Micromegas X-ray detectors for (Baby) (A)

María Jiménez Puyuelo on behalf of the IAXO group at Zaragoza

maria.jimenez@unizar.es

XVII CPAN Days

19th November 2025

Valencia - Spain

Contents

- Solar axions and helioscopes
- Helioscope generations: BabylAXO and IAXO
- Micromegas prototypes
- Background studies

Solar axions and helioscopes

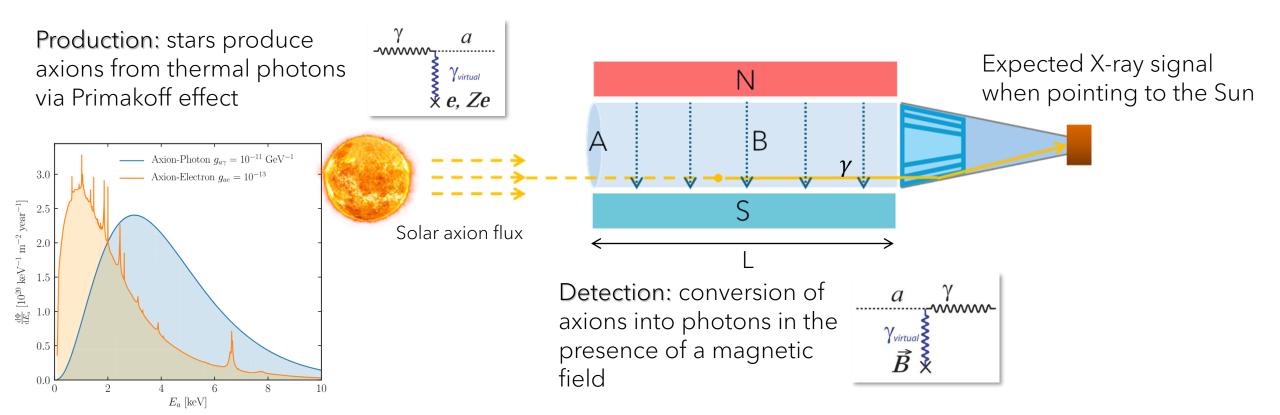
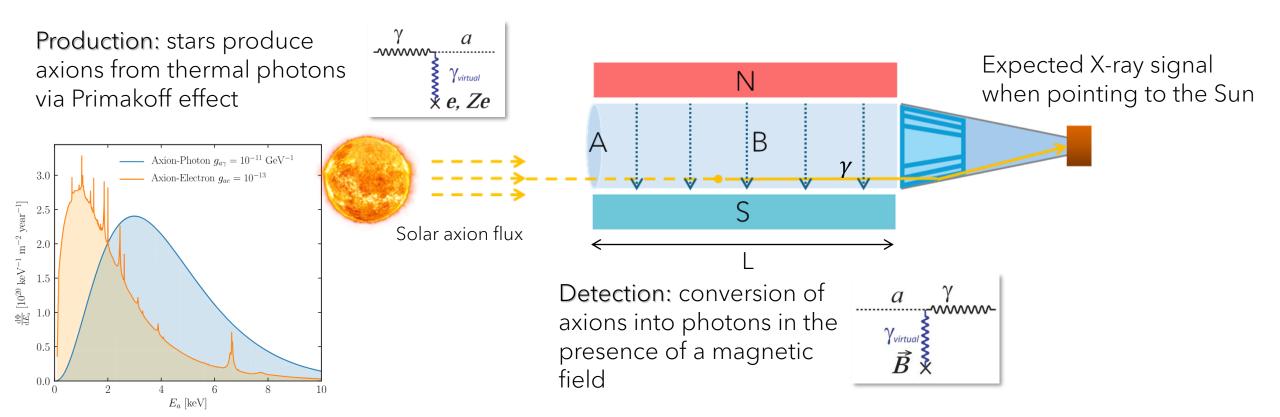



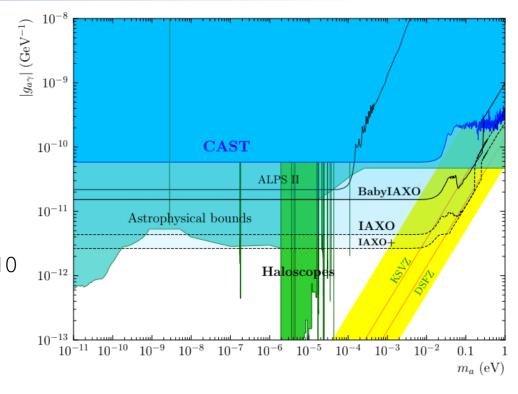
Figure of Merit (FOM)

magnet detectors optics exposure $g_{a\gamma}^4 \sim \ B^2 L^2 A \ \times \ \varepsilon_d b^{-1/2} \ \times \ \varepsilon_0 \alpha^{-1/2} \ \times \ \varepsilon_t^{-1/2} t^{-1/2}$

Solar axions and helioscopes

magnet detectors optics exposure $g_{a\gamma}^4 \sim \ B^2 L^2 A \ \times \ \varepsilon_d b^{-1/2} \times \ \varepsilon_0 \alpha^{-1/2} \ \times \ \varepsilon_t^{-1/2} t^{-1/2}$

CAST


- The most sensitive helioscope so far
- Has reached similar level to HB stars bounds

BabylAXO

- Sensitive to realistic QCD axion models
- Improves signal-to-noise ratio (SNR) by a factor 10²
- Background requirement ~10⁻⁷ c/keV/cm²/s

IAXO

- Improves CAST SNR by a factor 10⁴
- Improves CAST sensitivity to $g_{a\gamma}$ in more than a factor 10
- Background requirement $\sim 10^{-8}$ c/keV/cm²/s

Phys. Rev. Lett 133.22 (2024): 221005.

