

Advanced Micro and nano fabrication Capabilities at the IMB-CNM-CSIC Clean Room

Manuel Lozano

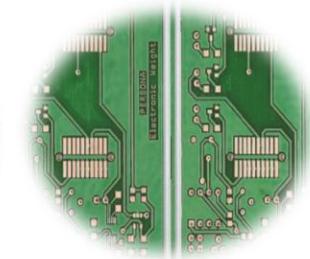
Manuel.lozano@csic.es

Red Española
de Salas Blancas
de Micro y Nano
Fabricación

www.imb-cnm.csic.es

Cleanroom & ICTS facilities at IMB-CNM

Associated laboratories


Electrical
characterization

Packaging

Printed
electronics

Electronics
systems

+
Reverse
engineering

Key figures

100-10,000
Class

$21 \pm 1^\circ\text{C}$

$45 \pm 5\%$
Rel. Humidity

8:00-20:00
Open hours

Integrated cleanroom: 1500m²

Services: 3x600m²

Packaging: 40+35m²

KEY FIGURES

>150 13 45
Process Process Staff
tool areas

1130 315
Runs & For third
Mini-runs parties (28%)

13117 5289
Single Processed
steps wafers

2342 4582 106
External Hours Individual
access

IN 2024

Areas

*Thermal processes and CVD
Ion implantation
PVD
Photolithography
Cleaning and wet etching
Dry etching (RIE)
Microsystems
Nano-fabrication
On-line characterization
Electrical characterization
Packaging
Reverse engineering
Printed electronics*

CMOS	150 mm	Self-service
Not-CMOS	100 mm	Per assignment
Compatible processes	Wafer & dies	Work orders

Thermal process and CVD

- Oxidation, annealing y RTP
 - 8 tubes + 3 RTP
- B and P diffusion (doping)
- LPCVD
 - 5 tubes: polySi & a-Si, Si₃N₄, SiO₂
- PECVD
 - 3 tools: Si₃N₄, SiO₂, BSG
- ALD
 - 2 reactors: Al₂O₃, HfO₂, TiO₂, SiO₂
- Pyrolysis chamber: parylene

PVD

- 5 sputtering tools
 - Al, Al/Cu, Ti, W, Si, AlN, TiN, Si₃N₄, SiO₂, Ta, TaSi₂, Ni, Au
- 2 evaporation tools (E-beam, Joule)
 - Ag, Al, Al₂O₃, Au, B, C, Cr, Cu, Fe, ITO, Mo, Nb, Ni, Pd, Pt, Sn, Ta, Ti, W, ZnO, Zr...

Ion implantation

- 1 ion implanter
 - B, P, As, N, Ar, Al, Si, Mg, O, He...

& more (micro-systems)

- Electroplating & electroless
 - Materials: Ni, Cu, Au...
- Anodic & thermal bonding

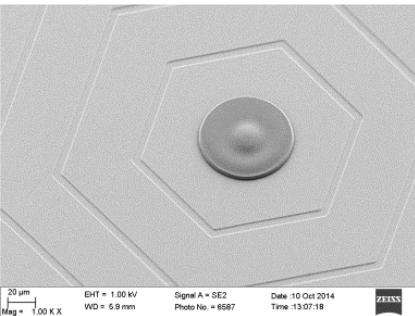
Cleaning

- 7 wet benches:
 - Piranha, HF, RCA...
- 1 spray etcher
- 2 resist ashers
- Rinsers & dryers

Wet etching

- 16 wet benches:
 - Si, SiO₂, Si₃N₄, AlN, HfO₂, Al, Ti, Ni, Cr, W, Au, ...
 - Anisotropic etching of Si
- Bulk & surface micro-machining
- Critical point dryer

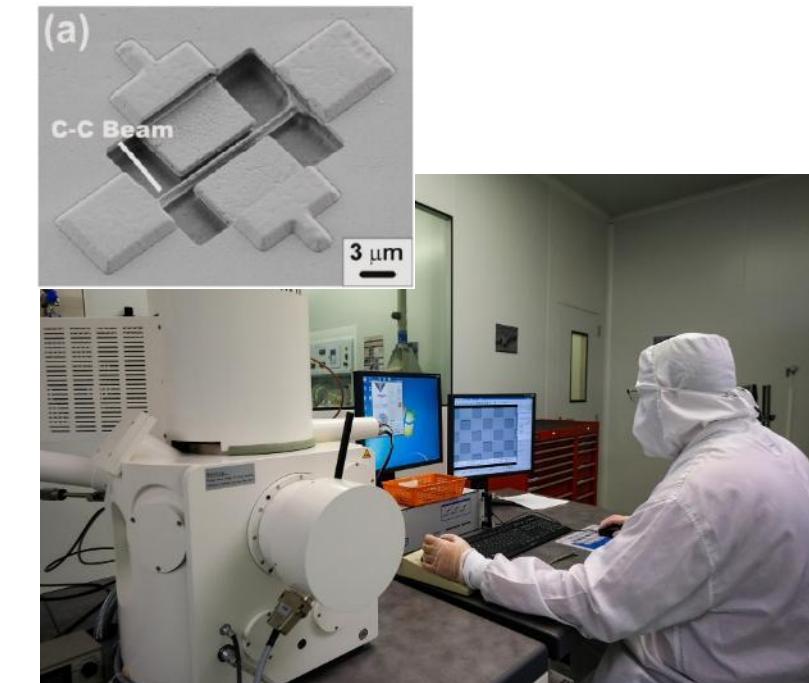
Lift-off


Dry etching

- 8 RIE tools:
 - Chemistry: F, Cl, Bosch process...
 - Materials: Si, polySi, SiO₂, Si₃N₄, Al, ...

