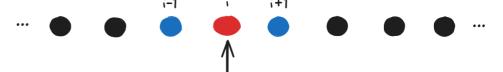


And why would we want to?

Example: Solving massless Klein-Gordon equation, d=1

$$\partial_t^2\phi(i)=\Delta_i^+\Delta_i^-\phi(i)$$

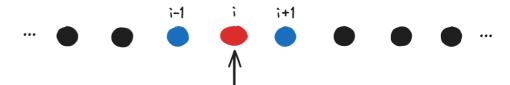


And why would we want to?

Example: Solving massless Klein-Gordon equation, d=1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)



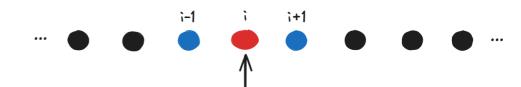
And why would we want to?

Example: Solving massless Klein-Gordon equation, d=1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1



And why would we want to?

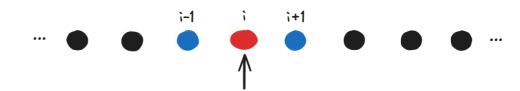
Example: Solving massless Klein-Gordon equation, d=1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

→ Only local information needed (neighbours).



And why would we want to?

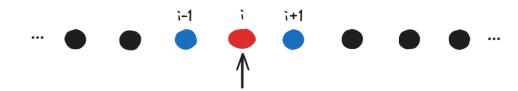
Example: Solving massless Klein-Gordon equation, d = 1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

→ Only local information needed (neighbours).



We could compute all lattice sites independently!

See lecture on Friday!

And why would we want to?

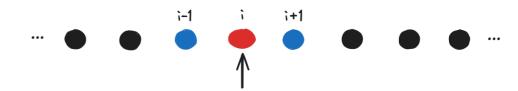
Example: Solving massless Klein-Gordon equation, d = 1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

→ Only local information needed (neighbours).



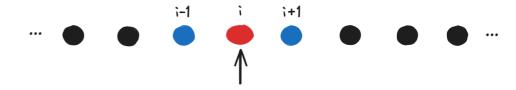
We could compute all lattice sites independently!

See lecture on Friday!

And why would we want to?

Example: Solving massless Klein-Gordon equation, d = 1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$



(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

→ Only local information needed (neighbours).

We could compute all lattice sites independently!

See lecture on Friday!

Less granular: split **Sub-regions** of lattice across many computers (nodes)

simulations requires to split both computation and data across cores.

simulations requires to split both computation and data across cores.

Cores: Nodes (distributed) and Threads (shared).

simulations requires to split both **computation** and **data** across **cores**.

Cores: Nodes (distributed) and Threads (shared).

Type	distributed	shared
Data	split between nodes	shared by all threads
Computation	split between nodes	split between threads

simulations requires to split both computation and data across cores.

speedup =
$$\frac{1}{(1-\alpha) + \frac{\alpha}{n_{\text{max}}}}$$

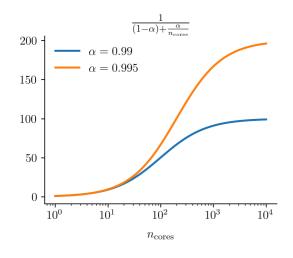
 α = part of the code which runs in parallel $n_{\rm cores}$ = speedup of the parallel part

CosmoLattice: $\alpha \geq 0.99$ (see manual)

Parallelization

of CosmoLattice

simulations requires to split both computation and data across cores.



$$ext{speedup} = rac{1}{(1-lpha) + rac{lpha}{n_{ ext{cores}}}}$$

CosmoLattice: $lpha \gtrsim 0.99$ (see manual)

lpha = part of the code which runs in parallel $n_{
m cores}$ = speedup of the parallel part

And why would we want to?

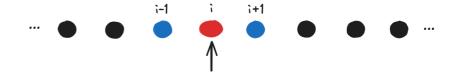
Example: Solving massless Klein-Gordon equation, d=1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

- → Only local information needed (neighbours).
- → Each site can be updated independently.



And why would we want to?

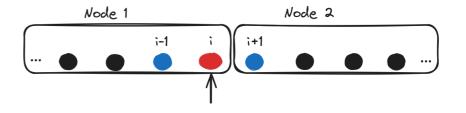
Example: Solving massless Klein-Gordon equation, d=1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

- → Only local information needed (neighbours).
- → Each site can be updated independently.



And why would we want to?

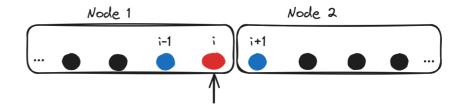
Example: Solving massless Klein-Gordon equation, d=1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

- → Only local information needed (neighbours).
- → Each site can be updated independently.



Problem: Data is missing on node 1

And why would we want to?

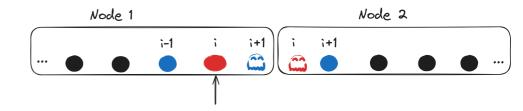
Example: Solving massless Klein-Gordon equation, d=1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

- → Only local information needed (neighbours).
- → Each site can be updated independently.



Solution: Use ghosts.

Ghosts are local copies of data on other nodes.

And why would we want to?

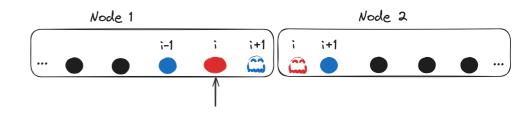
Example: Solving massless Klein-Gordon equation, d=1

$$egin{aligned} \partial_t \pi(i) &= \Delta_i^+ \Delta_i^- \phi(i) \,, \ \partial_t \phi(i) &= \pi(i) \,. \end{aligned}$$

(Leapfrog scheme.)

Stencil of update for **one** lattice site is s = 1

- → Only local information needed (neighbours).
- → Each site can be updated independently.



Solution: Use ghosts.

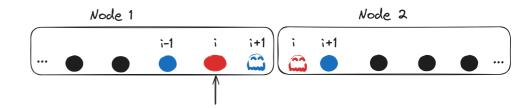
Ghosts are local copies of data on other nodes.

Need to update ghosts after every time-step.

The standard for communication in distributedmemory applications:

Message Passing Interface (MPI)

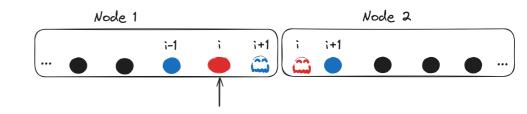
Exchange ghost data between **nodes** over the **network** automatically if anything changes.



The standard for communication in distributedmemory applications:

Message Passing Interface (MPI)

Exchange ghost data between **nodes** over the **network** automatically if anything changes.

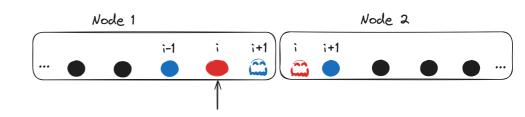


CosmoLattice does this automatically under the hood!

The standard for communication in distributedmemory applications:

Message Passing Interface (MPI)

Exchange ghost data between **nodes** over the **network** automatically if anything changes.



CosmoLattice does this automatically under the hood!

