

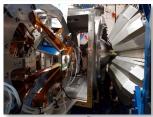

## GRIT simulations in nptool v4

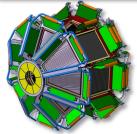


GRIT workshop 2025 Girard-Alcindor Valérian - IJCLab

01/12/2025 1/11




### Nuclear physics in a nutshell (caricatural...)




#### Nuclear physics code standard:

- Custom analysis code for each experiment:
  - Not reusable:
    - Not maintained
    - Not modular
    - Not well documented
  - New code from scratch for each experiment
  - Inconsistent from one experiment to the other
- analysis/simulation code are not treated similarly (inconsistency)



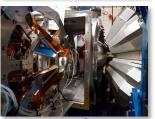


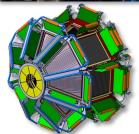




### Nuclear physics in a nutshell (caricatural...)




#### Nuclear physics code standard:


- Custom analysis code for each experiment:
  - Not reusable:
    - Not maintained
    - Not modular
    - Not well documented
  - New code from scratch for each experiment
  - Inconsistent from one experiment to the other
- analysis/simulation code are not treated similarly (inconsistency)

The increasing complexity of detectors requires a change of philosophy!

- Need of analysis code that is:
  - Standardized
  - Reproducible
  - Reusable
  - Modular
  - Collaborative
- Develop consistent analysis/simulation code









### Nuclear physics in a nutshell (caricatural...)



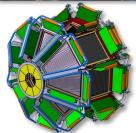
#### Nuclear physics code standard:

- Custom analysis code for each experiment:
  - Not reusable:
    - Not maintained
    - Not modular
    - Not well documented
  - New code from scratch for each experiment
  - Inconsistent from one experiment to the other
- analysis/simulation code are not treated similarly (inconsistency)


The increasing complexity of detectors requires a change of philosophy!

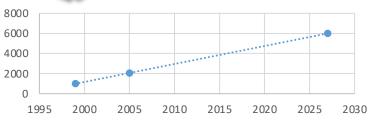
- Need of analysis code that is:
  - Standardized
  - Reproducible
  - Reusable
  - Modular
  - Collaborative
- Develop consistent analysis/simulation code




#### MUST:

1000- strips




#### MUST2/MUGAST:

2000+ strips

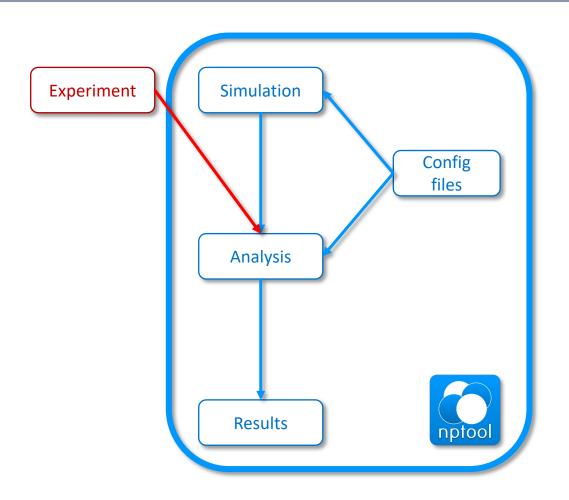


#### **GRIT**:

6000+ strips!



Based on this in 2100 : 20000+ strips!




# What is nptool?

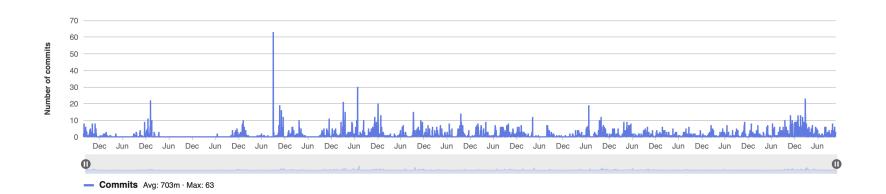


#### nptool is:

- A common framework for nuclear physics experiment
- Based on standard "toolboxes" developed by CERN:
  - Root: Analysis
  - Geant4: Simulation
- Collaborative and open source
- Modular and flexible:
  - Any detector, any setup, any physics...
- Aim at promoting good practices:
  - Framework philosophy
  - Standard code structure
  - Well commented, documented, readable code
  - Tried and tested
  - Validate simulation and analysis together






# nptool v3 successes...



#### nptoolv3 in numbers:

- Since 2008
- MUST2 / GASPARD -> Now > 90 detectors
- 45 contributors
- ~ 5000 commits
- Widely used in europe and in the US/Japan
- Cited in 54 papers