Photolithography

- 3 mask aligners
 - Contact and double-side mask aligners
- 1 (maskless) direct write laser
- 1 automatic coater-developer tool
 - Resolution $> 1,5\mu\text{m}$



Stepper

- 1 i-line stepper
 - Resolution $\sim 0,5\mu\text{m}$

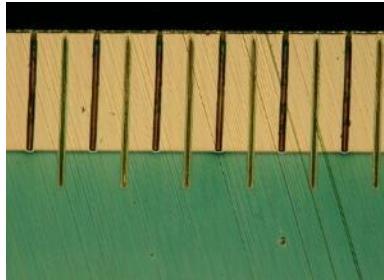
Nanolithography

- 1 Electron-beam lithography tool
 - Resolution $< 50\text{nm}$
- Block copolymers technology
- Nanopatterning by AFM

Characterization

In-line characterization

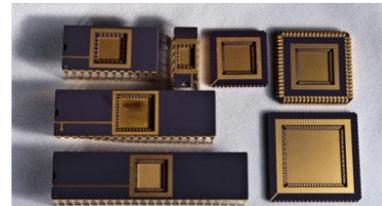
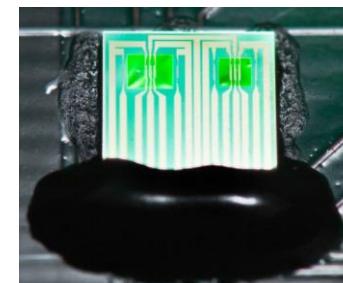
Optical microscopy
Scanning Electron Microscopy
Confocal microscopy
Interferometry
Ellipsometry
FTIR
Raman
Sheet resistance
Wafer thickness & bow
Lifetime measurement
Profilemeter
Atomic Force Microscope


Semiconductor characterization

$I(V)$, $C(V)$, ...

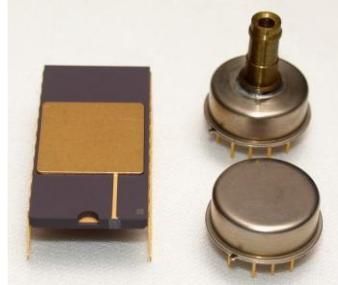
Post-process analysis

Reverse engineering, FIB



+ Laboratories of IMB-CNM research groups

Packaging

From dicing, die attach, wire bonding, to final encapsulation



7 bonders & Test

3 dicing saws & several ancillary tools

Cleaving

CMOS-compatible technologies	<ul style="list-style-type: none">▪ CMOS▪ Radiation sensors▪ Power devices▪ ISFETs▪ Memristors▪ Integrated photonics▪ Semiconductor quantum devices
MEMS technologies	<ul style="list-style-type: none">▪ Micro-fluidics▪ Gas sensors▪ Harvesters▪ Micro/nano mechanics▪ Graphene-based materials on thin films
2D functional materials	
Printed electronics	

Organization: IMB-CNM, D+T &
SBCNM

Scope: Design development and
production of devices based on micro
and nanoelectronics technologies

Validity: 28/04/2023 – 28/04/2026

Building
trust
together.

Certificate

AENOR has issued an IQNET recognized certificate that the organization:

AGENCIA ESTATAL CONSEJO SUPERIOR DE
INVESTIGACIONES CIENTÍFICAS

INSTITUTO DE MICROELECTRÓNICA DE BARCELONA (IMB-CNM).
INSTITUTO DE MICROELECTRÓNICA DE BARCELONA (IMB-CNM). CL DELS TIL-LERS
CAMPUS UAB
08193 - BELLATERRA
(BARCELONA)

has implemented and maintains a/an
Quality Management System

for the following scope:
Design development and production of devices based on micro and nanoelectronics technologies.

which fulfills the requirements of the following standard

ISO 9001:2015

Linked to the certificate ES-1026/2023

Registration Number: ES-1026/2023 - 001/00

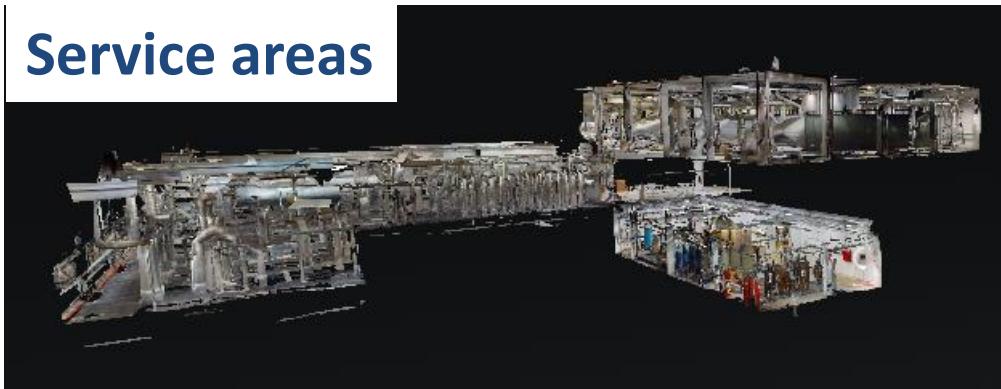
First issued on: 2023-04-28 Validity date: 2026-04-28

Alex Stoichitoiu
President of IQNET

Rafael GARCIA MEIRO
CEO

AENOR
caixa

This attestation is directly linked to the IQNET Member's original certificate and shall not be used as a stand-alone document.


IQNET Members:
AENOR Spain, AFNOR Certification France, APCER Portugal, CCC Cyprus, CISQ Italy, CGC China, CDM China, COS Czech Republic, Cro Cert Croatia, DGs Holding GmbH Germany, EADLE Certification Group USA, FCAV Brazil, FONDONORMA Venezuela, ICONTEC Colombia, ICS Bosnia and Herzegovina, Inspecta Sertifointti Oy Finland, INTECO Costa Rica, IRAM Argentina, JQA Japan, KPS Korea, LSQA Uruguay, MIRTec Greece, MSZT Hungary, Nemko AS Norway, NSAI Ireland, NYCE-SIGE Mexico, PCBC Poland, Quality Austria Austria, SIR Israel, SIQ Slovenia, SIRIM QAS International Malaysia, SGS Switzerland, SRAC Romania, TSE Türkiye, YUGS Serbia.