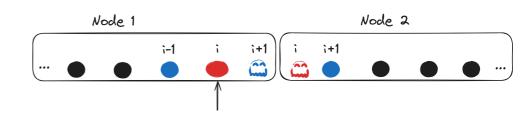
How to turn it on?

```
$ cd build/
$ cmake -DMPI=ON ..
$ make
$ mpirun -n 16 ./lphi4 input=./lphi4.in
```

The standard for communication in distributedmemory applications:

Message Passing Interface (MPI)

Exchange ghost data between **nodes** over the **network** automatically if anything changes.



CosmoLattice does this automatically under the hood!

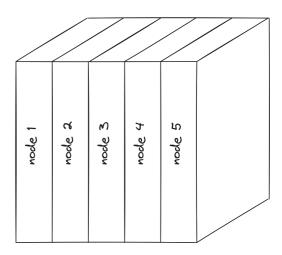
How to turn it on?

```
$ cd build/
$ cmake -DMPI=ON ..
$ make
$ mpirun -n 16 ./lphi4 input=./lphi4.in
```

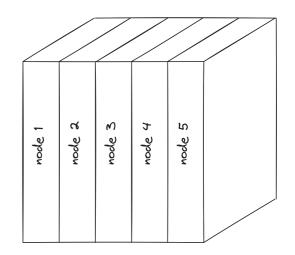
You may need to install fftw3 with MPI support.

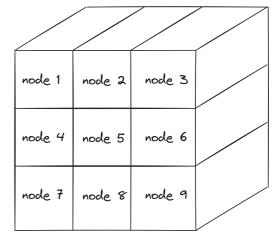
```
$ sudo apt-get install libfftw3-mpi-dev
```

• **FFTW** supports parallelization along 1 direction.

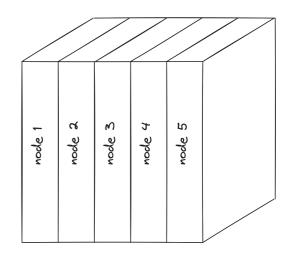


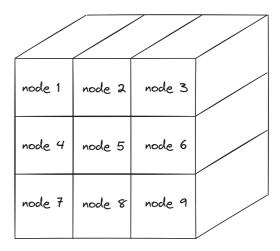
- **FFTW** supports parallelization along 1 direction.
- Improved scaling for many nodes: PFFT allows for parallelization in any dimensions.





- **FFTW** supports parallelization along 1 direction.
- Improved scaling for many nodes: PFFT allows for parallelization in any dimensions.
- To keep data transfer due to ghost exchange manageable, parallelization along d-1 directions.





- **FFTW** supports parallelization along 1 direction.
- Improved scaling for many nodes: PFFT allows for parallelization in any dimensions.
- To keep data transfer due to ghost exchange manageable, parallelization along d-1 directions.

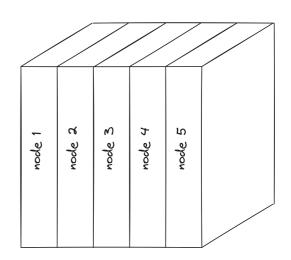
1D

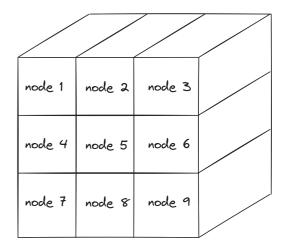
 $N = n_p * m$

N = 50

2D

$$N = n_p^{(1)} * m \ = n_p^{(2)} * m$$





- **FFTW** supports parallelization along 1 direction.
- Improved scaling for many nodes: PFFT allows for parallelization in any dimensions.
- To keep data transfer due to ghost exchange manageable, parallelization along d-1 directions.

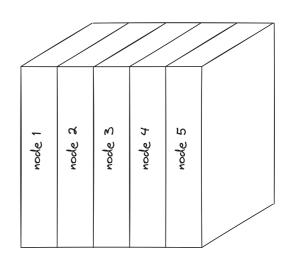
1D

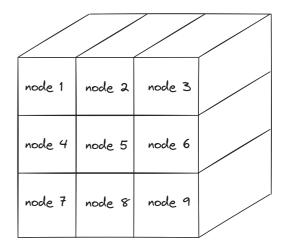
 $N = n_p * m$

N = 50

2D

$$N = n_p^{(1)} * m \ = n_p^{(2)} * m$$





- **FFTW** supports parallelization along 1 direction.
- Improved scaling for many nodes: PFFT allows for parallelization in any dimensions.
- To keep data transfer due to ghost exchange manageable, parallelization along d-1 directions.

1D

 $N=n_p*m$

N=50

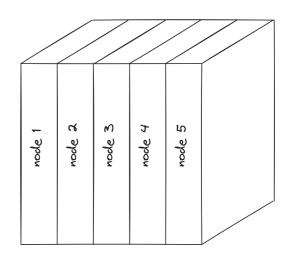
 $egin{aligned} N &= n_p^{(1)} * m \ &= n_p^{(2)} * m \end{aligned}$

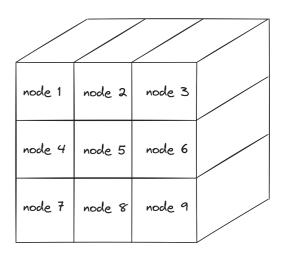
2D

Maximum parallelization

25 nodes.

 $25^2 = 625$ nodes.





- **FFTW** supports parallelization along 1 direction.
- Improved scaling for many nodes: PFFT allows for parallelization in any dimensions.
- To keep data transfer due to ghost exchange manageable, parallelization along d-1 directions.

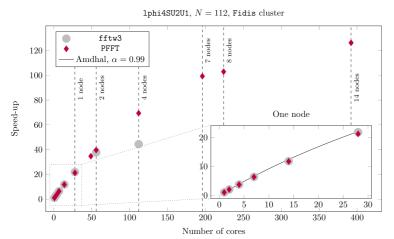
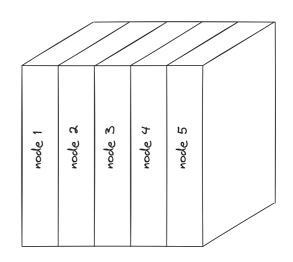
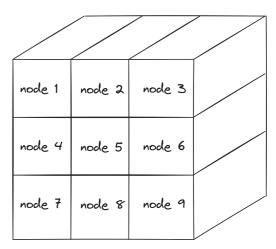


Figure 3: Speed up factor in parallelized simulations as a number of cores (tested on the Gacrux cluster from the EPFL HPC center SCITAS, Switzerland).