# nptoolv3 limitations...



#### nptool v3 limitations:

- All detectors/event generators in the same repo
  - Problem with push/pull only dev branch
  - You get nptool with all the detectors, especially the one you do not need...
- Compatibility with previous experiments can be easily broken
- Authorship is unclear



#### Nptool v3: https://gitlab.in2p3.fr/np/nptool

- NPLib:
  - Core
  - Physics
  - Detectors (80+)

- NPSimulation:
  - Core
  - Process and EventGenerators
  - Detectors (80+)

Everything on a single repo:

- Detectors
- Event generator...
- All author work on the same nptool...



### nptool v4: Toward a modern framework



nptoolv4 <=> (nptoolv3 core + plugin manager)

- Same method to install all plugins (detectors, unpacker, event generators...):
  - nptool --install grit
  - nptool --install npmfm
  - nptool --install g4-two-body-reaction...
- Example of pros:
  - Detectors analysis/simulation managed by authors/collaboration
  - Duplicate plugins to modify or save them in projects at a moment in time
- New features:
  - Conversion (mfm, faster, mesytec,...)
  - Online monitoring (web based, monitoring on linux, mac and even windows)



nptool v4: https://gitlab.in2p3.fr/nptool/nptool

- Core
- Plugin Manager

Plugins:

MUST2: https://gitlab.in2p3.fr/mugast/must2

MFM unpacker: <a href="https://gitlab.in2p3.fr/valerian.girard-alcindor/npmfm">https://gitlab.in2p3.fr/valerian.girard-alcindor/npmfm</a>

GRIT: https://gitlab.in2p3.fr/valerian.girard-alcindor/grit


AGATA: https://gitlab.infn.it/Simulation/Agata (for illustration only)



# nptoolv4 in the field

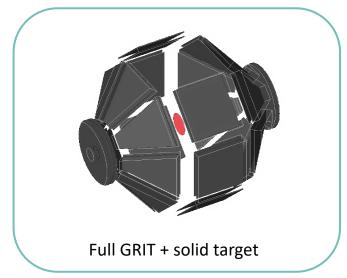








## Introducing the simulation plugin


#### Now let's explain what it actually means to use the v4!

First step, follow the guide:

https://nptool.in2p3.fr/manual-v4/

Then for GRIT specifically I made a git project:

https://gitlab.in2p3.fr/valerian.girard-alcindor/grit\_simu



The main difference, is that one need to install each plugins, for example after cloning the grit simu project, it is required to do:

> nptool --install root, geant4, g4-two-body-reaction, g4-dssd-scorer, grit

Please note that the root and geant4 are the plugins of nptool, one still need an install of root (>6.37 tested) and geant4 (>11.3.2 tested) Also note that the current grit simulation is still in development.\*



<sup>\*</sup>The nptool team provides this software without any express or implied warranties. Use is at your own risk. The authors disclaim all liability for any damages resulting from its use.





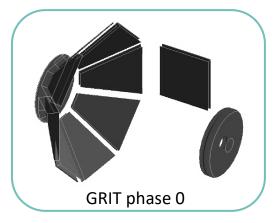


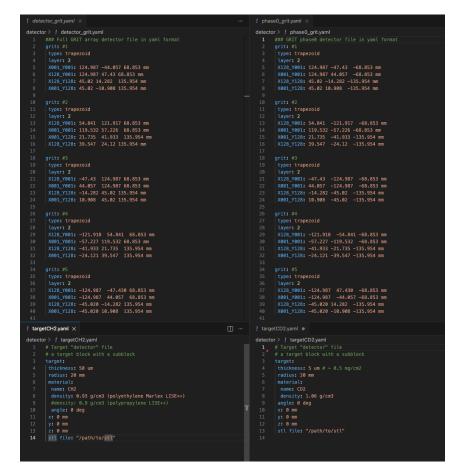


#### The grit project for simulation provides:

A README with detailed instructions








- A README with detailed instructions
- Up to date geometry:
  - Full setup
  - Phase 0
  - CH2 target
  - CD2 target









