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The Standard Model of Particle Physics
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Best description to date of the elementary particle content of the Universe and its interactions.
However ...... many questions remain open.
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Searches for dark matter
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® Presenting you searches developed using ATLAS RLJ:](_;
detector at LHC during Run-2 (and starting Run-3)
e Proton-proton collisions at 13 TeV of energy.
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Dark matter searches at LHC
SM

- M

Due to its small interaction strength with the SM, DM production registered as missing transverse momentum.
Production of dark matter in colliders: SM particles together with large missing transverse momentum.

Signature for production depending on interactions of DM with SM and also DM properties. 6



Dark matter properties and its interactions
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Dark sectors studied at LHC
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https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-23-005/
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https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-23-005/

The Higgs boson and Dark matter

{q h q

Assuming a new baryonic force, new spin-1 Z’ mediator
Connecting SM Higgs boson and DM.
First analysis in Run-2 looking at this final state.
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No BSM connection found and limits put up to 1 TeV for an mz connecting Higgs and DM.


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.112004

The Higgs boson and Dark matter

Extended Higgs sectors appear in several Beyond
Standard Model theories —> 2HDM+a

Search for dark matter production in association to a tW

final state.
Analysis done with a team at IFIC
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https://link.springer.com/article/10.1140/epjc/s10052-023-11582-z
https://reader.elsevier.com/reader/sd/pii/S221268641930161X?token=F3DE4D1C4C9B63D195B88500B6A9EAF81F31618A763D6DB9E9B31F3026FA97A1B1C3F7D9E501279E6B932167082B7E09&originRegion=eu-west-1&originCreation=20220518141736

Dark matter in a complete BSM theory

One of the most attractive and complete theories beyond the Standard Model is supersymmetry.
Spin-symmetry of all the particles of the Standard Model (1/2)—> superparticles.

Key to explain the Higgs boson naturalness problem (theoretical mass in SM divergent)

3rd generation squarks have a key role in SUSY explanation of Higgs mass

Higgsino

Quarks
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https://arxiv.org/pdf/hep-ph/9709356

Dark matter in connection to a complete new BSM sector

Lightest super particle to be stable in minimal SUSY models —> DM

candidate

DM candidates produced as products of squark decays
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https://doi.org/10.1140/epjc/s10052-020-8102-8

Dark matter in connection to a complete new BSM sector

Lightest super particle to be stable in minimal SUSY models —> DM p

candidate
DM candidates produced as products of squark decays

t t production ; t — t ¥ /oWy /bff 7 ; Limits at 95% CL
; i 1 I 1 ] 1 ' 1 | 1 I 1 1 I I l/é‘:‘ ’l', I/./l.' 1 | | S‘ 900
© 1900 ATLAS P _ )
O _ (s=13TeV, 139 b LR _ = 800
o - = 1 R\ _,"_;6‘\/." _ -
ER —  m— gtTals-gr?/'egeL:n:it:(¢1o§,“S") ’ .,{L‘(\'.’é‘/ ~ Cr:f 700
800 === Expected Limit t10,9 .~ - 7 — =
i je - 600

} 500

_ 400

400 300

200

200 : o0

L,
200
m- [GeV]

I 1 1

1000 1

O.I...I...I..

800 1400

Vs=8,13 TeV, 20.3-139 fb™"

1 | I | L l/ I LI 1 ! I
/

N

111 IlllllllllllllllllllllllIllllllllllllll

| S
200 400 600 800

1000 1200
m( t1) [GeV] 0-2 lep. (8 TeV, 20.3 fb™) arXiv:1506.08616

All limits at 95% CL
— Observed
- = Expected

=T, bff ¥,

monojet (13 TeV, 139 fb™) arXiv:2102.10874

=t oty, /bW, /bff )

0lep. (13 TeV, 139 fb™")  arXiv:2004.14060

t, >ty /bW, /bif

1lep. (13 TeV, 139f7")  arXiv:2012.03799

=T, >ty /bWY,

1lep. NN (13 TeV, 139 fb) arXiv:2401.13430

—T,ot¥ /bW, /bff ¥,

2lep. (13 TeV, 139f7")  arXiv:2102.01444

t, >ty /bW, /bff ¥,
>4 jets (13 TeV, 36.1fb™") arXiv:1709.04183
1lep. (13 TeV, 36.1fb") arXiv:1711.11520
2lep. (13 TeV, 36.1fb") arXiv:1708.03247
monojet (13 TeV, 36.1 fb™") arXiv:1711.03301

Y ~0
: t,->ty,
tt spin (13 TeV, 36.1 fb™") arXiv:1903.07570

oty /WY, /bif Y,

14


https://doi.org/10.1140/epjc/s10052-020-8102-8
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2024-014/
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https://link.springer.com/article/10.1007/JHEP05(2021)093

Extension to flavour violating couplings

Flavour violating couplings in the SM —> Possible to have flavour violation in D

the BSM sectors.