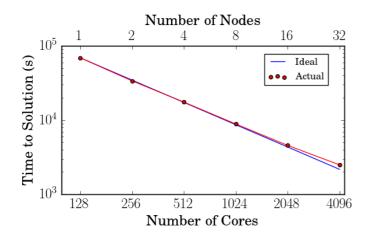


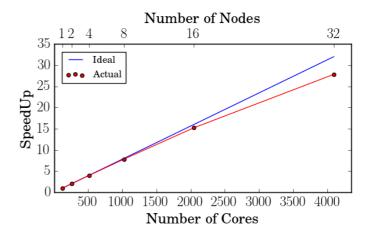


Going to larger clusters

Strong scaling

(same lattice size, more cores)

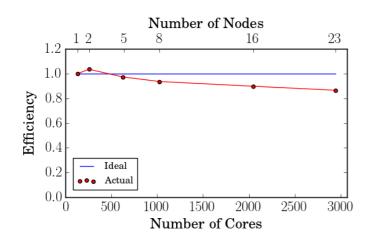


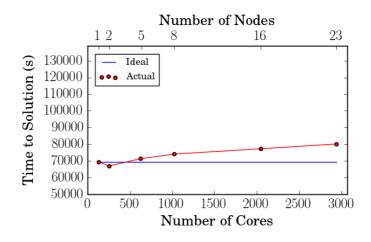


Going to larger clusters

Weak scaling

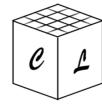
(lattice size ~ cores)

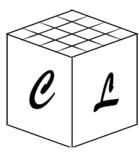




Questions?

Tomorrow: Shared-memory parallelization with GPUs.





Current computers can be broadly said to have two main

processing units:

Current computers can be broadly said to have two main

processing units: CPUs (central processing units)

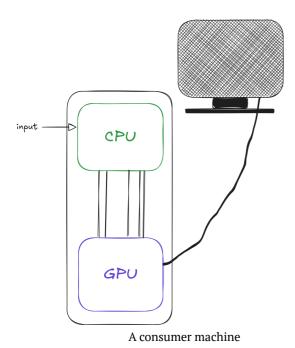
Current computers can be broadly said to have two main

processing units: CPUs (central processing units) and GPUs (graphical processing units)

Current computers can be broadly said to have two main

processing units: CPUs (central processing units) and GPUs (graphical processing units)

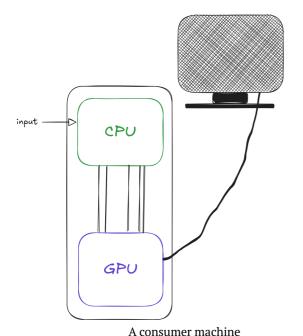
CPUs: for OS, computation, general applications. GPUs: dedicated just for video and graphics applications.



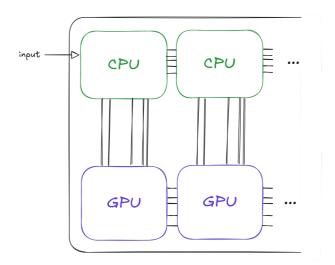
Current computers can be broadly said to have two main

processing units: CPUs (central processing units) and GPUs (graphical processing units)

CPUs: for OS, computation, general applications. GPUs: dedicated just for video and graphics applications.



Current (heterogeneous) clusters have both CPUs and GPUs for computations.



A typical heterogeneous computing cluster

Lattice points independently computed & updated \rightarrow Limit of threads is number of lattice sites!

Lattice points independently computed & updated → Limit of threads is number of lattice sites!

■ AMD EPYC 7763: **64**

■ Intel Xeon 6148 (Skylake): **20**

AMD Ryzen 9 7945HX: 16

	CPU	GPU	
Cores/Node	$\mathcal{O}(10-100)$	$\mathcal{O}(10000)$	 Nvidia H100: ~15000 Nvidia 4070 RTX mobile: ~5000
Clock speed	~ 3 GHz	~ 1.5 GHz	

Lattice points independently computed & updated \rightarrow Limit of threads is number of lattice sites!

CDII

		CPU	GPU	
AMD EPYC 7763: 64Intel Xeon 6148 (Skylake): 20	Cores/Node	$\mathcal{O}(10-100)$	$\mathcal{O}(10000)$	 Nvidia H100: ~15000 Nvidia 4070 RTX mobile: ~5000
■ AMD Ryzen 9 7945HX: 16	Clock speed	~ 3 GHz	~ 1.5 GHz	

CDII

CPU: Low parallelization, high clock speed

GPU: High parallelization, moderate clock speed

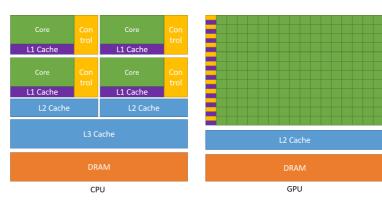
 \rightarrow CosmoLattice on GPUs has the potential for *massive parallelism* with $\gg 10^5$ simultaneous operations.

Lattice points independently computed & updated → Limit of threads is number of lattice sites!

	CPU	GPU
Cache/Thread	64KB / 16MB	1KB
Local Cache	64MB	256KB / 50MB

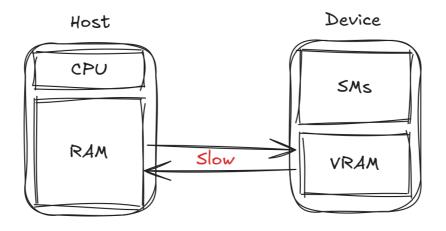
CPU: Thread-constrained

GPU: Memory-constrained

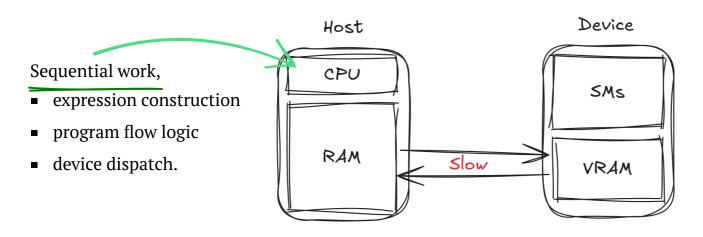


Hardware layouts [docs.nvidia.com]

Device-centric programming.



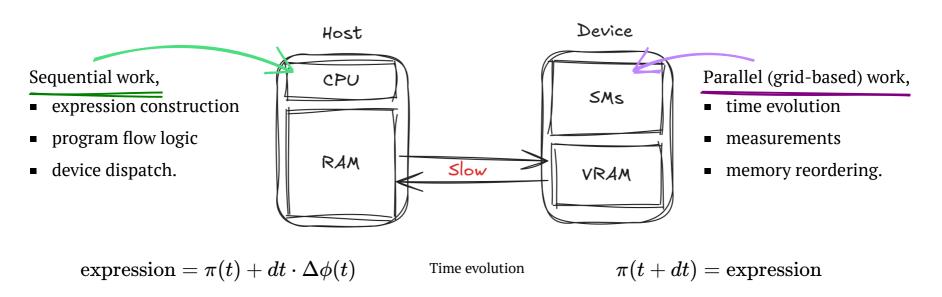
Device-centric programming.



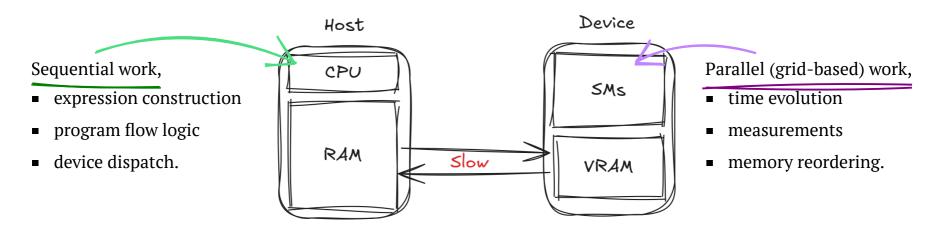
expression =
$$\pi(t) + dt \cdot \Delta \phi(t)$$

Time evolution

Device-centric programming.



