._zutﬁiiii_

!
oy]\ \ T T
_GeomPainter | \ RGL | X3D
[':‘irtuallnlﬂ \H\. Postscript | _himi
| G3_vme | [G4_vme | ETL’,.' Oracle | SapDB
e ™ | MLP ||| Proof | | Table Hbook
- g \\‘\ Thread | Aslimage
Gui | [imevwer) by |_parcor
m"..:::ﬂm _Gwin32 | [ext1 | [extiTTF| | Gat |
G ton ey s | | ROOT Libraries Dependencies
'I TH1 TH2 TGraphI TPie
! ! !
Paint() Paint() Paint({) Paint()

= Variables en ROOT

= Colors

int — Int_t
float — Float_t
double — Double_t
char — Char_t
bool — Bool_t

10 16 17

18

19

0

4“4
20 21
"

-3

= Markers

® B A ¥V O []J A O g
20 21 22 23 24 25 26 27 28

+ % O X - - @ @
1 2 3 4 5 6 7 8 9

29

TCanvas

Canvas: La Canvas es una ventana grafica donde se dibujan todos los objetos de ROOT:
“area mapped to a window directly under the control of the display manager”

La clase correspondiente de ROOT se llama TCanvas

Si la Canvas no existe, ROOT la crea automaticamente al dibujar un objeto

Las Canvas se pueden dividir en Pads

TCanvas (const char *name, const char *title, Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh)
root [] TCanvas *c1 = new TCanvas('c1", "Ventana grafica",200,10,700,900)

(name, title, X Yor Xy Y1)
o] 3 Ventana grafica L o=
root [] c1->Divide(1,2) 2 W N W NN e

Eile Edit ¥iew O

Ei E Wi Options Tools Help
| O58a #8 WE||Ne ~ 00 lonmDK oL & 3%

root [] c1->cd(1)
root [] c1->cd(2)
root [] c1->SaveAs(“file.png")
root [] c1->SaveAs(“file.pdf")
root [] c1->SaveAs(“file.C")

Tutorials

Funciones

= Funcidn: Correspondencia que asocia a cada elemento de un primero conjunto uno y un solo
elemento de un segundo conjunto. Es. una linearecta: y=ax+b
= Utilizando la clase TF1 se pueden definir funciones 1D

= Las clases TF2 y TF3 permiten crear funciones 2Dy 3D

o Funcidn creada como value-type (instancia de un objeto)
root [] TF1 f2("func”, "sin(x) ", 0, 10)

o Funcidn creada como pointer (punta a la instancia del objeto)
root[] TF1* f1 = new TF1("func"”, "sin(x)", 0, 10)

— "func” is a (unique) name —

sinfx)

— "sin(x)" is the formula

— 0, 10 is the x-range for the function
root [] f1->Draw()
root [] f1->SetLineColor(kRed)

1.0

0.5
0.0

0.5

‘1-0II

Example credits: ROOT Tutorial, L. Fiorini, http://ific.uv.es/~fiorini/ROOTTutorial/root tutorial.pdf

Funciones: ejemplos

root[] TF1 *f1 = new TF1("f1","gaus ",0,10)
root[] TF1 *f2 = new TF1("f2","10.-x",0,10)
root [] f1->Draw()

root [] f2->Draw()

root [] f1->SetParameter(0,2)

root [] f1->SetParameter(1,4)

root [] f1->SetParameter(2,2.5)

root [] f1->Draw()

root[] TF1 *f3 = new TF1("f3","f1+f2",0,10)
root [] f3->Draw()

root [] f3->SetParameter(0,3)

root [] f3->SetParameter(2,0.5) el N
root [] f3->Draw() ’
root [] f2->Draw(“same”)

root [] f1->SetParameter(0,3)
root [] f1->SetParameter(2,0.5)
root [] f1->Draw(“same”)

—‘-I\I|III|III|III|III|

Example credits: ROOT Tutorial, L. Fiorini, http://ific.uv.es/~fiorini/ROOTTutorial/root tutorial.pdf