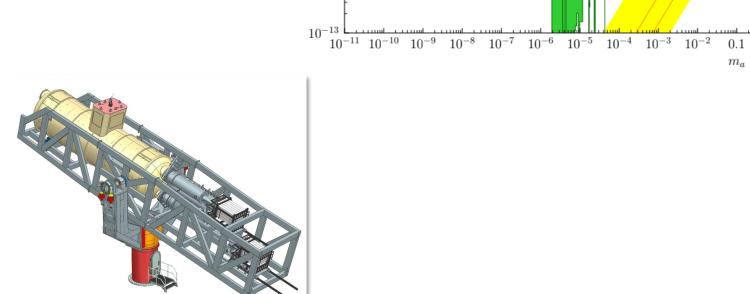
BabyIAXO

 m_a (eV)

IAXO

IAXO-

CAST


- The most sensitive helioscope so far
- Has reached similar level to HB stars bounds

BabylAXO

- Sensitive to realistic QCD axion models
- Improves signal-to-noise ratio (SNR) by a factor 10²
- Background requirement ~10⁻⁷ c/keV/cm²/s

IAXO

- Improves CAST SNR by a factor 10⁴
- Improves CAST sensitivity to $g_{a\gamma}$ in more than a factor 10
- Background requirement $\sim 10^{-8} \, \text{c/keV/cm}^2/\text{s}$

Phys. Rev. Lett 133.22 (2024): 221005.

María Jiménez Puyuelo XVII CPAN Days, Valencia 19th November, 2025

 $(GeV_{-1}^{-1}) = (GeV_{-1}^{-1})$

 10^{-8}

 10^{-10}

 10^{-11}

CAST

Astrophysical bounds

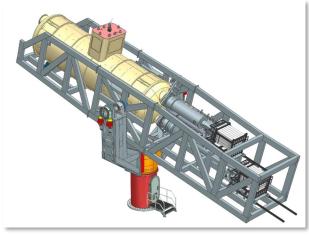
ALPS II

Haloscor

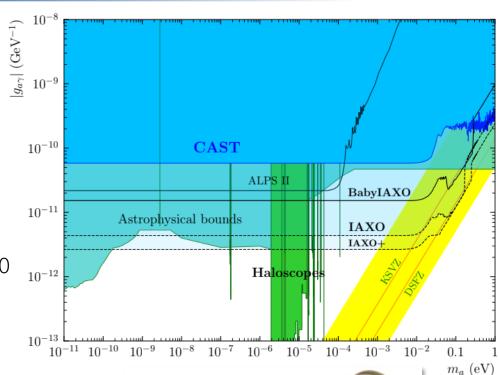
CAST

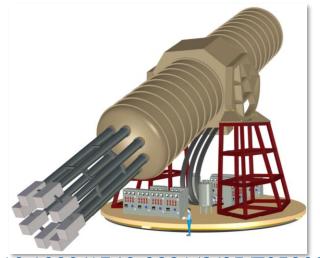
- The most sensitive helioscope so far
- Has reached similar level to HB stars bounds

BabylAXO


- Sensitive to realistic QCD axion models
- Improves signal-to-noise ratio (SNR) by a factor 10²
- Background requirement ~10⁻⁷ c/keV/cm²/s

IAXO


- Improves CAST SNR by a factor 10⁴
- Improves CAST sensitivity to $g_{a\gamma}$ in more than a factor 10
- Background requirement $\sim 10^{-8}$ c/keV/cm²/s



Phys. Rev. Lett 133.22 (2024): 221005.

10.1007/JHEP05(2021)137

10.1088/1748-0221/9/05/T05002

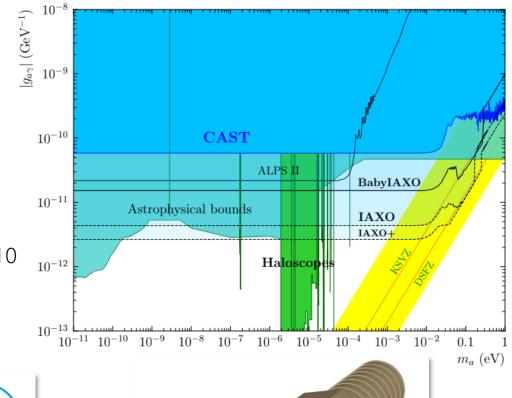
CAST

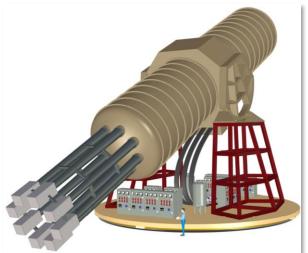
- The most sensitive helioscope so far
- Has reached similar level to HB stars bounds