Device-centric programming.



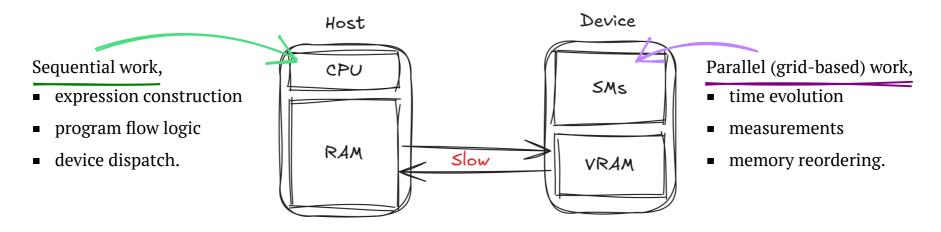
$$\text{expression} = \pi(t) + dt \cdot \Delta \phi(t)$$

Time evolution

$$\pi(t+dt) = \text{expression}$$

Maximum

Device-centric programming.



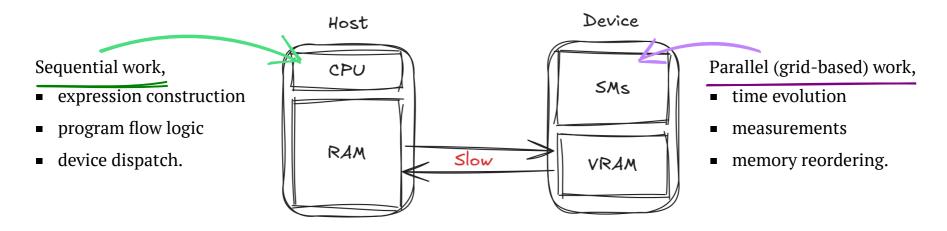
$$\text{expression} = \pi(t) + dt \cdot \Delta \phi(t)$$

Time evolution

 $\pi(t+dt) = \text{expression}$

device::iteration::reduce("Maximum", functor, maximum);

Device-centric programming.



Standard C++ on CPU

Hardware-dependent

Nvidia: CUDA

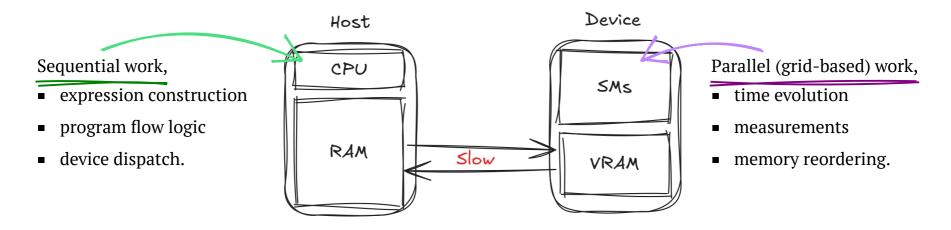
AMD: ROCM

Intel: SYCL

shared-memory CPUs

FPGAs

Device-centric programming.



Standard C++ on CPU

Backends

- Kokkos
- *Sequential STL (2020/2023)*
- **...**

Abstracted away in TempLat

- device::iterate::foreach
- device::iterate::reduce
- device::memory::copyHostToDevice
- ...

No, but...

No, but...

Model file

```
public:

MODELNAME(ParameterParser &parser, RunParameters<double> &runPar,

std::shared_ptr<MemoryToolBox> toolBox)

...
```

No, but...

Model file

```
public:
    static constexpr size_t NDim = Model<MODELNAME>::NDim;

MODELNAME(ParameterParser &parser, RunParameters<double> &runPar,
    std::shared_ptr<MemoryToolBox<NDim>> toolBox)
...
```

No, but...

Model file

```
public:
    static constexpr size_t NDim = Model<MODELNAME>::NDim;

MODELNAME(ParameterParser &parser, RunParameters<double> &runPar,
    std::shared_ptr<MemoryToolBox<NDim>> toolBox)
...
```

```
vType computeConfigurationSpace() {
vType localResult{};

auto& it = mT.getToolBox()->itX();
for(it.begin();it.end();++it)

{
const ptrdiff_t i = it();
localResult += GetValue::get(mT,i);
}

return mWorkspace;
}
```

No, but...

Model file

```
public:
    static constexpr size_t NDim = Model<MODELNAME>::NDim;

MODELNAME(ParameterParser &parser, RunParameters<double> &runPar,
    std::shared_ptr<MemoryToolBox<NDim>> toolBox)
...
```

No, but...

Model file

```
public:
    static constexpr size_t NDim = Model<MODELNAME>::NDim;

MODELNAME(ParameterParser &parser, RunParameters<double> &runPar,
    std::shared_ptr<MemoryToolBox<NDim>> toolBox)
...
```

Building

Cosmolattice up to now:

```
1 $ cmake ... -DMODEL=lphi4
2 ...
```

No, but...

Model file

```
public:
    static constexpr size_t NDim = Model<MODELNAME>::NDim;

MODELNAME(ParameterParser &parser, RunParameters<double> &runPar,
    std::shared_ptr<MemoryToolBox<NDim>> toolBox)
...
```

Building

New version: CUDA is detected automatically:

```
1 $ cmake ... -DMODEL=lphi4
2 ...
```

No, but...

Model file

```
public:
    static constexpr size_t NDim = Model<MODELNAME>::NDim;

MODELNAME(ParameterParser &parser, RunParameters<double> &runPar,
    std::shared_ptr<MemoryToolBox<NDim>> toolBox)
...
```

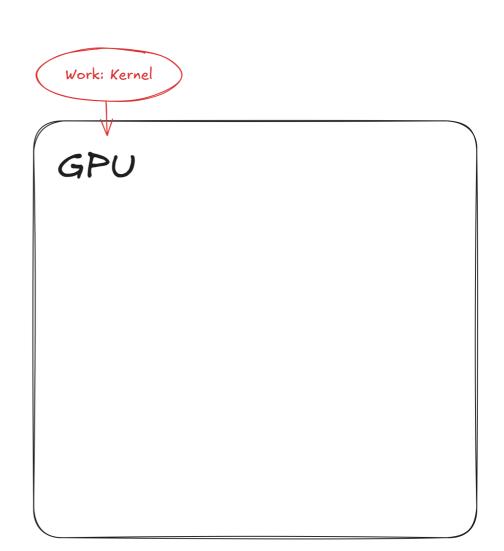
Building

Granular control: shared memory OpenMP through Kokkos

```
1 $ cmake .. -DMODEL=lphi4 -DDEVICE=KOKKOS -DCUDA=OFF
2 ...
```