Histogramas

Histograma: Un histograma es un grafico que representa el numero de sucesos que

pertenecen a una categoria (intervalo de una variable)
Los intervalos en que se divide el eje de |la variable se llaman bines
Tener cuidado en la eleccién del numero de bines (binning) del histograma

Las clases de histogramas en ROOT heredan desde la clase TH1 y son de varios tipos,

se utilizan mas TH1Fy TH1D ‘un float per bin‘
TH1F

Hay también histogramas en 2Dy 3D

TH1

Histogram ‘ TH1D ‘

un double per bin

a0 { =]

25 1 _l 1‘

°] A1 -

Counts
-

Frequency
o

.

/'/

L0

500 70O 800 1100 1300 1500 1700 1800 2100 2300
Bin Variable e |
-3 -2 -1 L] 1 2 3 Variable

Histogramas

Los histogramas son una de las clases de ROOT mas importantes para los fisicos

o Histograma creado como value-type (instancia de un objeto)

root [] TH1F h2("hist2",“A new histogram",50,-25,25)
o Histograma creado como pointer (punta a la instancia del objeto)

root [] TH1F *h = new TH1F("hist",“Histogram",10,0,10)

root [] TH1F *h = new TH1F("hist", “histogram title”, 10, 0, 10)
— "hist" is a (unigque) name
— “histogram title” is the title of the histogram
— 10 is the number of bins

— 0, 10 are the limits on the x axis.
Thus the first bin is from 0 to 1,
the second from 1 to 2, etc.

root [] h->Fill(3.5)
root [] h->Fill(5.5)

root [] h->Draw() , , o
- . Example credits: ROOT Tutorial, L. Fiorini,
root | h->REbln(2) http://ific.uv.es/~fiorini/ROOTTutorial/root tutorial.pdf

Histogramas 2D

= Se pueden definir histogramas en 2D utilizando las clases TH2F y TH2D

root [] TH2D h2d("h2d",“A 2-dimensional histogram",binX,x1,x2,binY,y1,y2)
root [] gStyle->SetPalette(1)

root [] h2d->Draw(“colz”)

root [] h2d->Draw(“lego”)

root [] TH2F *hID2 = new TH2F("hID2","F11-ID2 Oikawa's AnaRoot",800,1.8,2.6,4000,10,50)
root [] hiD2->GetXaxis()->SetRangeUser(1.895,1.913)
root [] hiD2->GetYaxis()->SetRangeUser(29.4,30.4)

F11-ID2 Oikawa's AnaRoot

1 X
i |RMSy;

- --I-ﬁtegraf N
| 568833
7961

1.904 1.906

Fits

Fit: Un fit (ajuste) es un procedimiento que permite de comparar un conjunto de datos con

una funcidn y determinar los parametros que mejor se adaptan a los datos

El valor de y?/ndf nos da una medida de la calidad del fit

Numero de grados de libertad ndf = numero de los puntos meno el numero de parametros

de la funcion de fit

180

175

170

165

160

¥2 ! ndf 0.598404 /3
a 3.80213+ 0.732236
b 156909+ 2.23131

= ()P
LT Ay

1 15 2 256 3 35 4 45 5

Picture credits: M. Floris

180

175

170

165

160

|

2 I ndf 26.4462 /3
a 0.68983 + 0.653543
b 165.258 + 2.12491

1

15 2 25 3 35 4 45 5

Fits de histogramas

Fit of a histogram

root [] TF1 *fitfunction = new TF1("fitfunction","gaus",x1,x2)
root [] h->Fit("fitfunction","R")

Getting %> and ndf

root [] fitfunction->GetChisquare()

root [] fitfunction->GetNDF()

x distribution Lorentzian Peak on Quadratic Background
hx

Entries 1001 g e
Constant 30.19 + 1.28 ' : —4— Data
Mean 0.004763 + 0.034136 80 —— Background fit