* The list of IQNET Members is valid at the time of issue of this certificate. Updated information is available under www.iqnet-certification.com

Clean room

Service areas

Virtual tour of the clean room

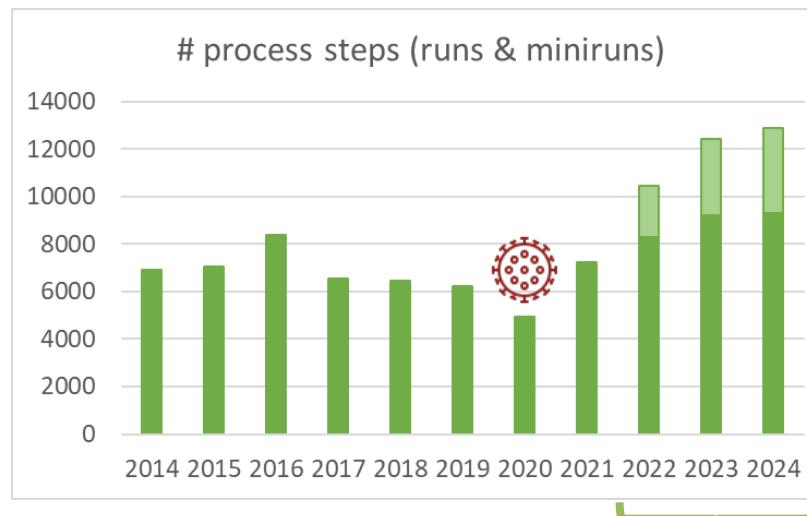
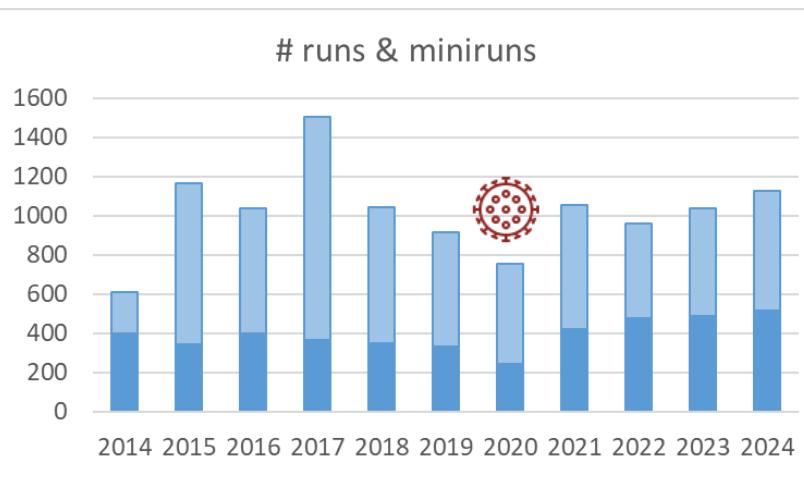
Visit us!

A screenshot of the official website for CNM-CSIC. The header features the logos for CNM (Centro Nacional de Microelectrónica) and CSIC (Consejo Superior de Investigaciones Científicas). The top navigation bar includes links for 'Contact', 'Intranet', 'Careers', a search bar, and language options ('EN'). Below the header, a secondary navigation bar has links for 'About the center', 'Research', 'Clean Room' (which is underlined), 'Laboratories', 'Technology Transfer', 'News & Outreach', and 'Highlights'. A list of links on the right side of the page includes: 'Integrated Micro and Nanofabrication Clean Room', 'Micronanofabs', 'Protocol of access', 'SiN Photonic Platform', 'Technological offer', and 'Clean Room Virtual Tour', which is circled in red. The footer of the page features a graphic of a circuit board and the year '2022'.

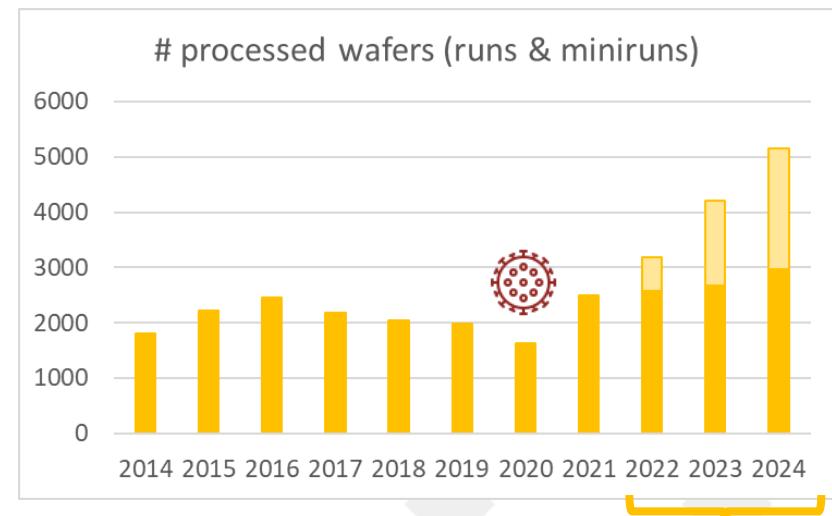
<https://www.imb-cnm.csic.es/en/micro-and-nanofabrication-clean-room/clean-room-virtual-tour>

IMB-CNM cleanroom in numbers

KEY FIGURES



>150 Process tool
14 Process areas
44 Staff

1130 Runs & Mini-runs
315 For third parties (28%)


13117 Single steps
5289 Processed wafers

2342 External access
4582 Hours
101 Individual users

IN 2024

Runs & miniruns
managed the same way

Runs & miniruns
managed the same way

Runs in full colours – Miniruns in light colours

Investment plan in a nutshell

PERTE Chip. Microelectrónica y Semiconductores

ChipXXI

IMB-CNM, CSIC
19,5M€

General

Tools (~11M€)
Services (~7,5M€)
Staff (~1M€)

MICRONANOFABS

Strategic plan 2021-24
6,4M€

General

Tools (5,1M€)
Services (0,8M€)
Staff (0,5M€)

Deadline: 30/06/2026

QTEP - CSIC

QTEP

F. Pérez-Murano
3,9M€

Quantum

EBL-HV
Nano area adaptation
Planned date of the
works in Nano area:
08-12/2025

Chips JU

PIXEurope

C. Domínguez
~20M€

Photonics

DUV, track, CMP...