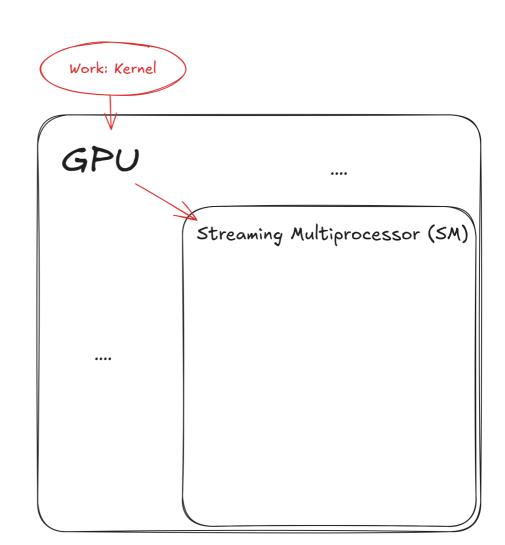
For "average" user:

Only minimal changes

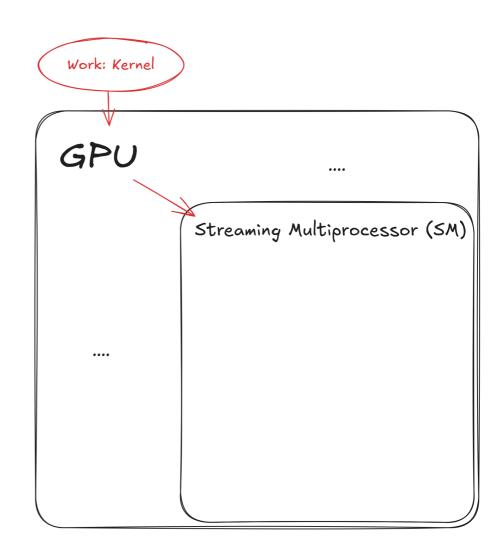


GPU thread hierarchy

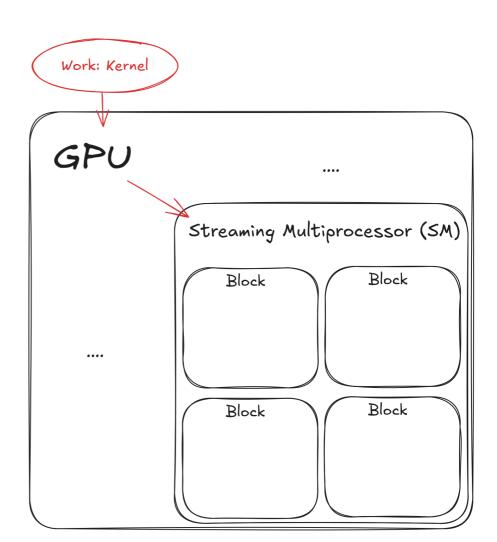
• GPUs have $\mathcal{O}(10)$ *Streaming multiprocessors*.



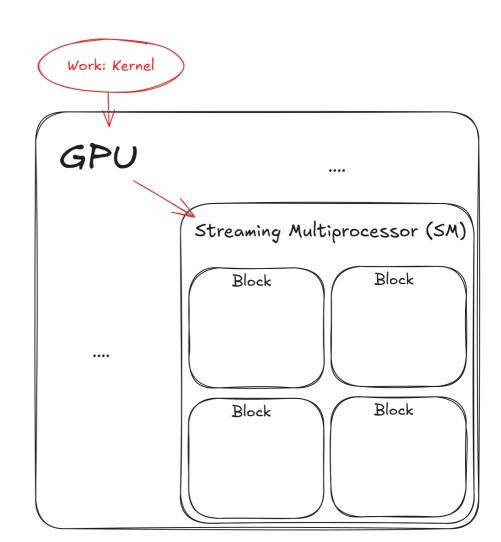
- GPUs have $\mathcal{O}(10)$ Streaming multiprocessors.
 - SMs execute *kernels* with series of parallel instructions.
 - SMs schedule their execution.



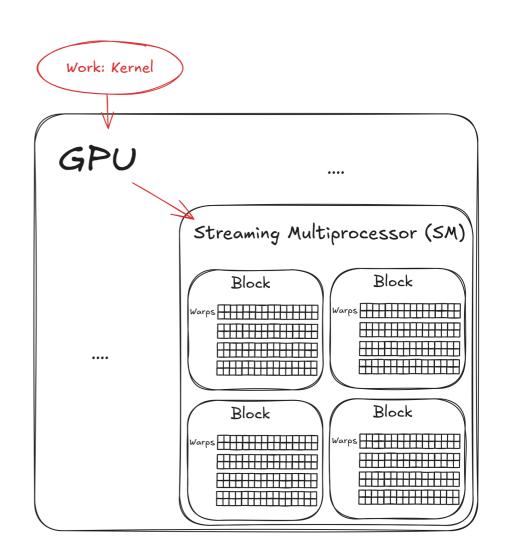
- GPUs have $\mathcal{O}(10)$ *Streaming multiprocessors*.
 - SMs execute *kernels* with series of parallel instructions.
 - SMs schedule their execution.
- Work given to SMs in blocks.



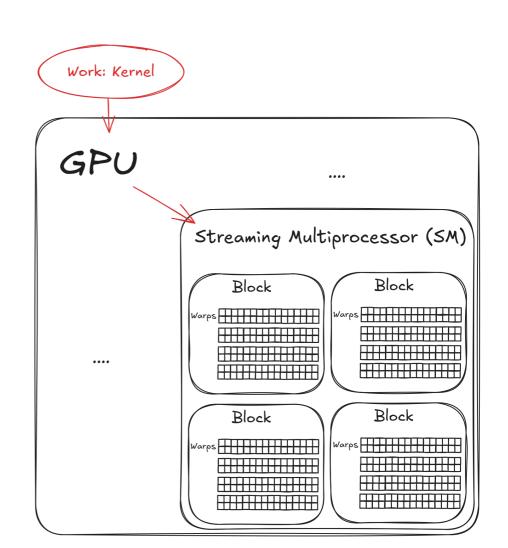
- GPUs have $\mathcal{O}(10)$ *Streaming multiprocessors*.
 - SMs execute *kernels* with series of parallel instructions.
 - SMs schedule their execution.
- Work given to SMs in blocks.
 - A block has to fit onto a SM's hardware capabilities
 (~1024 threads/block).
 - Each block's (sub-)contexts are persistent throughout its execution.



- GPUs have $\mathcal{O}(10)$ *Streaming multiprocessors*.
 - SMs execute *kernels* with series of parallel instructions.
 - SMs schedule their execution.
- Work given to SMs in blocks.
 - A block has to fit onto a SM's hardware capabilities
 (~1024 threads/block).
 - Each block's (sub-)contexts are persistent throughout its execution.
- Internally, blocks are subdivided into warps.



- GPUs have $\mathcal{O}(10)$ *Streaming multiprocessors*.
 - SMs execute kernels with series of parallel instructions.
 - SMs schedule their execution.
- Work given to SMs in blocks.
 - A block has to fit onto a SM's hardware capabilities
 (~1024 threads/block).
 - Each block's (sub-)contexts are persistent throughout its execution.
- Internally, blocks are subdivided into warps.
 - Each warp runs a single instruction in a *kernel* in parallel.
 - Warp size is always 32 for Nvidia, 32 or 64 for AMD.

