Towards the optimal performance of Mazinger, a shallow γ -ray spectrometry system of high efficiency and very-low-level background, devoted to $^{210}\mathrm{Pb}$ and U-Th dating for paleoclimatic applications

Rubén Rivas Gómez, Daniel Romero Fuentes and Prof. Begoña Quintana Arnés

Laboratorio de Radiaciones Ionizantes y Datación (LRI-D), Universidad de Salamanca

XVII CPAN DAYS November 19-21, 2025

Outline

- Introduction
- 2 Mazinger
 - Spectrometer description
 - Electronics configuration
- Results
 - Mazinger performance
 - SOB22 sediment core analysis and dating
- Conclusion

- Introduction
- 2 Mazinger
 - Spectrometer description
 - Electronics configuration
- Results
 - Mazinger performance
 - SOB22 sediment core analysis and dating
- Conclusion

Introduction

- What?: Need of absolute dating methods based on precise radionuclide determination.
- Why?: Understand climatic and anthropogenic effects throughout Earth's history.
- How?: Develop and upgrade Mazinger¹. A very-low-level background and high-efficiency γ -ray spectrometry system used for analyzing oceanic and lacustrine sediments.
- Who and Where?: Team of Laboratorio de Radiaciones Ionizantes y Datación (LRI-D) at the University of Salamanca.
- Which?: The upgraded Mazinger was validated through ²¹⁰Pb and ¹³⁷Cs dating of the SOB22 sediment core from Sobrado dos Monxes Lagoon (Galicia, Spain).

 $^{^1}$ Rivas-Gómez, R., Romero-Fuentes R., Quintana-Arnés B., Carballeira R., In Press. Towards the optimal performance of Mazinger, a shallow γ -ray spectrometry system of high efficiency and very-low-level background, devoted to 210Pb and U-Th dating for paleoclimatic applications. Applied Radiation and Isotopes 226.

- Introduction
- 2 Mazinger
 - Spectrometer description
 - Electronics configuration
- Results
 - Mazinger performance
 - SOB22 sediment core analysis and dating
- Conclusion

Mazinger: Spectrometer description

- Two HPGe BEGe5030 detectors (Canberra) with ULB cryostats.
- Two anti-Compton rings of NaI(TI) surrounding each HPGe detector.
- Two anti-muon VETO detectors outside the passive shielding
- Passive shielding: Cu (3 mm), old Pb (5 cm), Fe (10 cm, ⁶⁰Co-free).
- Underground installation to minimize cosmic radiation.
- Continuous **N**₂ **flushing** (5 L/min) to reduce radon presence.
- Acquisition with a XIA Pixie-4 digital pulse processor.

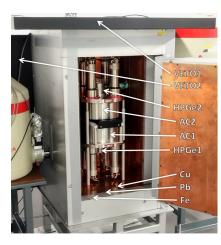


Figure: Picture of Mazinger showing passive and active shielding.

Mazinger: Electronics configuration

Mazinger evolution:

- M0 configuration: HPGe detectors

 + Passive shielding + anti-Compton
 active shielding + XIA Pixie-4 digital
 pulse processor.
- M1 configuration: M0 + VETO1 active shielding
- M2 configuration: M1 + VETO2 + acquisition electronics reconfiguration

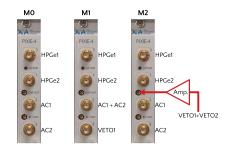


Figure: Schemes of detectors connection to Pixie-4 for each Mazinger's configuration.

Problem: Direct processing of VETO signals through Pixie-4 digitizer inputs caused efficiency loss. **Solution**: Acquisition electronics reconfiguration.

- VETO signals amplification before entering Pixie-4 (coincidence window).
- Amplified signals connected to the logical input port of Pixie-4.
- Acquisition of HPGe and AC detectors is inhibited while the amplified VETO signals are >660 mV.

- Introduction
- 2 Mazinger
 - Spectrometer description
 - Electronics configuration
- Results
 - Mazinger performance
 - SOB22 sediment core analysis and dating
- 4 Conclusion

Mazinger performance: FWHM

E (keV)	FWHM (keV)		
	HPGe1	HPGe2	Mazinger-M2
59.5409(1)	0.434	0.499	0.473
88.034(1)	0.493	0.554	0.528
122.06065(12)	0.549	0.604	0.580
136.47356(29)	0.561	0.622	0.597
165.8575(11)	0.610	0.676	0.654
391.698(3)	0.906	0.923	0.924
661.657(3)	1.107	1.145	1.147
834.848(3)	1.252	1.275	1.277
898.042(11)	1.334	1.368	1.352
1115.539(2)	1.413	1.444	1.452
1173.228(3)	1.444	1.479	1.488
1332.492(4)	1.544	1.575	1.586

Table: FWHM with M2 configuration.