LO

- Sigma 0.9982 + 0.0287 — Signal fit

- 0 —— Global Fit

= 60 | : 5

- 50 1 R A

é_ 40 ft

g oE

= SIS il Y S A RO WO
4 % 0.5 1 15 2 25 3

Fit Panel

Ademas de las lineas de comandos y macros, se

puede utilizar el FitPanel en manera interactiva

En ROOT se pueden utilizar funciones predefinidas

y también definidas por el usuario

x distribution

hx
C Entries 1001
3B Constant 30.19+1.28
C Mean 0.004763 + 0.034136
30— Sigma 0.9982 + 0.0287
25—
20—
15—
10—
5
,D - Ll L
-4 -3 -2 -1 0 1 2 3 4

X
Data Set: [TH1F:dndeta_check_vertex |
—Fit Function
Type: |Predet-1D =] | gaus |
Operation
’7 MNop O Add O Cony
|gaus
selected:
gaus Set Parameters...
General | Minimization |
—Fit Settings
Methaod
| Chi-sguare =] User-Defined..
[T Linear fit
Robust: [1.00 = No Chisquare
Fit Options
[~ Integral [~ Use range
[T Best errors [T Improve fit results
[~ Allweights = 1 [~ Addto list
[~ Empty hins, weights=1 [~ Use Gradient
Drawe Options
[~ SAME
[~ Mo drawing
[~ Do not storesdraw Sdyanced.. |
K _40 Ul:al:l: ll 3 :: 40‘00 ﬁ
N L
Fit | Reset | Close |
THIF:dndeta, | LIB Minuit | MIGRAD [itr:D |Pm:DEF

Graphs

= Graph: Un graph es un grafico donde se representan los valores
de una variable en funcidn de los valores de otra variable. Es. scatter plot (x.y)

= Se pueden crear graphs con o sin errores y también

TGraphAsymmErrors Example
con errores asimétricos, utilizando las clases wof]
TGraph, TGraphErrors y TGraphAsymmeErrors 85 %Ek
TGraph(n,x,y) T *7%7%

root [] TGraph *graph = new TGraph() T _714

root [] graph->SetPoint(i,x,y) T 4
TGraphErrors(n,x,y,dx,dy) - - s -

root [] TGraphErrors *grapherr = new TGraphErrors()

root [] grapherr->SetPoint(i,x,y)

root [] grapherr->SetPointError(i,dx,dy)
TGraphAsymmErrors(n,x,y,dxL,dxR,dyL,dyR)

root [] TGraphAsymmeErrors *graphaserr = new TGraphAsymmeErrors()
root [] graphaserr->SetPoint(i,x,y)

root [] graphaserr->SetPointError(i,dxL,dxR,dyL,dyR)

Energy [keV]

~J
o
=]

(a2}
(=]
=]

500

400

300

200

100

Fits de graphs

Fit of a graph

root [] TF1 *bestfit = new TF1("bestfit","poll",x1,x2)
root [] GraphErrors->Fit("bestfit","R")

Getting %> and ndf

root [] bestfit->GetChisquare()

root [] bestfit->GetNDF()

Besit-fit calibration

; ; ¥2 I ndf 2.8316-09/3 | o,
- |p0 -B9Gle-06+1483 | 2

R A o] - 10£0.04472 | .8

I o

N ' =

-)

__ "'. >_

i 10”

B e'.;.‘ﬁ.-.f.' ..

:_ ;.'..._é'.'.': ...

:_ : ;.@f.'..' ...

__. 10-2 | >
e 10
_I L1 | L1l | | | L1l | L1111 | L1111 | L1111 | | | L1l | I 11

Energy [channels]

10°
Y energy [keV]

Trees

estructura como de enormes tablas

Los resultados de las medidas tomadas durante los experimentos usualmente tienen una

Evento H numero di hit ‘ numero di tracce

‘ proprieta delle tracce ‘ e

1 10 3
2 30 4

aaa
Ccc

bbb
ddd

Trees: Los trees de ROOT implementan estas tablas “generalizadas”, donde las columnas

pueden contener grandes y complexas estructuras de datos (objetos de cualquier clase)