BabylAXO

- Sensitive to realistic QCD axion models
- Improves signal-to-noise ratio (SNR) by a factor 10²
- Background requirement ~10⁻⁷ c/keV/cm²/s

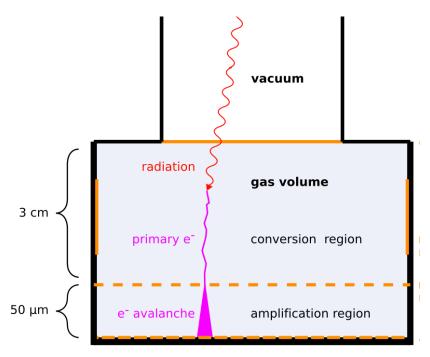
IAXO


- Improves CAST SNR by a factor 10⁴
- Improves CAST sensitivity to $g_{a\gamma}$ in more than a factor 10
- Background requirement $\sim 10^{-8}$ c/keV/cm²/s



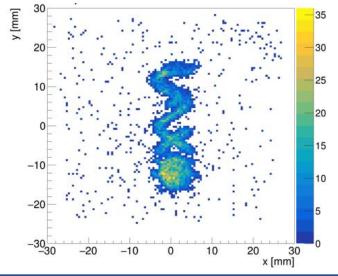
Phys. Rev. Lett 133.22 (2024): 221005.

10.1007/JHEP05(2021)137



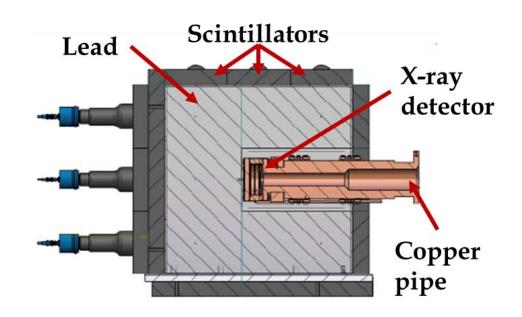
10.1088/1748-0221/9/05/T05002

BabyIAXO baseline technology



Current baseline technology is Micromegas but there are other technologies under study (GridPix, MMC, SDD, TES)

- 3 cm drift distance Gaseous Time Projection Chamber
- Microbulk Micromegas readout
 - 50 µm amplification gap
 - 120 x 120 strips (6 x 6 cm²)
- ✓ Very homogeneous amplification gap, uniform gain
- ✓ Microbulk: intrinsically radiopure
- ✓ Good energy and spatial resolution
- ✓ Pixelized readout gives topological information


BabylAXO Micromegas detectors

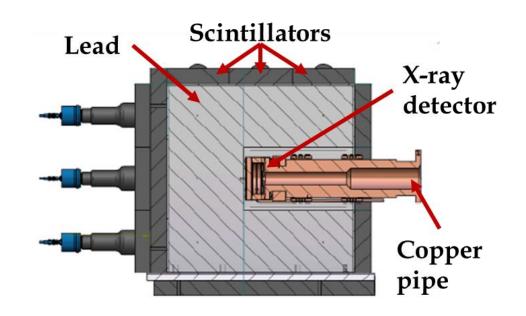
BabylAXO background requirements: 10⁻⁷ c/keV/cm²/s in the ROI (1-10) keV

IAXO-D1: state of the art on ultra-low background techniques

- Radiopurity
- Shielding
 - Passive: 20 cm of lead
 - Radiopure copper: 2.5 cm
 - Active veto system (plastic scintillators) for cosmic rays and secondaries
- Event discrimination strategies
 - Micromegas: event topology (x-ray events)
 - Veto system: multiplicity

BabylAXO Micromegas detectors

BabylAXO background requirements: 10⁻⁷ c/keV/cm²/s in the ROI (1-10) keV


IAXO-D1: state of the art on ultra-low background techniques

- Radiopurity
- Shielding
 - Passive: 20 cm of lead
 - Radiopure copper: 2.5 cm
 - Active veto system (plastic scintillators) for cosmic rays and secondaries
- Event discrimination strategies
 - Micromegas: event topology (x-ray events)
 - Veto system: multiplicity

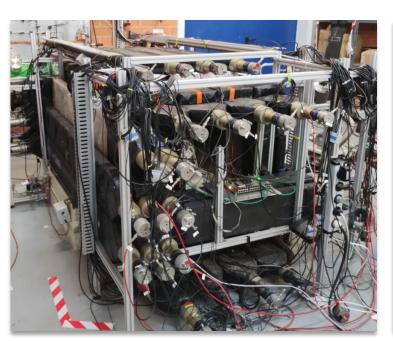
Background measurements

Different prototypes to optimize background and event discrimination strategies

Simulations

Background model in progress Geant4 simulations + realistic event reconstruction with <u>REST-for-Physics</u>

BabylAXO Micromegas detectors


Surface level

Underground

Laboratorio Subterráneo de Canfranc

Cosmic muon flux reduced by a factor 10⁴

Zaragoza

CEA-Saclay → Now in DESY!