Motivated by non-minimal flavour violation SUSY simplified model (Eur. Phys.

|. C78 (2018) 844)

Zero-lepton research combining top-tagging and charm tagging
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https://doi.org/10.1140/epjc/s10052-018-6331-x
https://doi.org/10.1140/epjc/s10052-018-6331-x
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Extension to flavour violating couplings
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Zero-lepton research combining top-tagging and charm tagging p ) :
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Dark matter from ATLAS and CMS
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3
https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-23-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2023-14/
https://cds.cern.ch/record/2924431

Dark matter from other experiments

Direct detection and indirect detection picture didn’t also record any excess of data beyond the

expected backgrounds.
Severe constraints to several original searches.
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3
https://pdg.lbl.gov/2025/reviews/rpp2024-rev-dark-matter.pdf

Future of DM searches: Run-3 and HL-LHC

Partial Run-2
36.1 fb-1

3000 fb-1-

® Dark matter searches

® Higgs factory and Higgs measurements
® R&D of new technologies and usage of

data-intensive techniques.

HL-LHC

20


https://europeanstrategy.cern/european-strategy-for-particle-physics

Dark matter searches at LHC during Run-3

Amplifying final states where dark matter can be motivated by theory.
Recently, interest in more complex dark sectors unconstrained with current results.
e Dark QCD: emerging jets, semi-visible jets etc
e Dark photons, dark Higgs.

¢ | ong-lived particles
®

Old & new 2HDM-+a signatures in type | SM hidden
—~ o e mH 2 5

"

L1
signatures

[llia et al., 2404.05704]

21


https://indico.cern.ch/event/1484411/contributions/6268306/attachments/3020126/5328852/DMWG_BSMworkshop_Feb2025.pdf

A question of flavour

Dark matter models with three generations and couplings with the SM that connect different

quark and DM generations
If couplings between different generations —> flavour violation and additional source of CP

violation.
Coupling mediated by a colored scalar ® carrying the same quantum numbers as quarks.

gdark — (l)?ﬂ)( — M;ﬂ?)() — (ﬂlng,i¢)(j + h. C>
+(D, ) (D) — m2p'h — Vigh, )

A =U,D,  with mediator

D) = diag(Djy 11, Dx 22, D 33) ,

1 0 0 C13 0 8136_i613 C12 3128_2612 0
Uy=10 C23 8236_i623 0 1 0 —8126i612 C19 0
0 —82367’523 C23 —81362513 0 C13 0 0 1
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https://indico.global/event/6518/contributions/53250/attachments/26860/46523/HD2024.pdf
https://doi.org/10.1007/JHEP05(2017)162
https://link.springer.com/article/10.1007/JHEP02(2018)105
https://arxiv.org/abs/2109.10357
https://arxiv.org/abs/2312.09274

A question of flavour

Rich phenomenology and dependent on nature of the interaction and DM particle.
e Couplings to left-handed or right-handed quarks.

Couplings to right-handed quarks Couplings to left-handed quarks

23


https://doi.org/10.1007/JHEP05(2017)162
https://link.springer.com/article/10.1007/JHEP02(2018)105
https://arxiv.org/abs/2109.10357
https://arxiv.org/abs/2312.09274

A question of flavour

Rich phenomenology and dependent on nature of the interaction and DM particle.
e Couplings to left-handed or right-handed quarks.
e Dirac or Majorana behavior of DM particles

Dirac type particle Majorana type particle

7 u,C,t
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https://doi.org/10.1007/JHEP05(2017)162
https://link.springer.com/article/10.1007/JHEP02(2018)105
https://arxiv.org/abs/2109.10357
https://arxiv.org/abs/2312.09274

A question of flavour

Rich phenomenology and dependent on nature of the interaction and DM particle.
e Couplings to left-handed or right-handed quarks.
e Dirac or Majorana behavior of DM particles

These models are currently considering top-flavored
DM —> Lowest mass DM particle is the particle
coupling mainly to the top-quark.