1 "Event”

point

X

y
z

La clase de ROOT se llama TTrees

Branches

Events

File

Picture credits: L. Fiorini

Trees

= Los Trees estan estructurado en Branches y Leaves

ROOT Object Browser

Browser | File Edit Wiew Optons Took

Fies |
24 VY = Dimer Option: | =1
.|H_"|t-:|--:|-t E
) PROOF Sassions
) ROOT Flas
' =1 i imediafoshibe H DD es llaabigripahviibigripe_rnn200 1 seot
= |res
_hl'hl:!bit
A Bvantnt
A esg RIPSPPAC
[+ EsgRIPSFasic
HMlegripsac
A Eig RIPSFocal Asna
A EgRIPSTOF
[+ #) g RIPSRIPS
= AL eigRIPSBeam BigRIPSBeam
o |veesne
P |veen5
"Emwﬁmmm 1ficticagave_1 17 _wil root
"E.Emmmﬂmm“m lhclicadel®_M 1_w2 root

=1 = | s

_‘:rm:n:l:lit

A Erg RIFSPPAT
= AL g RIFSFlasic
A EesgRIPSE

A g RIFSTOF
A Erg RIPSRIPS

Trees

root [] tree->Draw(“variablel”, "CONDITION")
root [] tree->Draw(“variablel”, ” variable1>10") 1D-histogram binned automatically

root [] tree->Draw(“variable1>>histo1D(binX,x1,x2)", ””)
root [] tree->Draw(“variable1>>histo1D(binX,x1,x2)”, ”variable1>10")

root [] tree->Draw(“variable2:variable1”, "CONDITION”, "OPTION"”) 2D-histogram
root [] tree->Draw(“variable2:variablel”, “variable2>0", "colz”)
root [] tree->Draw(“variable2:variable1>>histo2D(binX,x1,x2,binY,y1,y2)”, ””, ")

6000¢

($)]
(=4
o

4000

Energy Loss (arb. units)

_-1/2 T =-1| | 2773 C

1000 2000 3000 4000
Time-of-Flight (arb. units)

3000L——

Writing a Tree to file

root [] TFile *file = TFile::Open(“mytree.root”,”RECREATE");
root [] TTree *mytree = new TTree(“mytree”,”title”);

root [] Float_t varl;

root [] tree->Branch(“varl”, &varl, “varl/F”);

root [] varl = 2.16;

root [] tree->Fill();

La moldalita di apertura pud essere (maiuscole non importano):

->Pri .
root [] tree->Print(); o CREATE: Crea un nuovo file. Se esiste gia un file con lo stesso

root [] tree->Write(); nome non viene fatto niente.

@ RECREATE: Crea un nuovo file. Se esiste gia viene un file con lo

root [] file->Close();)
stesso nome viene cancellato.

e UPDATE: Apre un file esistente per aggiungere dati. Se non esiste,
viene creato un nuovo file.

@ READ: Apre un file per la lettura.

@ Per scrivere dati su un file bisogna usare CREATE, RECREATE o
UPDATE.

@ Per leggere dati da file bisogna usare READ o UPDATE.
Credits: M. Floris

Reading a Tree from file

root [] TFile *file = TFile::Open(“mytree.root”);

root [] TTree *tree = (Ttree*)file->Get(“mytree”);

root [] Float_t varl;

root [] tree->SetBranchAddress(“varl”, &varl);

root [] Int_t nentries = tree->GetEntries();

root [] for(Int_t i=0;i<nentries;i++) {
tree->GetEntry(i);

cout << varl << endl;

	� Introducción a ROOT
	Slide Number 2
	ROOT
	Slide Number 4
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Varias maneras de utilizar ROOT
	Slide Number 11
	Slide Number 12
	TCanvas
	Tutorials
	Funciones
	Funciones: ejemplos
	Histogramas
	Histogramas
	Histogramas 2D
	Fits
	Fits de histogramas
	Fit Panel
	Graphs
	Fits de graphs
	Trees
	Trees
	Slide Number 27
	Trees
	Writing a Tree to file
	Reading a Tree from file

