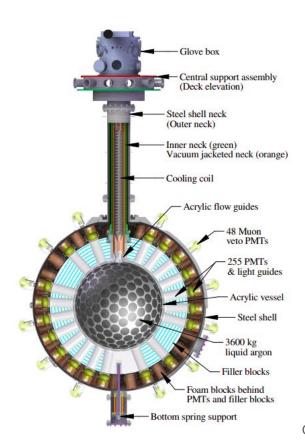

Status and prospects of DEAP-3600 after the third fill with liquid Ar

Guillermo Vera Díaz (CIEMAT)

on behalf of the DEAP collaboration XVII CPAN days València, Spain, 19-21 November 2025

The DEAP-3600 detector

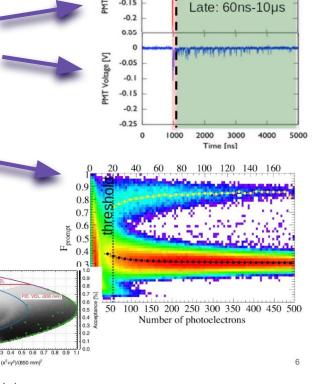


First detector for the DM direct search with more than 1 tonne of target.

So far, it has established the most stringent limits for WIMP interaction using non-Xe target in single phase (LAr)

It constitutes a relevant milestone in the path for next generation of Ar detector within the GADMC.

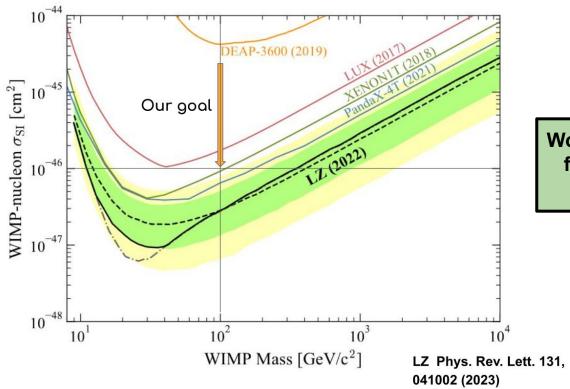
The DEAP-3600 detector


Main remarks outside to inside

- Located 2km underground at SNOLAB,
 Canada: 6000 m.w.e where the muon flux is 0.03 muon/m²/day
- Placed inside a muon veto (water tank with 48 PMTs detecting Cherenkov light)
- 255 PMTs: 8" 32% QE 75% coverage
- Bonded 50 cm long light guides
- In-situ vacuum evaporated TPB on inner 10 m² surface
- 3.3 tonne LAr target in ultraclean 85 cm radius acrylic vessel

The DEAP-3600 detector: Ar scintillation

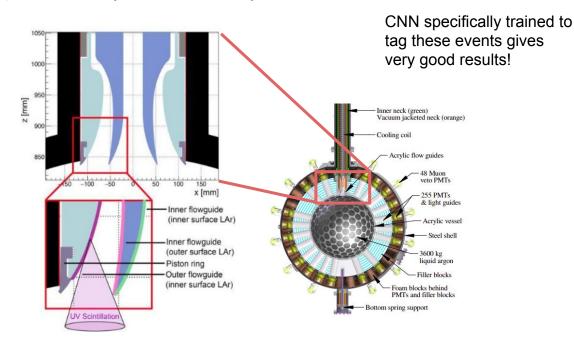
- Nuclear recoils populate mostly single state, which decays promptly (8 ns)
- Electronic recoils populate mostly triplet state,
 which has a slower decay (1.4 μs)
 Eur. Phys. J. C 80,303 (2020)
- Pulse shape discrimination helps to reject gamma and beta backgrounds
 Eur. Phys. J. C 81,823 (2021)
- Position reconstruction and fiducialization allow us to reduce surface and external backgrounds

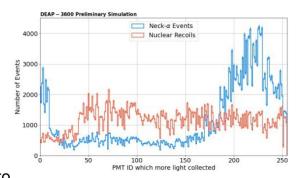

JINST 20 P07012 (2025)

Prompt: 0-60ns

-0.05

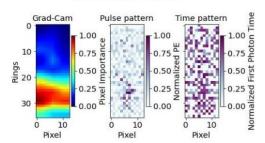
The DEAP-3600 detector: sensitivity prospects