Myij = My (14+n0(Dxrii)* + O(A)) ;5.

Ty
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https://doi.org/10.1007/JHEP05(2017)162
https://link.springer.com/article/10.1007/JHEP02(2018)105
https://arxiv.org/abs/2109.10357
https://arxiv.org/abs/2312.09274

Interest of these models

Several of constraints from DM searches can be lifted

e | ack of signal in direct detection experiments: Cancellation of
contributions via penguin diagrams I Rt I R o I

e Flavour physics: area of parameter space still allowed. S} e ) r

® Freeze-out: two scenarios allowed, either with strong couplings e
(canonical + prompt searches at LHC) or small couplings M

(conversion-driven + long-lived particles) 6 -
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Collider signatures and projections

Generally, these models present gqg+Et™iss collider signatures. Shown that tj+Ermiss and t+Emiss

dedicated searches beat full Run-2 jets+Ermiss and tt+Emiss results.

t

Benchmark

m,y Couplings

Mixing angles

Dy11 =Da22:6012=023=0;0;;=0

RH-SFF 200 GeV D/l’33 = D/l,ll + 1.0 sin913 =0.25
RH-QDF | 150GeV | Das3 =Da11 +02 | sinf3 =0.2
LH-QDFI 150 GeV D,l,33 = D/l,ll + 0.1 sin913 =0.1
LH-QDF2 450 GeV D,l,33 — D/l,ll +0.2 sin613 =0.2

Parameters to scan: m g and D 4 1

DL.H

Dl.ll

Sensitivity study on Dirac models
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Same-sign tt+Ermiss signature
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Other interesting signatures

Majorana models also provide interesting observables:
¢ Including same-sign tt+Ermiss channel.

® Charge asymmetry due to enhanced uu —> ¢o.
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Reinterpretation of ATLAS analysis

Dark matter flavour violation model; Right-handed single flavour freeze-out benchmark

Dark matter flavour violation model; Left-handed quasi-degenerate freeze-out benchma
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Higher sensitivity expected from including monotop
and other tj+Ermiss final states.
Area of the parameter space to explore larger
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Searches for flavour violating dark matter models

Search for these flavour dark matter models in t+Ey™iss and tj+Er™iss final states.
e c-tagging and b-tagging for increased sensitivity.

e Study charge asymmetry in these final states.

® Develop same-sign tt searches in <= 2L final states.
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Beyond Dark Matter searches

Leadership of the ATLAS HQT Exotics sub-group.
Targeting search of BSM resonances in channels with b- and top-quarks.

e Strongly coupled dark matter, hidden valley theories, vector-like quarks, 2HDM...

Measurements of Higgs quartic coupling in bbbbTT final state.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2020-25/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2023-09

——3 tracks

Beyond Dark Matter searches: e
Flavour tagging

Quarks appear as jets of particles in detector ight je
Identification of b-quarks (jets ) crucial for dark matter searches. \ =

During Run-2, flavour tagging in ATLAS performed using a neural
network combining information from low level taggers.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/

Beyond Dark Matter searches: Flavour tagging

Responsible of calibration of taggers during Run-2 and early Run-3
¢ Responsible of the whole calibration group between 2020-2022
Development of dedicated charm-tagger for tc+Emiss analysis.

L(£ 1 . 1 5 i | I LI B I L L I [ I | I LI I LI | I || _ ) — I ) I ) T I [ —
&5 - ATLAS Preliminary s=13TeV, 139 fb" - 0 —  ATLAS Preliminary ® Data =
- " b-jet Calibration with tt Events ’ = 10° = Vs=13.6 TeV, 790 pb”’ tt Powheg+Pythia 8 =
8 1. 1_— DL1r g, = 70 % Single Cut OP o LLJ = 0S B SingleTop tW-chan
D N i 10° = —— N
O - anti-k R:OI;;II EMPF(Ijo: Jletls; tor fotal ) - = eu Diboson =
Y= - ——#—— Measured Scale Factor (total unc. - = B Mis-ID leptons -
"LE 1 05__ Smoothed Scale Factor (total unc.) - 100 B S Urlwcertaif:ty N
-+ — - — —
R - 1 ewmegmEes 0000000 e =
| = - —
@) 1»— -+_ | AN —
- T ﬁ+=‘; \\; _— E
e N :
0.955 -
0.9 — 5 15
- : &
L ] o
i || I | I | I - | L1 11 l L1 1 I | I | I - | | | % 0'5 oI 0 l 0 | 0 I 0 I -