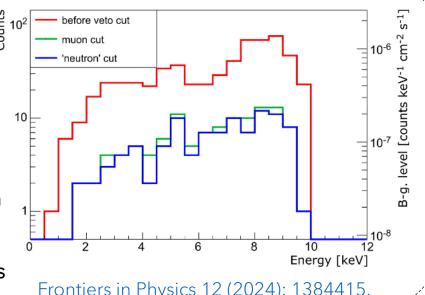
- Effect of multi-layer veto system to tag cosmogenic neutrons (in addition to muons)
- Measure background on experimental site

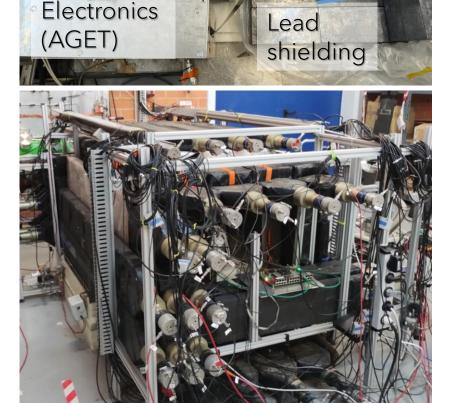
- Intrinsic detector background
- Test of different gas mixtures

IAXO-D1 prototype at Zaragoza

Goals

- Study of the effect of multi-layer veto system to tag cosmogenic neutrons (in addition to muons)
- Optimization of background discrimination techniques


Experience from previous prototype (IAXO-D0)


- CAST microbulk MM
- o 48.5%Xe-48.5%Ne-2.3%Iso
- Neutron cut: high multiplicity in veto system

Background in [2-7] keV, r < 1 cm after 51 days:

 $(8.6 \pm 1.2) \times 10^{-7} \text{ counts/keV} \cdot \text{cm}^2 \cdot \text{s}$

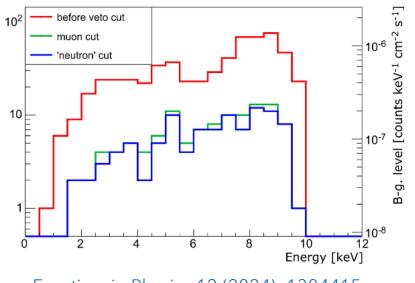
María Jiménez Puyuelo

Micromegas

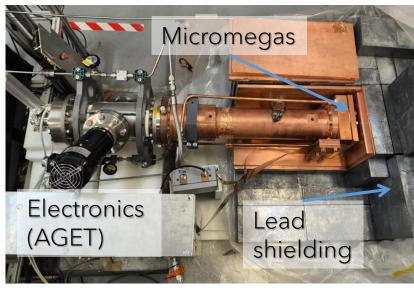
IAXO-D1 prototype at Zaragoza

Goals

- Study of the effect of multi-layer veto system to tag cosmogenic neutrons (in addition to muons)
- Optimization of background discrimination techniques



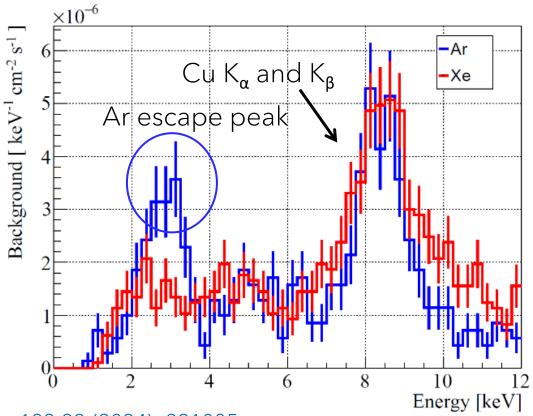
Experience from previous prototype (IAXO-D0)


- CAST microbulk MM
- o 48.5%Xe-48.5%Ne-2.3%Iso
- Neutron cut: high multiplicity in veto system

Background in [2-7] keV, r < 1 cm after 51 days:

 $(8.6 \pm 1.2) \times 10^{-7} \text{ counts/keV} \cdot \text{cm}^2 \cdot \text{s}$

Frontiers in Physics 12 (2024): 1384415.



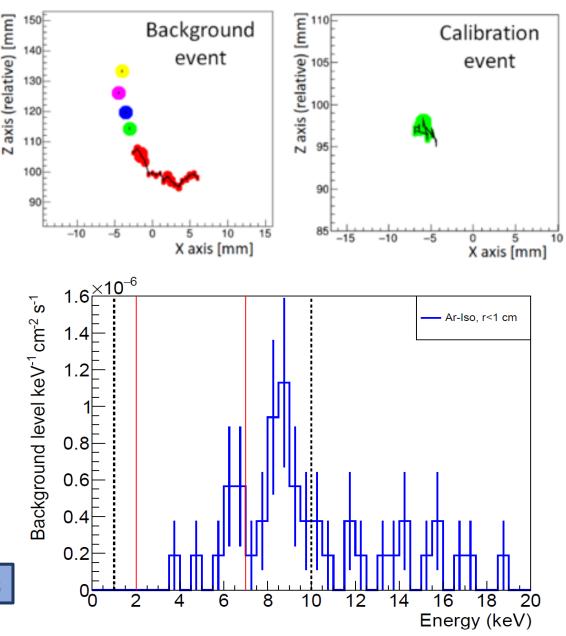
Goals

- Study of intrinsic background
- Optimization of the performance with different gas mixtures: Ar+Isobutane and Xe+Ne+Isobutane

Phys. Rev. Lett 133.22 (2024): 221005.