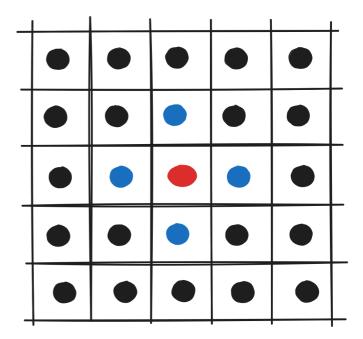


Coalescing vs. sequential access

Example: Solving massless Klein-Gordon equation in d=3,

$$\partial_t^2 \phi(t,x) = \Delta \phi(t,x)$$
 .

- Calculation of 1 thread at red site.
- Blue sites dependents for lattice Laplacian.



Coalescing vs. sequential access

Example: Solving massless Klein-Gordon equation in d=3,

$$\partial_t^2 \phi(t,x) = \Delta \phi(t,x)$$
 .

- Calculation of 1 thread at red site.
- Blue sites dependents for lattice Laplacian.

What is the optimal way to iterate over sites?

	•	

Coalescing vs. sequential access

Example: Solving massless Klein-Gordon equation in d=3,

$$\partial_t^2\phi(t,x)=\Delta\phi(t,x)\,.$$

- Calculation of 1 thread at red site.
- Blue sites dependents for lattice Laplacian.
- Memory is ordered row-major.

What is the optimal way to iterate over sites?

1	2	3	4	5
6	7	8	9	10
11	12	13	19	15
16	17	18	19	20
21	22	23	24	25

Coalescing vs. sequential access

Example: Solving massless Klein-Gordon equation in d=3,

$$\partial_t^2 \phi(t,x) = \Delta \phi(t,x)$$
 .

- Calculation of 1 thread at red site.
- Blue sites dependents for lattice Laplacian.
- Memory is ordered row-major.

What is the optimal way to iterate over sites?

				<u> </u>
1	2	3	4	5
6	7	\$	9	10
11	12	13	1900000	15
16	17	18	19	20
21	22	23	24	25
	11 16	6 7 11 12	6 7 8 11 12 13 16 17 18	6 7 8 9 11 12 13 19 16 17 18 19

CPU: Cashed access pattern allows for caching of subsequent operations of a single thread.

Coalescing vs. sequential access

Example: Solving massless Klein-Gordon equation in d=3,

$$\partial_t^2 \phi(t,x) = \Delta \phi(t,x)$$
 .

- Calculation of 1 thread at red site.
- Blue sites dependents for lattice Laplacian.
- Memory is ordered row-major.

10 16 20 25 22 21 23 24

What is the optimal way to iterate over sites?

CPU: Cashed access pattern allows for caching of subsequent operations of a single thread.

GPU: Coalesced access pattern allows for simultaneous reading of memory for multiple threads.

Coalescing vs. sequential access

Example: Solving massless Klein-Gordon equation in d=3,

$$\partial_t^2\phi(t,x)=\Delta\phi(t,x)\,.$$

- Calculation of 1 thread at red site.
- Blue sites dependents for lattice Laplacian.
- Memory is ordered row-major.

Warp 10 Warp Warp 20 Warp 25 22 24 23 Warp

What is the optimal way to iterate over sites?

CPU: Cashed access pattern allows for caching of subsequent operations of a single thread.

GPU: Coalesced access pattern allows for simultaneous reading of memory for multiple threads.

This is similar to vectorization on a CPU!

SIMD (Single Instruction, Multiple Data) vs **SIMT** (Single Instruction, Multiple Threads)

Memory access patterns

Coalesced vs. cached access

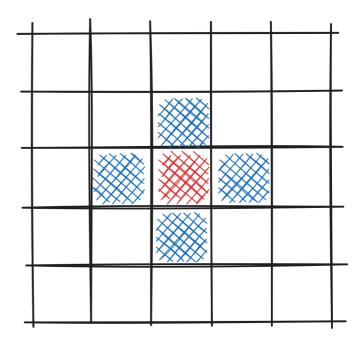
Example: Solving massless Klein-Gordon equation in d=3,

$$\partial_t^2 \phi(t,x) = \Delta \phi(t,x)$$
 .

- Calculation of 1 thread at red site.
- Blue sites dependents for lattice Laplacian.
- Memory is ordered row-major.

CPU: Prefer prefer row-major access pattern.

GPU: Prefer column-major access pattern.



How does this perform in vivo?

```
1 #define FORCE ACCESS PATTERN 0 // or 1
 2 ...
 4 int main(int argc, char **argv)
 5 {
      constexpr size t NDim = 3;
     using T = double;
     constexpr size t nGrid = 512;
9
     constexpr size t nGhost = 1;
      constexpr size_t nSteps = 512;
      constexpr T dt = 0.01;
      . . .
      Field<NDim, T> phi("phi", toolBox);
14
      Field<NDim, T> pi("pi", toolBox);
      Benchmark bench([&](Benchmark::Measurer &measurer) {
        phi.inFourierSpace() = RandomGaussianField<NDim, T>("Rand", toolBox);
        pi.inFourierSpace() = RandomGaussianField<NDim, T>("Rand2", toolBox);
        for (size_t i = 0; i < nSteps; ++i) {</pre>
          pi.updateGhosts();
          device::iteration::fence();
          measurer.measure("timestepping", [&]() {
24
            pi = pi + dt * LatticeLaplacian<NDim, decltype(phi)>(phi); // kick
            phi = phi + dt * pi;
            device::iteration::fence();
```

```
for (size_t i = 0; i < nSteps; ++i) {
    pi.updateGhosts();
    device::iteration::fence();
    measurer.measure("timestepping", [&]() {
        pi = pi + dt * LatticeLaplacian<NDim, decltype(phi)>(phi); // kick
        phi = phi + dt * pi; // drift
        device::iteration::fence();
    });
}
```

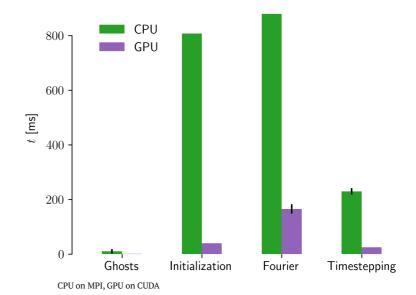
Running this on my PC:

GPU: Nvidia 4070RTX mobile - 4788 Cores @ 2.175 GHz

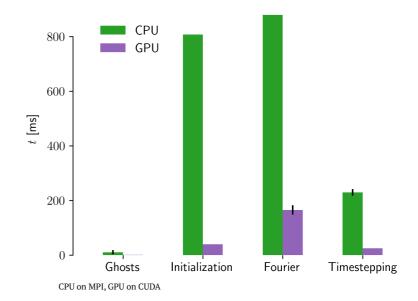
CPU: Ryzen 9 7945HX - 16 Cores @ 5.4GHz

```
Benchmark bench([&](Benchmark::Measurer &measurer) {
 measurer.measure("x->k fourier", [&]() {
   phi.getMemoryManager()->confirmFourierSpace();
   pi.getMemoryManager()->confirmFourierSpace();
 measurer.measure("initialize field", [&]() {
   phi.inFourierSpace() = RandomGaussianField<NDim, T>("Hoi", toolBox);
   pi.inFourierSpace() = RandomGaussianField<NDim, T>("Hai", toolBox);
 measurer.measure("k->x fourier", [&]() {
   phi.getMemoryManager()->confirmConfigSpace();
   pi.getMemoryManager()->confirmConfigSpace();
  for (size_t i = 0; i < nSteps; ++i) {</pre>
    measurer.measure("ghosts", [&]() {
     pi.updateGhosts();
     device::iteration::fence();
    measurer.measure("timestepping", [&]() {
     pi = pi + dt * LatticeLaplacian<NDim, decltype(phi)>(phi);
```

```
Benchmark bench([&](Benchmark::Measurer &measurer) {
 measurer.measure("x->k fourier", [&]() {
   phi.getMemoryManager()->confirmFourierSpace();
    pi.getMemoryManager()->confirmFourierSpace();
 measurer.measure("initialize field", [&]() {
   phi.inFourierSpace() = RandomGaussianField<NDim, T>("Hoi", toolBox);
    pi.inFourierSpace() = RandomGaussianField<NDim, T>("Hai", toolBox);
 measurer.measure("k->x fourier", [&]() {
    phi.getMemoryManager()->confirmConfigSpace();
   pi.getMemoryManager()->confirmConfigSpace();
 for (size_t i = 0; i < nSteps; ++i) {</pre>
    measurer.measure("ghosts", [&]() {
     pi.updateGhosts();
     device::iteration::fence();
    measurer.measure("timestepping", [&]() {
     pi = pi + dt * LatticeLaplacian<NDim, decltype(phi)>(phi);
```

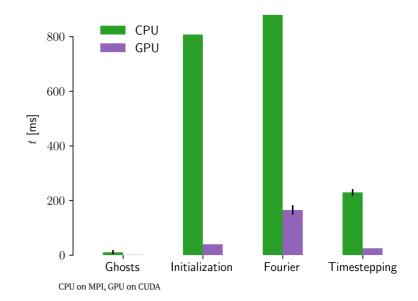


```
Benchmark bench([&](Benchmark::Measurer &measurer) {
 measurer.measure("x->k fourier", [&]() {
   phi.getMemoryManager()->confirmFourierSpace();
    pi.getMemoryManager()->confirmFourierSpace();
 measurer.measure("initialize field", [&]() {
   phi.inFourierSpace() = RandomGaussianField<NDim, T>("Hoi", toolBox);
    pi.inFourierSpace() = RandomGaussianField<NDim, T>("Hai", toolBox);
 measurer.measure("k->x fourier", [&]() {
    phi.getMemoryManager()->confirmConfigSpace();
    pi.getMemoryManager()->confirmConfigSpace();
  for (size_t i = 0; i < nSteps; ++i) {</pre>
    measurer.measure("ghosts", [&]() {
     pi.updateGhosts();
     device::iteration::fence();
    measurer.measure("timestepping", [&]() {
     pi = pi + dt * LatticeLaplacian<NDim, decltype(phi)>(phi);
```

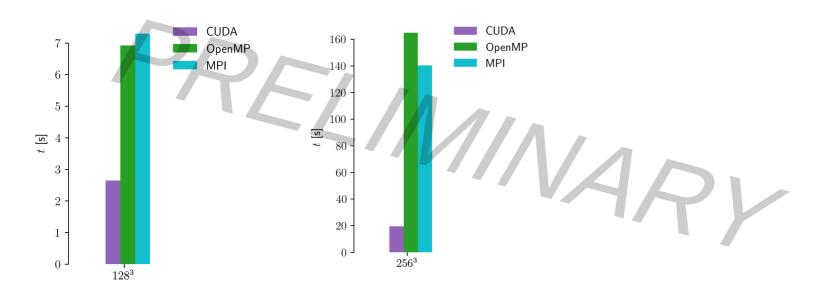


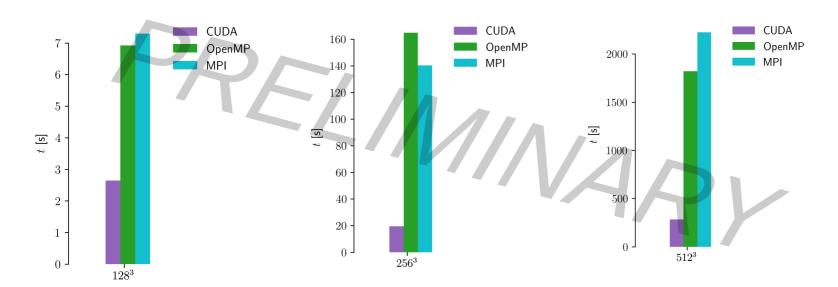
 Fourier transformation: cuFFT (automatic switch to GPU native FFTs)

```
Benchmark bench([&](Benchmark::Measurer &measurer) {
 measurer.measure("x->k fourier", [&]() {
   phi.getMemoryManager()->confirmFourierSpace();
    pi.getMemoryManager()->confirmFourierSpace();
 measurer.measure("initialize field", [&]() {
   phi.inFourierSpace() = RandomGaussianField<NDim, T>("Hoi", toolBox);
    pi.inFourierSpace() = RandomGaussianField<NDim, T>("Hai", toolBox);
 measurer.measure("k->x fourier", [&]() {
    phi.getMemoryManager()->confirmConfigSpace();
    pi.getMemoryManager()->confirmConfigSpace();
  for (size_t i = 0; i < nSteps; ++i) {</pre>
    measurer.measure("ghosts", [&]() {
     pi.updateGhosts();
     device::iteration::fence();
    measurer.measure("timestepping", [&]() {
     pi = pi + dt * LatticeLaplacian<NDim, decltype(phi)>(phi);
```

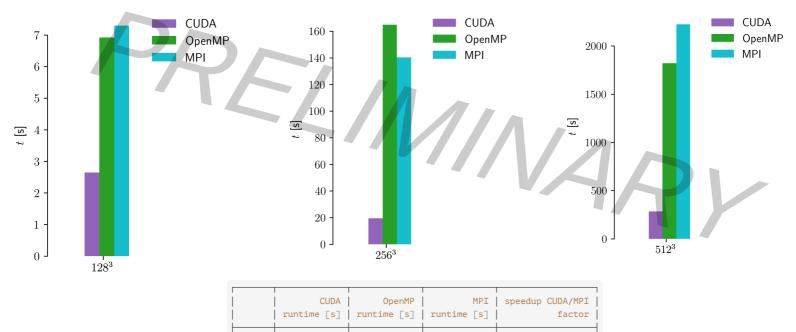


 Fourier transformation: cuFFT (automatic switch to GPU native FFTs)