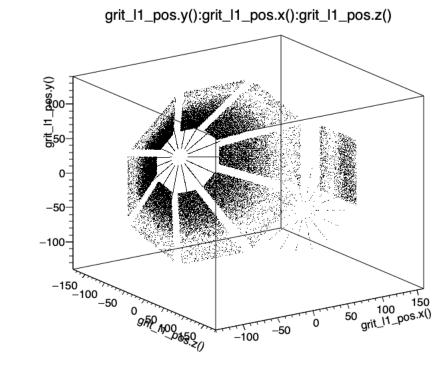






- A README with detailed instructions
- Up to date geometry:
  - Full setup
  - Phase 0
  - CH2 target
  - CD2 target
- Example event generators:
  - Two body reaction (132Sn(d,p) and 24Ne(d,p))
  - source (mono energetic alpha).

```
Sn132dp.yaml ×
                                                                 ! Ne24dp.yaml ×
reaction > ! Sn132dp.yaml
                                                                 reaction > ! Ne24dp.yaml
       Particle: 132Sn
                                                                          Particle: 24Ne
       Energy: 1320 MeV
                                                                          Energy: 192 MeV
       SigmaThetaX: 0.42 deg
                                                                          SigmaThetaX: 0 deg
       SigmaPhiY: 0.42 deg
       MeanThetaX: 0.3 deg
       MeanPhiY: 0 deg
       MeanY: 2.0 mm
                                                                          MeanY: 0 mm
       Target: 2H
                                                                          Target: 2H
       Heavy: 133Sn
      ExcitationEnergyLight: 0.0 MeV
                                                                          ExcitationEnergyLight: 0 MeV
      ExcitationEnergyHeavy: 0.0 MeV
                                                                          ExcitationEnergyHeavy: 0.0 MeV
      CrossSectionPath: reaction/Sn132dp_10AMeV_CS.txt CS
                                                                          CrossSectionPath: reaction/Ne24dp_CS.txt CS
```

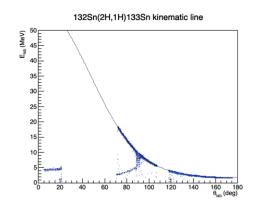


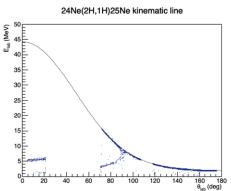


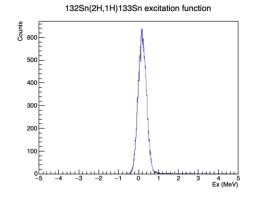


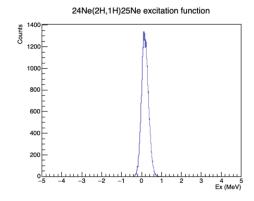


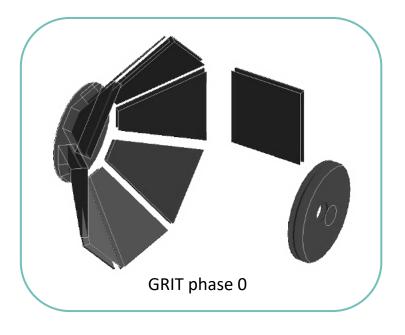

- A README with detailed instructions
- Up to date geometry:
  - Full setup
  - Phase 0
  - CH2 target
  - CD2 target
- Example event generators:
  - Two body reaction (132Sn(d,p)) and 24Ne(d,p)
  - source (mono energetic alpha).
- Simple analysis:
  - Strip matching
  - Position/Angle reconstruction
  - Missing mass
- Simple draw macro:
  - Kinematic lines
  - **Excitation function**





#### **Some first results/simulations:**











#### To do:

- Al dead layers
- Interstrips
- CAD
- Energy loss corrections
- Fix slight mismatch in square detectors





### Conclusion

#### nptool:

- Originally developed to answer the difficulties arising from the analysis and simulation of complex modern nuclear physics
- The v3 reached its limits: the number of users, new challenges in term of open-science and long-term code sustainability
- Simulation now fully working in nptoolv4
- **GRIT simulation** is mostly working and can be used for preliminary simulations for future experiments at GANIL...
- The grit simulation code/project are aimed to be distributed to any users who would like to perform simulation for future proposals
- Please do not hesitate to clone the test project and let me know if you have any issues: Grit simu gitlab





### Conclusion

#### nptool:

- Originally developed to answer the difficulties arising from the analysis and simulation of complex modern nuclear physics
- The v3 reached its limits: the number of users, new challenges in term of open-science and long-term code sustainability
- Simulation now fully working in nptoolv4
- **GRIT simulation** is mostly working and can be used for preliminary simulations for future experiments at GANIL...
- The grit simulation code/project are aimed to be distributed to any users who would like to perform simulation for future proposals
- Please do not hesitate to clone the test project and let me know if you have any issues: Grit simu gitlab

#### THANK YOU FOR YOUR ATTENTION