Set-up

IAXO-D1 at the LSC: background measurements


Nominal gain

Data taking conditions

- 99%Ar + 1%Isobutane (premixed)
- No recirculation
- $HV_{mesh} = 325V$
- $HV_{cathode} = 750V$
- P = 1.25 bar
- Gas flow 2l/h

Analysis

- Background rejection algorithm based on event topology
- 80% software efficiency
- Energy cut: [2,7] keV
- Fidutial cut: r < 1cm
- 9 events after 39.15 days of data taking

Background level: $(1.7 \pm 0.6) \times 10^{-7}$ counts/keV·cm²·s

IAXO-D1 at the LSC: background measurements

Nominal gain

Data taking conditions

- 99%Ar + 1%Isobutane (premixed)
- No recirculation
- $HV_{mesh} = 325V$
- $HV_{cathode} = 750V$
- P = 1.25 bar
- Gas flow 2l/h

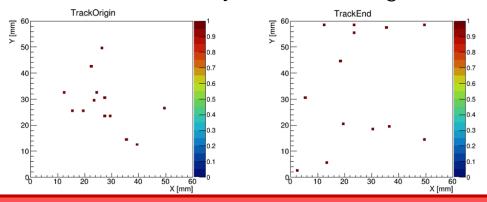
Analysis

- Background rejection algorithm based on event topology
- 80% software efficiency
- Energy cut: [2,7] keV
- Fidutial cut: r < 1cm
- 9 events after 39.15 days of data taking

1.6×10⁻⁶ X (mm) Background level keV⁻¹ cm⁻² s⁻¹ Ar-Iso, r<1 cm 0.8 0.6 0.4 0.2 10 Energy (keV)

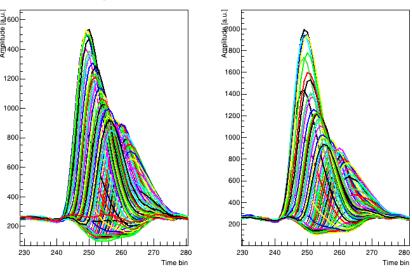
Background level: $(1.7 \pm 0.6) \times 10^{-7}$ counts/keV·cm²·s

IAXO-D1 at the LSC: background measurements

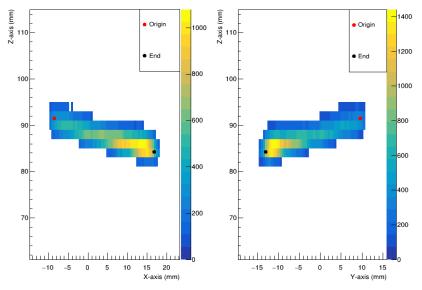

Low gain (alphas)

Data taking conditions

- Premixed gas cylinder of 99%Ar + 1%Isobutane
- No recirculation
- $HV_{mesh} = 235V$
- $HV_{cathode} = 750V$
- P = 1.4 bar
- Gas flow 2l/h


Analysis

- Dedicated analysis to reconstruct the alpha's track
- Fidutial cut: r < 2 cm
- 14 events after 13.9 days of data taking

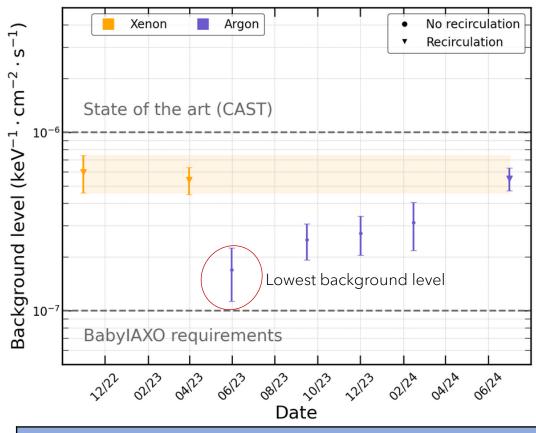


Background level $(9 \pm 2) \times 10^{-7} \text{ alphas/cm}^2 \cdot \text{s}$

Signals from an alpha event

Reconstructed alpha track after analysis

JINST 17.08 (2022): P08035


10

Argon background level [1-2] x 10⁻⁷ counts/keV·cm²·s

Lowest background level achieved with this technology underground

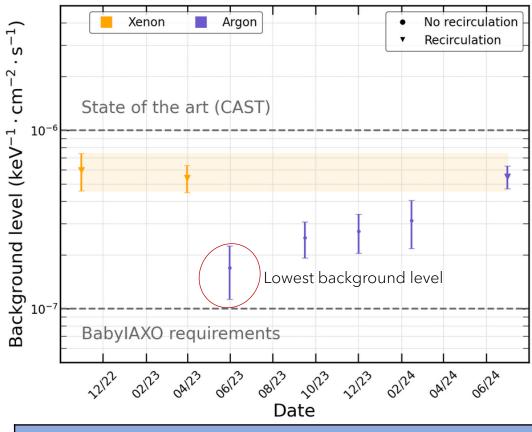
Xenon background level [5-6] x 10⁻⁷ counts/keV·cm²·s

 Not compatible with previous measurements in Ar+Iso at the LSC

Low gain runs: alpha's background				
Gas	Circulation mode	Background (10 ⁻⁷ alphas / cm ² ·s)		
Xe-Ne-2.3%lso	Recirculation	366 ± 15		
Ar (99%-1%)	Open loop	9 ± 2		
Ar (99%-1%)	Recirculation	711 ± 21		