Mazinger performance: Background

- BEGe5030: $0.86745(88) \text{ s}^{-1}\text{kg}^{-1}$ - M1: $0.36228(22) \text{ s}^{-1}\text{kg}^{-1}$

- M0: $0.60668(36) \text{ s}^{-1} \text{kg}^{-1}$ - M2: $0.22027(23) \text{ s}^{-1} \text{kg}^{-1}$

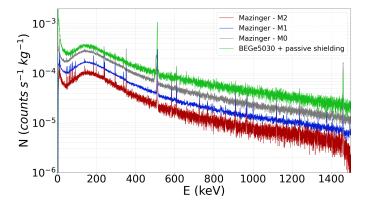


Figure: Comparison of background spectra between our BEGe5030 with a passive shielding and Mazinger's configurations

Mazinger performance: Efficiency

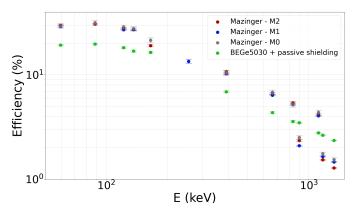


Figure: Comparison of detection efficiency between our BEGe5030 and Mazinger's configurations (without True Coincidence Summing Corrections)

Mazinger performance: Figure Of Merit

$$FOM = \frac{\varepsilon^2}{4 \cdot \text{Background}}$$

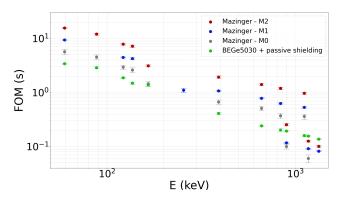


Figure: Comparison of Figure Of Merit between our BEGe5030 and Mazinger's configurations

SOB22 sediment core analysis and dating: $^{210}\mathrm{Pb}$ dating

$$^{210}Pb_{ex} = ^{210}Pb - ^{210}Pb_{sup} \equiv ^{210}Pb - ^{226}Ra$$

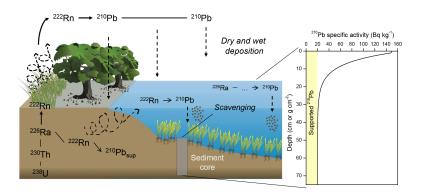


Figure: ²¹⁰Pb natural cycle. (https://doi.org/10.5194/bg-15-6791-2018).

←ロト→個ト→重ト→重ト 重 切り

SOB22 sediment core analysis and dating: CRS model

Model assumptions:

- Constant $^{210}Pb_{ex}$ flux
- Variating sedimentation rates

$$t_{CRS}(i) = \frac{1}{\lambda_{Pb_{210}}} \ln \left(\frac{I_{0 \to \infty}}{I_{i \to \infty}} \right) \text{ (yr)}$$

$$I_{i\to\infty} = \sum_{k=i}^{\infty} \Delta I_k \ (\text{Bq/m}^2)$$

$$\Delta I_k = a_k(^{210}Pb_{ex}) \cdot \frac{\Delta m_k}{S} \text{ (Bq/m}^2)$$

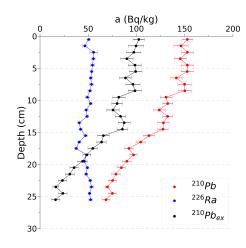


Figure: Depth profiles of ^{210}Pb , ^{226}Ra and $^{210}Pb_{ex}$ activities.

SOB22 sediment core analysis and dating: age model

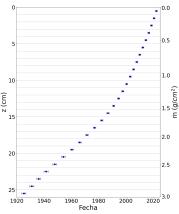


Figure: Age model obtained applying CRS model to data

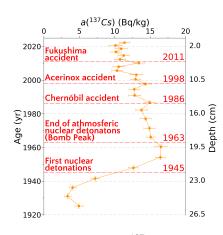


Figure: Depth profiles of ^{137}Cs activity and nuclear events.

- Introduction
- 2 Mazinger
 - Spectrometer description
 - Electronics configuration
- Results
 - Mazinger performance
 - SOB22 sediment core analysis and dating
- Conclusion

Conclusion

- ullet The Mazinger γ -ray spectrometer, equipped with two HPGe detectors and both passive and active shielding, is described following its recent upgrade.
- The reconfigured acquisition electronics improved measurement quality.
- The new active shielding reduced the continuum background by a factor of four compared to a single detector.
- The FOM increased by a factor of five, especially when source geometries adapted to Mazinger were used.
- \bullet The determination of $^{210}Pb,~^{226}Ra,$ and ^{137}Cs in recent sediments demonstrates Mazinger's suitability for high-precision chronological and paleoclimate studies.

Thank you!

E-mail: rubenrivas@usal.es

quintana@usal.es

Web: Iri.usal.es