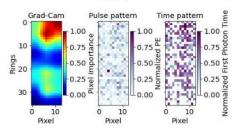


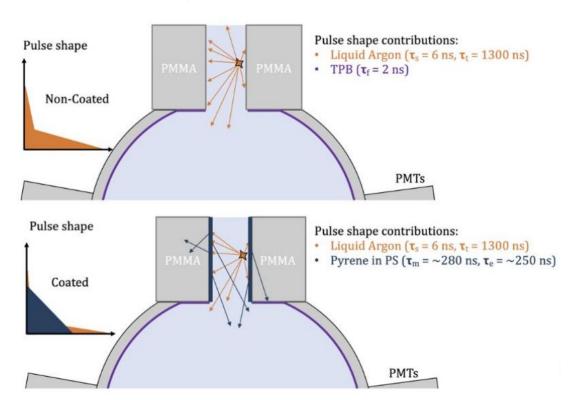

World-leading sensitivity for WIMP searches in LAr experiments

The DEAP-3600 detector: updates and goals

- ★ Introducing hardware upgrades to recover WIMP sensitivity
 - ²¹⁰Po background in the neck.
 - Presence of dust in the inner volume.
- ★ Finalize refined Dark Matter searches analysis
- ★ Learning for future LAr detectors (Darkside-20k, ARGO)
- ★ More physics with DEAP: first ³⁹Ar activity measurement, solar neutrinos, exotic DM candidates, ...

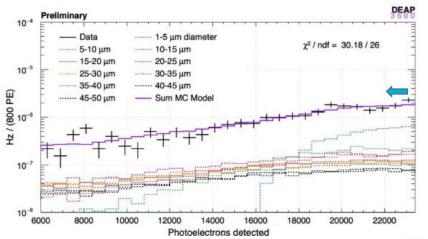

²¹⁰Po in the neck produces α particles very hard to identify

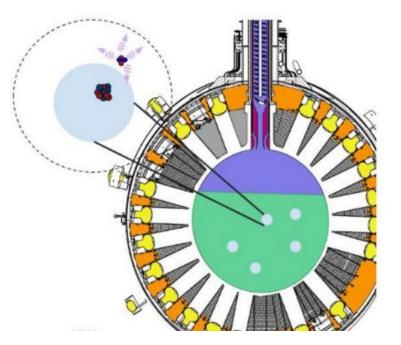

DEAP - 3600 Preliminary Simulation


Nuclear Recoil R = 606 mm

DEAP – 3600 Preliminary Simulation

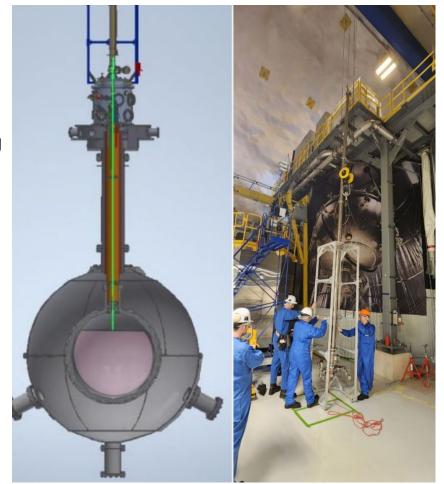
Neck −α


Fixed including WLS to the surface so that neck events will have:


- different time profile
- distinct PSD pattern
- more light collected
- Out of the ROI

NIM A 1034 (2022) p 166683

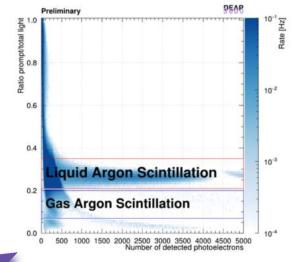
No recirculation system present in the detector caused tiny **dust particles** to be present within LAr volume.

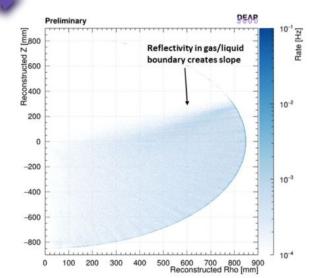


This dust introduced degraded α , constituting a source of background

Fixed:

Installation of a filtration + recirculation system which removes the dust from the target The external cooling also helps preventing condensation in the neck!