10

Argon background level [1-2] x 10⁻⁷ counts/keV·cm²·s


Lowest background level achieved with this technology underground

Xenon background level [5-6] x 10⁻⁷ counts/keV·cm²·s

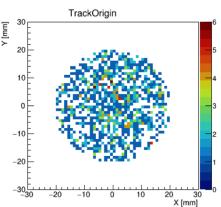
 Not compatible with previous measurements in Ar+Iso at the LSC

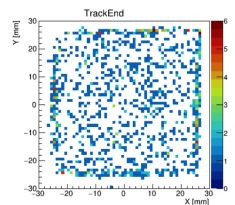
²²²Rn contamination from filters <u>IEEE NSS/MIC (pp. 1-3)</u>

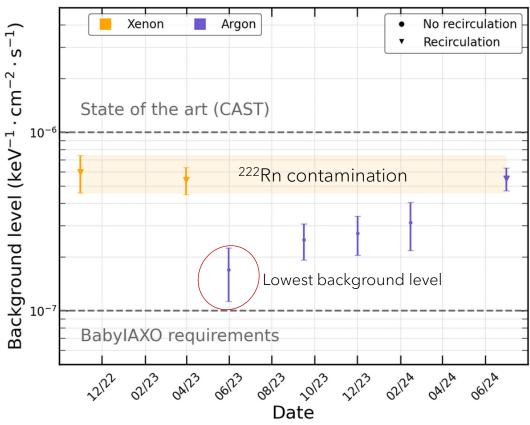
Low gain runs: alpha's background				
Gas	Circulation mode	Background (10 ⁻⁷ alphas / cm ² ·s)		
Xe-Ne-2.3%lso	Recirculation	366 ± 15		
Ar (99%-1%)	Open loop	9 ± 2		
Ar (99%-1%)	Recirculation	711 ± 21		

10

Argon background level [1-2] x 10⁻⁷ counts/keV·cm²·s


Lowest background level achieved with this technology underground


Xenon background level [5-6] x 10⁻⁷ counts/keV·cm²·s


 Not compatible with previous measurements in Ar+Iso at the LSC

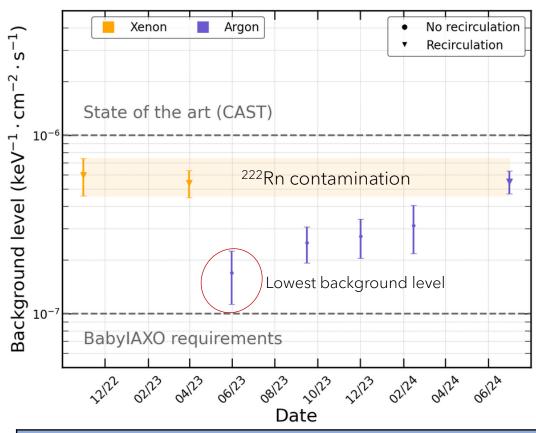
²²²Rn contamination from filters <u>IEEE NSS/MIC (pp. 1-3)</u>

Low gain runs: alpha's background				
Gas	Circulation mode	Background (10 ⁻⁷ alphas / cm ² ·s)		
Xe-Ne-2.3%lso	Recirculation	366 ± 15		
Ar (99%-1%)	Open loop	9 ± 2		
Ar (99%-1%)	Recirculation	711 ± 21		

10

Argon background level [1-2] x 10⁻⁷ counts/keV·cm²·s

Lowest background level achieved with this technology underground


Xenon background level [5-6] x 10⁻⁷ counts/keV·cm²·s

 Not compatible with previous measurements in Ar+Iso at the LSC

²²²Rn contamination from filters <u>IEEE NSS/MIC (pp. 1-3)</u>

- 1. Low gain runs in recirculation confirmed Rn contamination
- 2. Ar recirculating: compatible background level in [2,7] keV

Low gain runs: alpha's background				
Gas	Circulation mode	Background (10 ⁻⁷ alphas / cm ² ·s)		
Xe-Ne-2.3%Iso	Recirculation	366 ± 15		
Ar (99%-1%)	Open loop	9 ± 2		
Ar (99%-1%)	Recirculation	711 ± 21		

Summary and future prospects

- Micromegas is the baseline technology for BabylAXO
- On-going R&D with different prototypes to explore the necessary techniques to reach the ultra-low background goals for BabyIAXO

Surface level


- Zaragoza:
 - ✓ Prototype with full veto system is under commissioning
 - ☐ Optimization of event discrimination strategies with multi-layer veto system

Underground: LSC

- ✓ Measure intrinsic background in Ar
- ✓ Underground background with Xe limited by Rn contamination from filtering system
- □ Different strategies to mitigate Rn contamination while operating with Xe are currently under investigation
- New radiopure electronics

Thank you for your attention

Acknownledgements

13

The work presented in this talk is part of the work carried out in the IAXO collaboration and funded by many agencies.