Advanced Packaging & Heterogeneous Integration

E. Ramon & M. Ullán
1,3M€ for project
1,0M€ for tools

Upcoming changes in the ICTS: Remodelling Nanolithography

Goals

- Setting up a high environmental control room for the **new EBL**
 - Stability in operating temperature: $\pm 0.25^\circ\text{C}$
 - Rate of change: $< 0.1^\circ\text{C}/\text{h}$
- Upgrade of the nanolithography area (new wet benches...)
- Upgrade of the air conditioning system for Nano & Foto-MNC
 - Improvement in humidity control during summer
- Acquisition of new metrology EBL (40keV), new SEM

Dismantled tools

- Nanoimprint

Nanolithography
area

QTEP - CSIC

Quantum
Nanofabrication
Laboratory

RAITH EBPG5150 Plus

- *Small chips up to 150mm wafer*
- *< 10nm overlay accuracy*
- *< 10nm stitching accuracy*
- *> 300nA max current (x 10 to 100 times faster)*
- *High level of automation*
- *Cassette loading solution for batch processing*

Upcoming changes in the ICTS: PERTE investment plan in a nutshell

PERTE Chip. Microelectrónica y Semiconductores

ChipXXI

IMB-CNM, CSIC
19,5M€

General

Tools (~11M€)
Services (~7,5M€)
Staff (~1M€)

MICRONANOFABS

Strategic plan 2021-24
6,4M€

General

Tools (5,1M€)
Services (0,8M€)
Staff (0,5M€)

Deadline: 30/06/2026

QTEP - CSIC

QTEP

F. Perez-Murano
3,9M€

Quantum

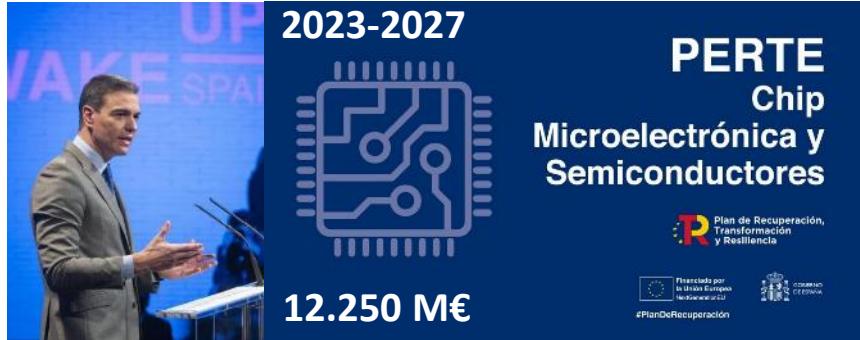
EBL-HV
Nano area adaptation

PIXEurope

C. Domínguez
~20M€

Photonics

DUV, track, CMP...


Advanced Packaging & Heterogeneous Integration (APECS)

E. Ramon & M. Ullán
1,3M€ for project
1,0M€ for tools

**Planned date of the works in Nano area:
08-12/2025**

Upcoming changes in the ICTS: PERTE: a quick look backwards

Strategic assets

Abril 2022

PERTE Chip announcement

September 2022

First draft of ChipXXI project

October 2023

Revision of MICRONANOFABS Strategic Plan
2021-24 (100% funding by PERTE Chip)

December 2023

Approval of the revision of the
MICRONANOFABS Strategic Plan and first
investment part
Conceptual design of cleanroom extension

August 2024

Approval of the second investment part of
MICRONANOFABS Strategic Plan

September 2024

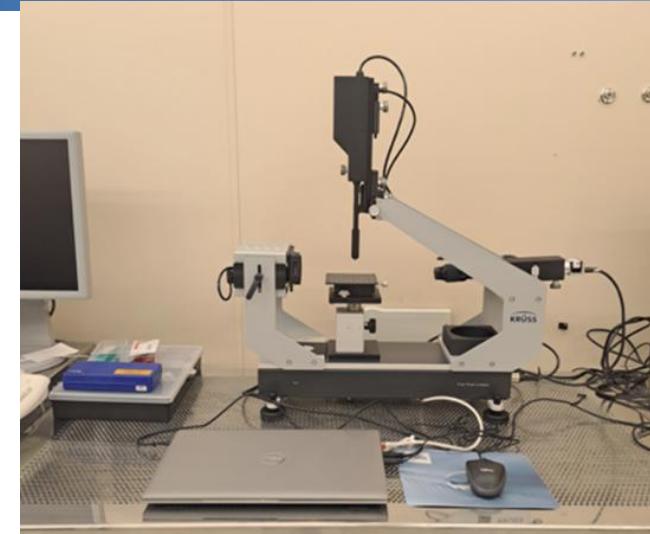
ChipXXI scientific report

February 2025

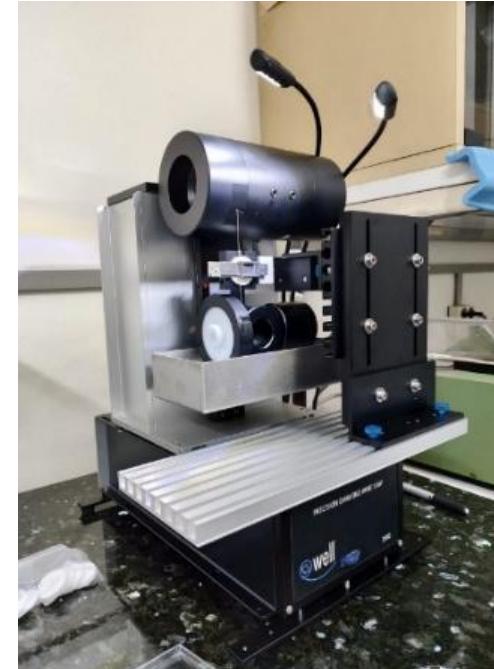
Application to SINGULARS call (Generalitat)
for the cleanroom extension

May 2025

Possibility to contract staff with ChipXXI


30/06/2026

All actions must be implemented


Upcoming changes in the ICTS: Process equipment

Investments implemented up to now

	Description
MICRONANOFABS Strategic Plan	Sentech RIE upgrade
	Oxford PECVD upgrade
	Corial PECVD upgrade
	Contact angle tool
	AS-Master RTA upgrade
ChipXXI	Auriga SEM upgrade
	SIAM upgrade
	Optical microscope
	Precision dicing machine
	Bonding tool

Contact angle tool

Precision dicing machine

Bonding tool

Actions:

- **Stepper Nikon g7** dismantled
- **Eaton implanter** and **Plasmos bonder** dismantled
- AFM and spinner for block copolymer installed during works in nano area
- Installation of **Ion-Milling Tool** in place of “contaminated” inspection area
- Move the **Not-CMOS inspection area** to the location of MRC sputtering
- New chemical benches for Microsystem and not-CMOS wet etching
- Dismantle the **Jipelec** furnace. Substitution by new **Zenit furnace.**
- New **laser annealing tool**
- Old tools removed (**CMP** and **scrubber**)
- Installation of **Electrospinning** and **Parylene** tools
- Upgrade of the **ultra-pure water plant**
- Upgrade **chillers** and Clean Room **Air Conditioning System**

Upcoming changes in the ICTS: Process equipment

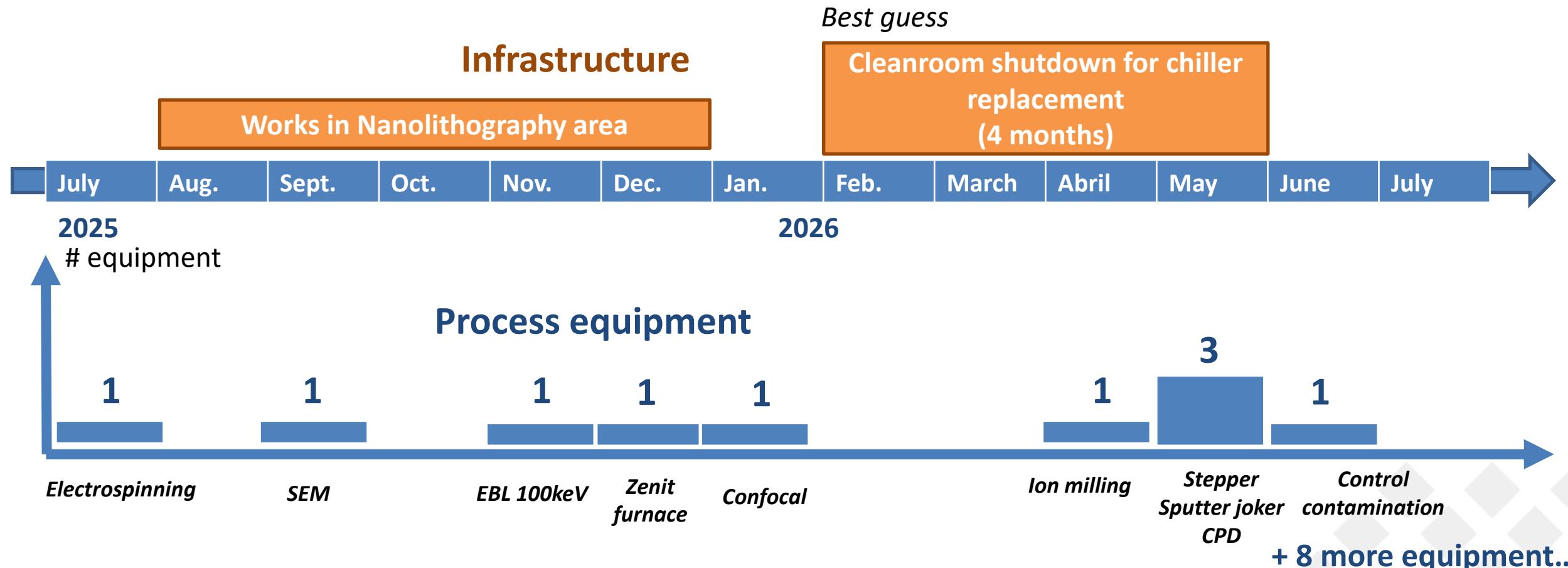
Summary of process equipment to come...


MICRONANOFABS Strategic Plan

Description	Area
Sputter joker	Metallization
Sputtering tool for Al metallization	Metallization
CMOS contamination control	Inspection
BPTEOS PECVD tool	Thermal processes
Laser annealing system	Thermal processes
RTA tool for SiC annealing	Thermal processes
Multipurpose bonder	Packaging
Electrospinning tool	Research group
Ion-milling system	Dry etching

ChipXXI

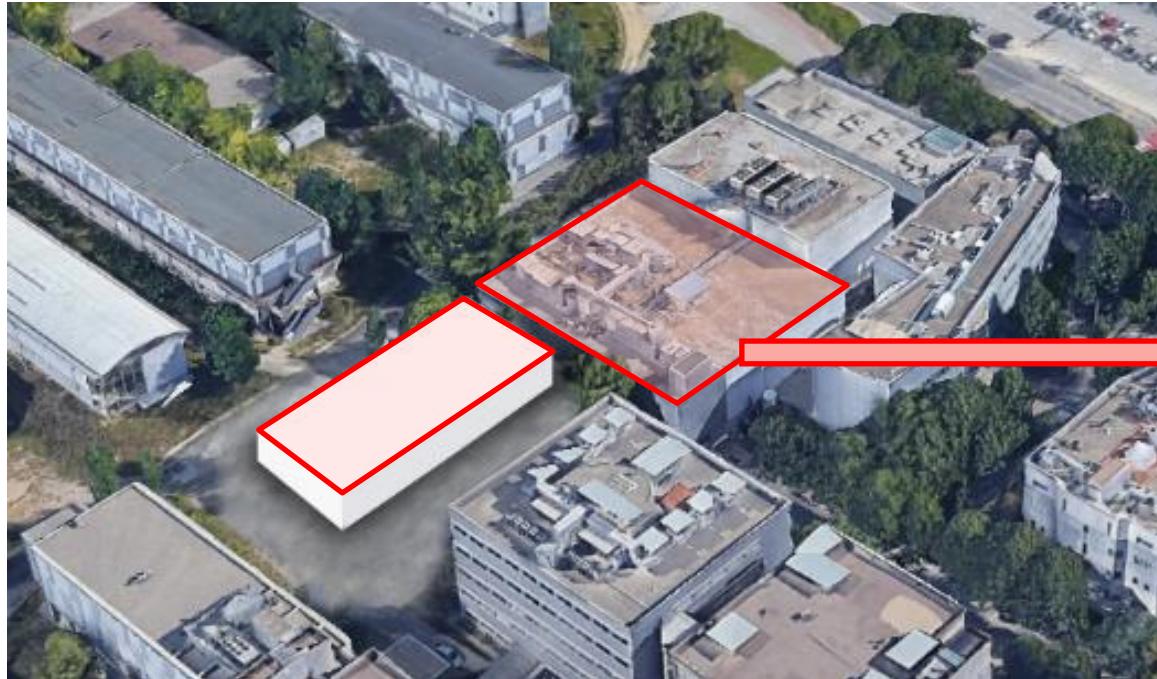
Description	Area
Scanning electron microscope	Nano
Confocal microscope	Microsystems
E-beam lithography	Nano
Stepper tool	Photolithography
Wet benches	Microsystems
Critical point dryer	Microsystems
Laser micromachining system	Reverse engineering
Wafer dicing machine	Packaging