DL1d b-tag bin
p, [GeV] 33


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2021-001/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2022-003

Flavour Tagging in Run-3

During Run-3, flavour tagging performed via a transformer.
Track variables as inputs, encoder and three tasks using output.
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Identification of jets properties

Flavoured models with Majorana particles predict same-sign quarks in final state
Sensitivity limited due to 2L channel for top-charge —> jet charge

Last update since Run-I —> Large room for improvement.

Working in the flavour tagging transformer to also identify the charge of the jets.
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https://cds.cern.ch/record/1572980/files/ATLAS-CONF-2013-086.pdf

Future of DM searches: the high-luminosity phase

Next 20 years of searches in ATLAS dominated by the completion of the HL-LHC upgrade and

analysis of recorded data during high-luminosity phase.
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The high-luminosity phase

Expected 14 TeV and 200 interactions per bunch crossing.
¢ Increased pile-up and radiation damage
e Necessary to upgrade the detectors

improved muon coverage new and upgraded forward
and luminosity detectors

Recorded Luminosity [pb 0.1]

trigger and DAQ
increased readout rates

Recorded Luminosity [pb "0.1]

ITk — the new all-Si tracker

new High-Granularity
Timing Detector (HGTD)
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Motivation to build HL-LHC

Upgrade of the detectors key to keep performances and improve future ones.

In particular, tracker updates and inclusion of timing information allow to reject pileup more
efficiently and preserve performances w.r.t previous runs.
Key for achieving physics objectives of LHC, e.g. measurement of Higgs triplet coupling, more

sensitive DM searches.
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Upgrade of the ATLAS detector

Contribution to the tracker upgrade (ITk).

e \Visual inspection of strip Sensors improved muon coverage new and upgraded forward
and luminosity detectors

trigger and DAQ
increased readout rates

e Software of DESY interacting with the ITk database

Tk — the new all-Si tracker

High-Granularity Timing Detector (HGTD)
e Assembly of detector units (incoming)  «___

" new High-Granularity "
Timing Detector (HGTD) *

N
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Conclusion

Searches for dark matter and SUSY in Run-2 in several sectors and assuming different interactions with the

SM.

e No BSM signal observed. However, story is not over !

Complex BSM sectors, with long-lived particles, dark QCD and additional particles at center of LHC Run-3

Interest in a set of dark matter models with flavour predicting couplings with the SM quarks.

e Constraints by direct detection, relic abundance and flavor physics still allow a significant region of the
parameter space to explore.

e Motivation for searches in final states with jets and top quarks.

® Excess in these channels would not only tell us if DM exists but also if it is Dirac or Majorana.

e Flavour tagging and charge identification key to improve sensitivity.

Stay tuned for results in Run-3!
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Direct detection constraints

Absence of Dark Matter evidence:

e | ack of interaction of DM with 1st generation and 2nd
generation quarks

e Cancellation of contributions via penguin diagrams

Cancellation of interaction cross-section mainly constraints

mixing couplings and strength of interactions
e |n top-flavored model, mixing of 1st and 3rd generation
e Strength of D33 coupling
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Flavour physics constraints

Interaction with different flavors —> flavour mixing measurements
Main constraints on the mixing angles and strength between different DM-SM quark couplings.
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Freeze-out considerations

Different freeze-out scenarios can be considered for these models:
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Canonical freeze-out
Large couplings between DM particles -SM quarks
Large or intermediate mass differences between DM
Prompt particles at LHC.



https://arxiv.org/abs/2312.09274

Freeze-out considerations

Different freeze-out scenarios can be considered for these models:
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Long-lived particles at LHC.


https://arxiv.org/abs/2312.09274

Improvement of c-tagging

GNNs and transformers significantly improved of b-tagging performance in ATLAS!
But not good enough for other jet properties —> c-tagging
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b-jet tagging efficiency C-jet tagging efficiency


https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3
https://cds.cern.ch/record/2811135

The ATLAS detector
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