with the lphi4 model in CosmoLattice



6.9

164.9

1820.6

7.3

140.4

2224.7

2.6

19.5

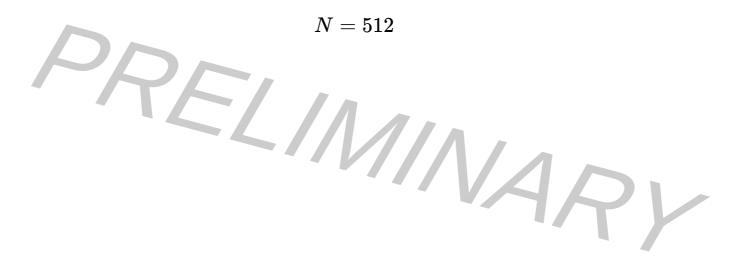
283.1

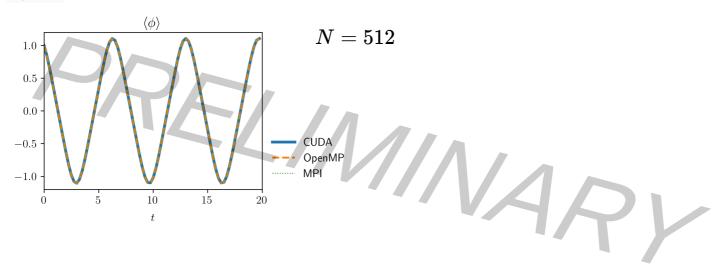
N=128

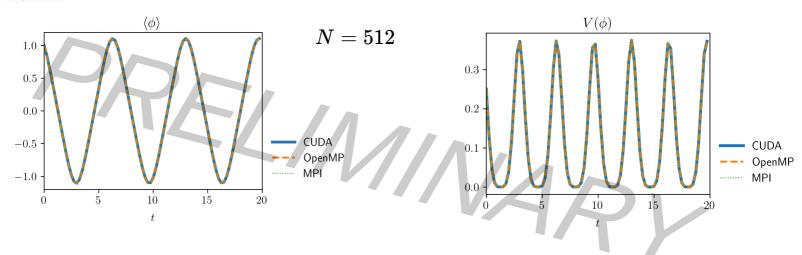
N=256

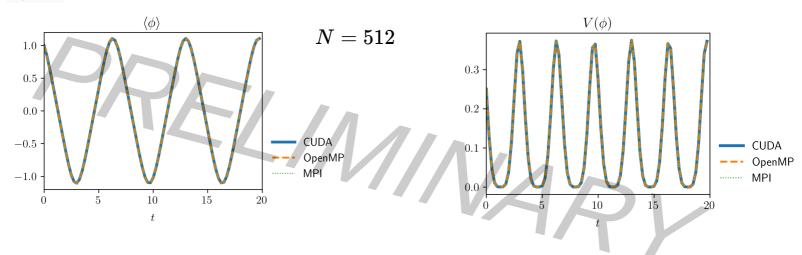
N=512

2.8	
7.2	Slightly unfair comparison
7.9	(my CPU is "stronger")
	(III) Gro is stitlinger)





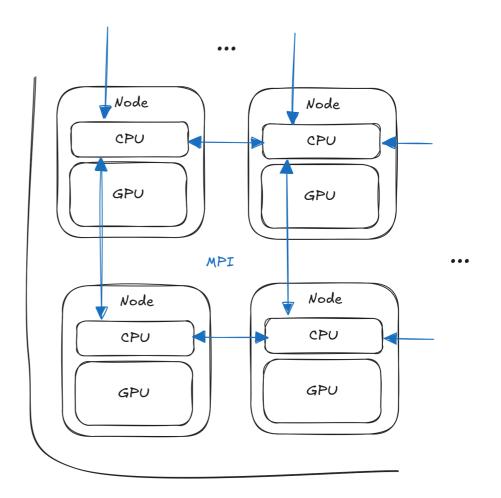




Scaling it up

Using large GPU clusters

- To use large clusters and link up many nodes,
 CosmoLattice uses the Message-Passing
 Interface (MPI) (see lecture yesterday).
- Send data in RAM (e.g. ghosts) between neighbouring nodes.

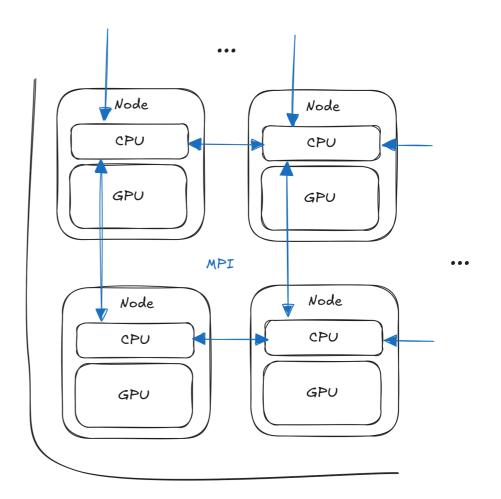


Scaling it up

Using large GPU clusters

- To use large clusters and link up many nodes,
 CosmoLattice uses the Message-Passing
 Interface (MPI) (see lecture yesterday).
- Send data in RAM (e.g. ghosts) between neighbouring nodes.

What about MPI+GPUs?



Scaling it up

Using large GPU clusters

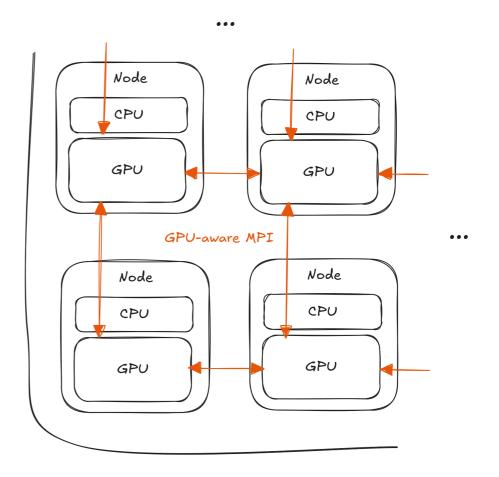
- To use large clusters and link up many nodes,
 CosmoLattice uses the Message-Passing
 Interface (MPI) (see lecture yesterday).
- Send data in RAM (e.g. ghosts) between neighbouring nodes.

What about MPI+GPUs?

 GPU-aware MPI can exchange data directly between device memory.

Support since before 2013:

- OpenMPI
- MVAPICH2
- Cray MPI
- IBM MPI
- No changes in MPI-code! except in FFT code...



Useful, more fine-grained parallelization for even more speedup in the future:

Useful, more fine-grained parallelization for even more speedup in the future:

Hierarchical parallelism.

split complex tasks into smaller work-teams with the potential for caching

Useful, more fine-grained parallelization for even more speedup in the future:

Hierarchical parallelism.
 split complex tasks into smaller work-teams with the potential for caching

Block- and Warp- local caching.
 reduce the number of repeated operations

Useful, more fine-grained parallelization for even more speedup in the future:

- Hierarchical parallelism.
 split complex tasks into smaller work-teams with the potential for caching
- Block- and Warp- local caching.
 reduce the number of repeated operations
- Heterogeneous work-balancing.
 e.g. use CPU for measurements while the GPU continues evolving

Useful, more fine-grained parallelization for even more speedup in the future:

Hierarchical parallelism.
 split complex tasks into smaller work-teams with the potential for caching

Block- and Warp- local caching.
 reduce the number of repeated operations

Heterogeneous work-balancing.
 e.g. use CPU for measurements while the GPU continues evolving

- ...

Questions?

Thanks for your attention!

Release of CosmoLattice with GPUs ~ early 2026