Upcoming changes in the ICTS: Infrastructure: photovoltaic plant

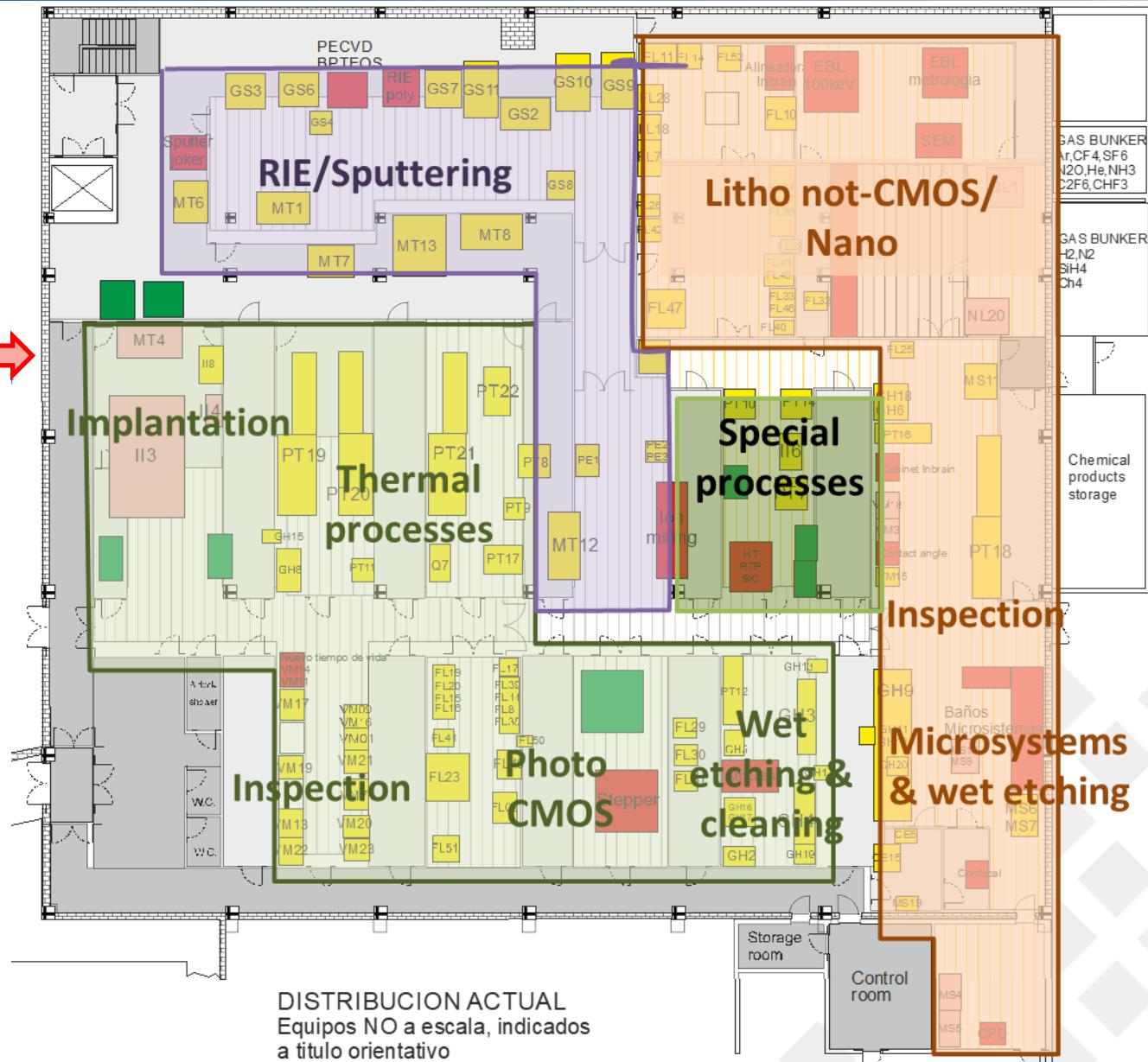
Installation of a photovoltaic plant on Clean Room and main building roof

Schedule still to be defined...