In particular, we acknowledge support from:

- The European Union's Horizon 2020 research and innovation programme under the European Research Council (ERC) grant aggreement ERC-2017-AdG788781 (IAXO+)
- The Spanish Agencia Estatal de Investigación AEI under grant PID2019-108122GB-C31 funded by MCIN/AEI/10.13039/501100011033
- The European Union NextGenerationEU/PRTR (Planes complementarios, Programa de Astrofísica y Física de Altas Energías), co-funded by Gobierno de Aragón

Additionally, M.J.P work is supported by Gobierno de Aragón with a PhD fellowship as specified in ORDEN CUS/621/2023

Backup slides

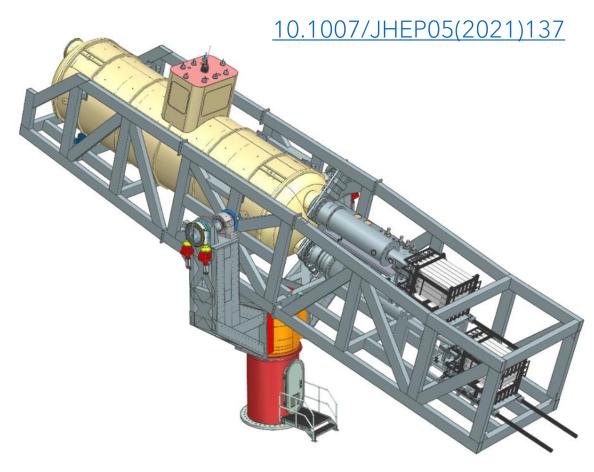
CERN Axion Solar Telescope


- More than 20 years of experience
- LHC dipole magnet
 - L = 10 m
 - Magnetic field = 9 T
- Solar tracking during sunrise and sunset
- The most sensitive helioscope so far

Coupling limit $m_a < 0.01 \text{ eV}$ $|g_{ay}| < 0.58 \cdot 10^{-10} \text{ GeV}^{-1} (95\% \text{ C.L})$

Altenmüller, K., et al. "New upper limit on the axion-photon coupling with an extended cast run with a xe-based micromegas detector." *Physical Review Letters* 133.22 (2024): 221005.

BabylAXO


Prototype

- Intermediate experimental stage before IAXO
- Two bores of dimensions similar to final IAXO bores (70 cm diameter)
 - L = 10 m, B = 3-4 T
- Detection lines representative of final ones
 - Micromegas baseline
- Magnet will test design options of final IAXO magnet
- Test and improve all systems. Risk mitigation for full IAXO

Physics

 Will also produce relevant physics outcome

FOM 100 x CAST

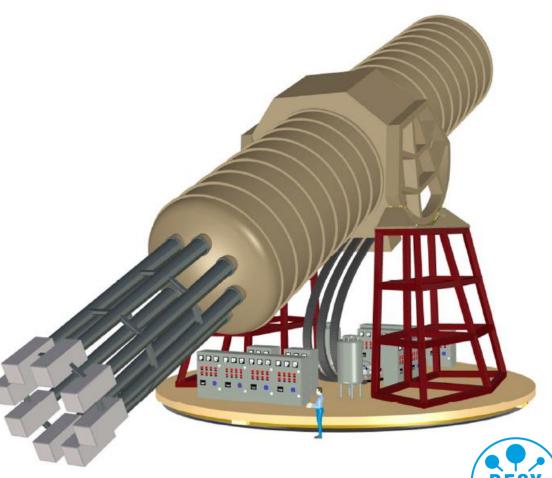
International Axion Observatory

Toroidal magnet: 8 bores of 60 cm diameter

• L = 20 m, B = 5.4 T

Dedicated x-ray optics

• 0.2 cm² focal spot


Tracking system

- Based on CTA
- 50% Sun-tracking time

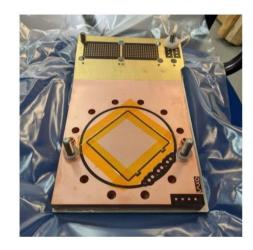
8 detection lines

 Micromegas, GridPix, Metalic Magnetic Calorimeter, Transition Edge Sensors, Silicon Drift Detectors

FOM 10.000 x CAST

10.1088/1748-0221/9/05/T05002

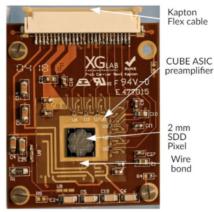
X-ray detectors

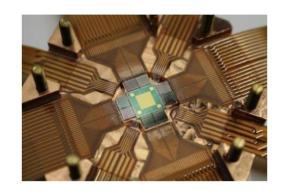


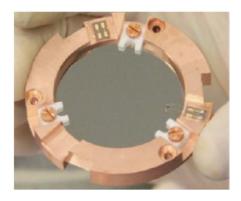
X-RAY DETECTOR REQUIREMENTS

- High x-ray detection efficiency in the ROI (0-10 keV)
- Ultra low background levels:
 - 10⁻⁷ c/keV/cm²/s (BabylAXO)
 - 10⁻⁸ c/keV/cm²/s (IAXO)