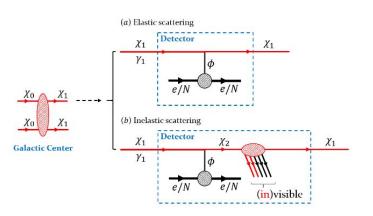



Current status and WIMP search prospects

- ★ Neck upgrade finished
- ★ Detector cool down and Ar third fill finalized on July
 - First glance to third fill data

★ Data taking for ~2 more years, until DarkSide-20k is running

★ Finalize refined analysis and unblind

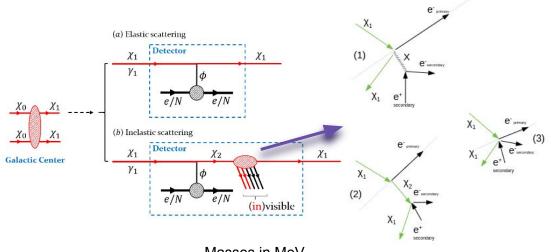


More physics with DEAP

- * 39Ar activity in atmospheric Ar precision measurement Eur. Phys. J. C 83, 642 (2023)
- ★ ³⁹Ar half life first direct measurement Eur.Phys.J.C 85 (2025) 7, 728
- ★ Alpha quenching in LAr Eur.Phys.J.C 85 (2025) 1, 87
- ★ Detecting ⁸B solar neutrinos (coming soon)
- ★ Solar axion search
- ★ Muon flux and instrumentation.
- ★ Neutrinoless double electron capture in ³⁶Ar
- ★ Search for neutrinos in coincidence with GW
- ★ Exotic DM searches
 - O Best limits for xenon-phobic DM Phys. Rev. D 102, 082001 (2020).
 - Prospection of unpopulated regions of the parameter space at Planck-scale masses (ultra heavy) Phys. Rev. D, 100, 072009 (2019).
 - Inelastic boosted dark matter

Inelastic Boosted Dark Matter in DEAP-3600

There are no possible interactions between χ_0 and SM particles at tree level, but χ_1 can interact via a dark photon X. In the iBDM scenario there is a secondary process, the decay of the excited state χ_2


iBDM: multiparticle DM model in which

- χ_0 , the dominant in mass hierarchy species, annihilates in the galactic center producing χ_1 .
- The relic density of χ₀ is explained by the "assisted freeze out mechanism"
- Due to the difference in mass between the two species, χ₁ is boosted after the annihilation process, reaches the detector and inelastically scatters off matter, transitioning into a heavier unstable state χ₂, which then decays into visible particles (e⁺ + e⁻) via a dark photon X

The parameter space for our inelastic process of study is

- χ_0 , χ_1 , χ_2 , X masses
- Coupling constants g_{12} , ϵ

Inelastic Boosted Dark Matter in DEAP-3600

Masses in MeV

	m_{χ_1}	m_{χ_2}	m_X	γ_1	ϵ
ref1	2	5.5	5	20	4.5×10^{-5}
ref2	3	8.5	7	50	6×10^{-5}
ref3	20	35	11	50	7×10^{-4}
ref4	20	40	15	100	6×10^{-4}

Expected signal: two vertex displaced by O(mm) (1), O(cm - m) (2).

Low threshold experiments, such as DEAP-3600, are particularly suitable for sub-GeV χ_0 , where the boosted χ_1 flux is enhanced

So far some reference points of the rest of the mass-constants parameter space are under study to determine the acceptance in each case.

Summary

- DEAP-3600 is the largest running LAr experiment dedicated for WIMP searchers, achieving a world-leading sensitivity with this target, as well as neutrino adsorption and ultra-heavy, multi-scattering DM
- There have been **improvements in hardware** to strongly reduce the α -induced backgrounds in the WIMP ROIs
 - Main contributions to this background (neck- α induced events and dust- α) are now included in PLR WIMP analysis (results coming soon)
- Learning for future LAr experiments (DarkSide-20k, ARGO, ...)
- With the third-fill completed even more results are expected!