Upcoming changes in the ICTS: PERTE: a quick look forward



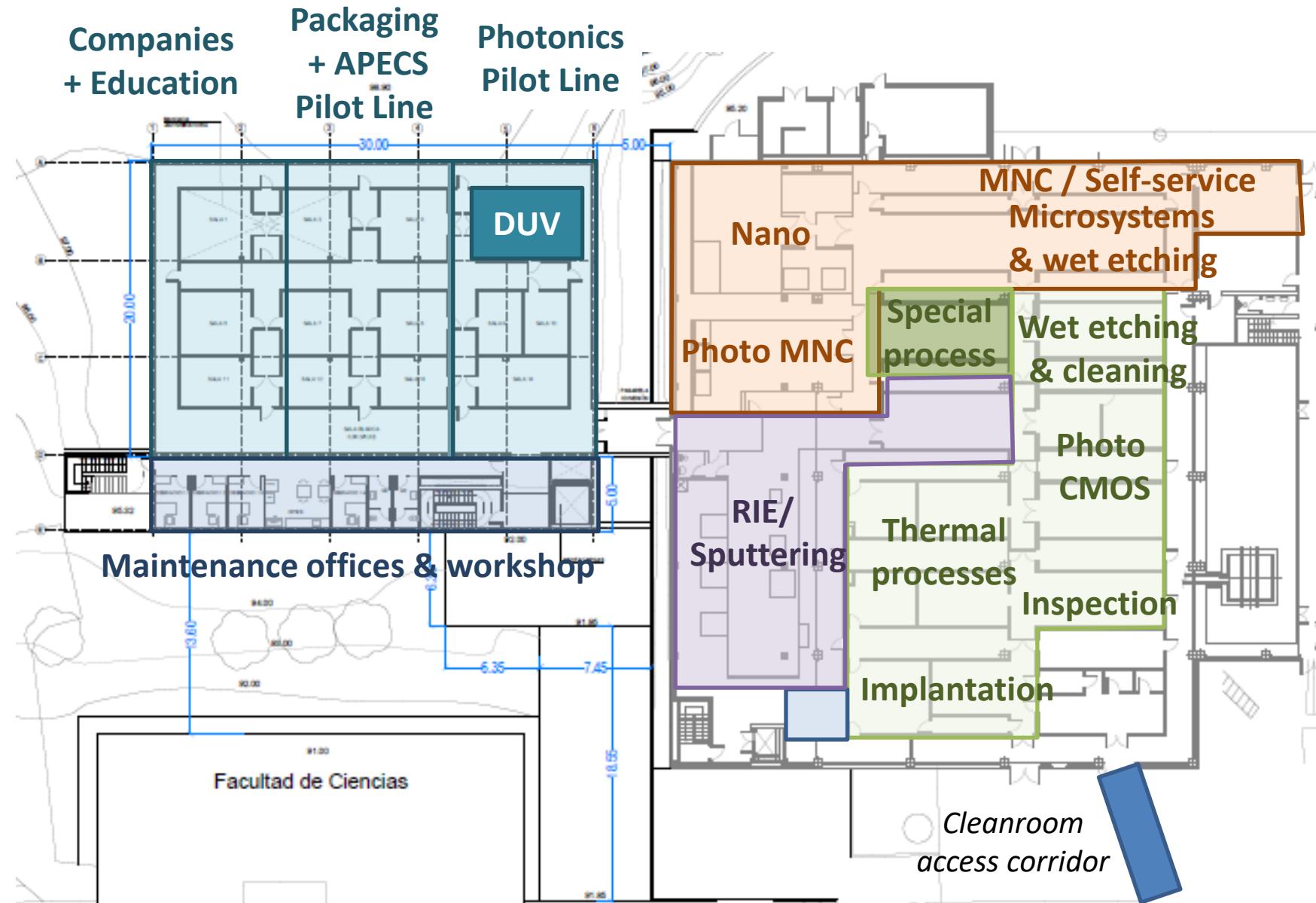
- Improved capabilities
- New processes
- Better devices



- Service interruptions during >2 years
- New process parameters to develop

Upcoming changes in the ICTS: Cleanroom extension

New building


Upcoming changes in the ICTS: Cleanroom extension

Goals:

- Packaging
- Pilot lines
- Companies
- Training

Timeline:

- DUV expected for summer 2027
- Cleanroom extension?

- **Submitted February 2025**

MICRONANOFABS

- **Main goals:**

- Support new start-ups for ramping up in production
- Collaboration with other ICTS and ESFRI
- Agreement with national initiatives to strengthen the ecosystem
- Benchmarking and contacts to our potential user community
- Training to new labour forces
- Actions towards more environment-sustainable cleanroom
- Actions towards economic sustainability

ICTS Distribuida: Red de Salas Blancas
Integradas de Micro y Nano Fabricación

*Distributed ICTS: Network of Integrated
Clean Rooms for Micro & Nano Fabrication*

DOCUMENT 3 STRATEGIC PLAN 2025-2028

Project 1: Advanced Micro- & Nano-fabrication Systems

Investment/Tool	Description	Priority
MOCVD tool	Metalorganic Vapor Phase Epitaxy (MOCVD) for wide bandgap oxide semiconductors	High
RTP-CVD system	Rapid thermal deposition system by chemical vapor (RTP-CVD) for 2D-materials growth	High
RTA system	Rapid thermal annealing for wide bandgap technology	High
Sputtering tool	Renewal of sputtering tool for non-CMOS processes	High
Optical lithography system	Direct Laser Writer Lithography tool	Medium
Wet etching system	Upgrade of wet etching capacity for CMOS processes	Medium
High resolution mask printer	Printer for micrometric resolution lithography masks	Medium
Resist stripping upgrade	New chamber for resist ashing tool	Low
Dry etch tool	Renewal of dry etching capabilities for CMOS technology layers	Low
Evaporation tool	Evaporation tool for CMOS processes	Low

Project 2: Integration & Packaging Excellence

Investment/Tool	Description	Priority
Milling machine	PCB milling machine for electronic system integration	High
Dicing tool	Upgrade of dicing capabilities	Low
Pick and place tool	Pick and place tool for electronic system integration	Low
Die bonding tool	Semi-automatic equipment for die bonding and dispensing of adhesives in the die-attach process	Low

Project 3: Cutting-Edge Characterization Frontiers

Investment/Tool	Description	Priority
SEM	Renewal of Scanning electron microscope (SEM)	Medium
Probe station	Probe station for electrical characterization	Low

Project 4: Infrastructure for Tomorrow's Research

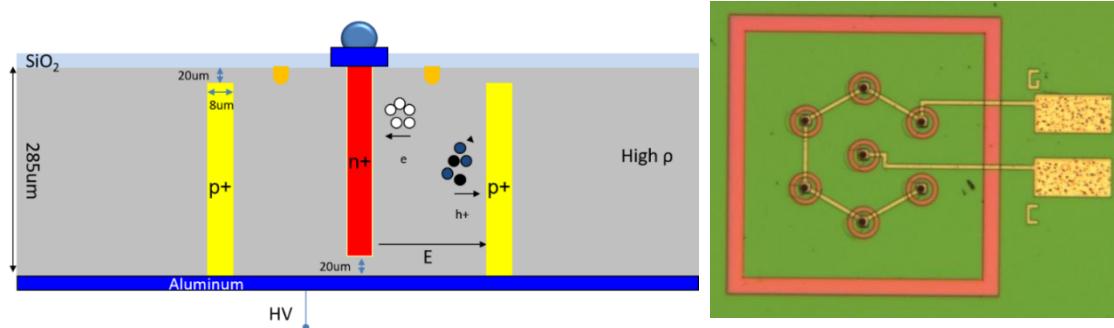
Investment/Tool	Description	Priority
Abatement system upgrade	Scrubber system for fluorine and chlorine-based gases	High
Services adaptation	Services supply and adaptation for new tools	High
Airlock	Airlock for introduction of new equipment in the clean room	Medium
Water plant upgrade	Upgrade of ultra-pure water plant for water recycling	Low

New chip prototype factory in Catalonia

- Located next to Alba and UAB
- 2,000 m² Clean Room
- 200 mm wafers
- Open to external companies
- Funded by Next Generation European Funds, Spanish Gov. & Generalitat
- Investment 392 M€. Approved 3.5 M€ for the engineering project.
- Coordinator: **ICN2**
- Participants: ALBA Synchrotron, IMB-CNM (CSIC), UAB, BSC, ICFO & Investment agency Barcelona&Partners
- Expected operation in 2028-2030

Objectives

- Clean room infrastructure of the latest generation and advanced characteristics
- Wide group of industrial members.
- New generation of microelectronics enabled by advanced materials.
- Solid education and training program
- Sustainable operations model

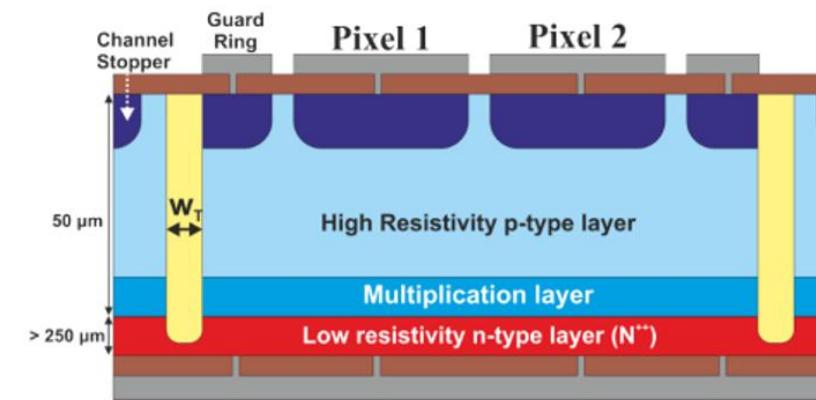

Actions

- Attract external companies to subcontract space and equipment
- Port IMB-CNM technologies to 200mm

3D timing for future tracking. Atlas and CMS

timing layers :

- 3D Technology stabilization (100mm → 150mm)
- Devices for extremely harsh environments ($>2 \times 10^{15} \text{ n/cm}^2$) :
 - Silicon 3D timing devices
 - Future timing layers based on 3D technology



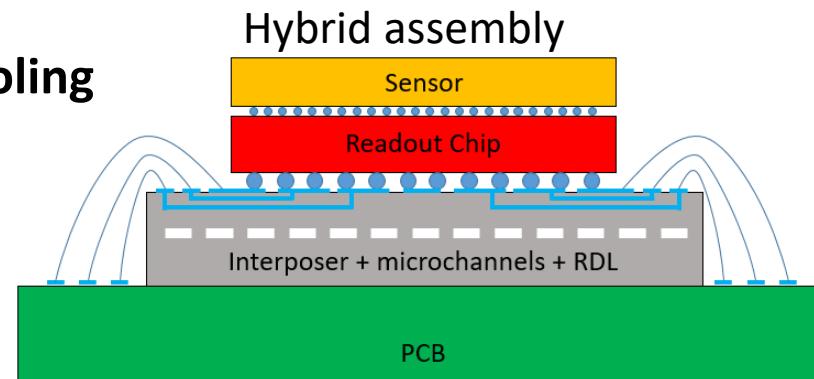
SiC detectors for Particle Physics and Nuclear Physics (IEM-CSIC):

- Devices for extremely harsh environments:
 - Silicon Carbide (SiC) based devices
- SiC diodes for X-ray detection and Beam monitoring

LGAD timing for timing and tracking applications :

- Inverse LGADs and Trenched iLGADs → 100% fill factor while maintaining precise tracking and timing information
- Deep Junction LGADs
 - More radiation hard ($<2 \times 10^{15} \text{ n/cm}^2$)
- Technology Stabilization, increasing yield in 150mm wafers and large sensors
- N-type LGAD development for DUV and soft X-ray detection

imasenic


CMOS imaging sensor simulation (Imasenic and DRD3):

- Development of a simulation framework for the production of HV-CMOS detectors

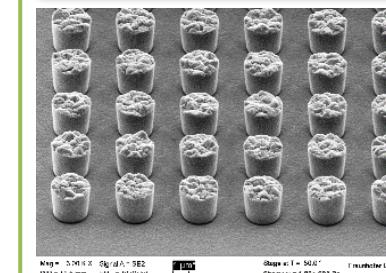

Advanced Packaging and Heterogeneous Integration for Electronic Components and Systems

WP5 - Technology cooperation // T5.5 Collaborative projects with CSIC. Leader: CSIC. FMD-OFC, IZM

Task 5.5.1: Microchannel cooling

Monolithic integration of cooling micro-channels

Miguel Ullán (IMB-CNM, CSIC)


- Integration of embedded microchannels with RDL in silicon interposers
- Cooling microchannel fabrication in sensors or ASICs
- Qualification of cooling concept
- ASIC thermo-test chip fabrication
- IO pitch reduction for hybrid assemblies
- Heterogeneous integration

→ Services offered for (future) pilot-line customers:

- Microchannel cooling for HPC and RF – Application
- Hybrid Assembly Technologies for HPC – Application

Sub-10 μ -pitch

4 μ m pitch Au pillars

Focus IZM: IO pitch reduction for hybrid assemblies

Thanks for your attention

C/ del Til·lers s/n
Campus de la Universitat Autònoma de Barcelona (UAB)
08193 Cerdanyola del Vallès (Bellaterra)
Barcelona · Spain

Follow us on @imb_cnm

www.imb-cnm.csic.es