IDEALLY

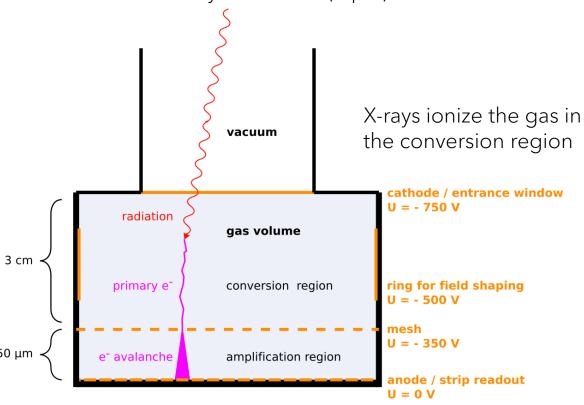

- Low energy threshold (100 eV)
- Good energy resolution


Microbulk Micromegas TPC (U. Zaragoza and CEA-Saclay)


GridPix TPC (U. Bonn)

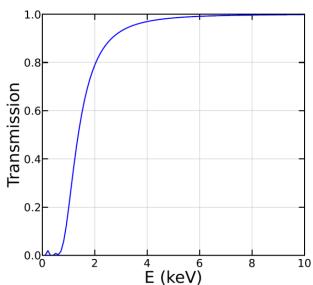
SDD: Silicon Drift
Detectors
(Technical U. Munich)

MMC: Metallic Magnetic
Calorimeters
(U. Heildeberg and
CEA-Saclay)

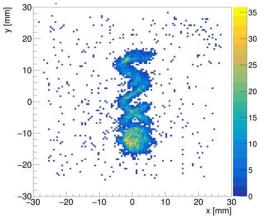


TES: Transition Edge Sensors (U. Zaragoza-INMA ICMAB-CSIC IJCLab)

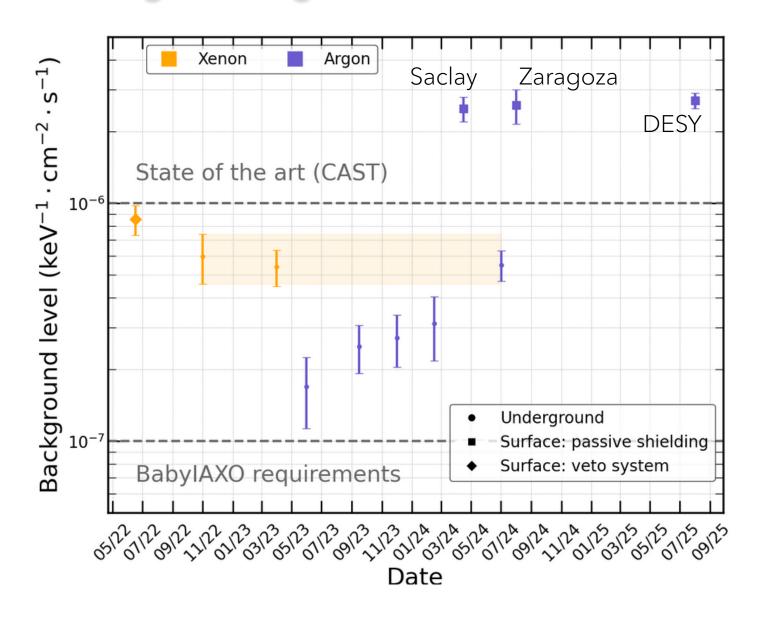

Micromegas x-ray detectors



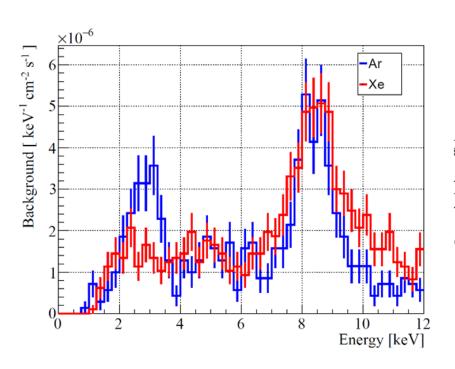
X-ray reaches the active volume through an aluminized mylar window (4 μ m)

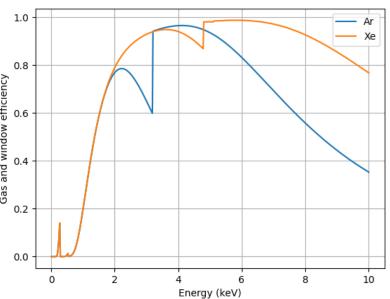


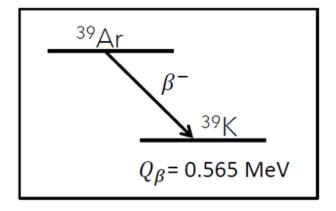
The electrons pass through the mesh holes and are amplified Electron-ion movement induced signals in the mesh and strips



BabylAXO Micromegas background status






Gas election: Xe-based vs Ar-based mixtures

- BabyIAXO background goal is < 10⁻⁷ c·keV⁻¹·cm⁻²·s⁻¹
- Goals of the IAXO-D1 MM underground setup:
 - Test of performance of different gas mixtures (Ar-based and Xe-based)
 - Study the intrinsic detector background (internal and inner shielding) with the different gases

Typical background spectra with Ar-based mixtures has the escape peak at ~3 keV (solar axion spectra has a peak expected in 3 keV)

Xe has a better x-ray efficiency in the ROI

Intrinsic background in AAr is limited by 39 Ar, $T_{1/2} = 269$ years

Gas election: Isobutane

Ar + Isobutane gas mixtures with microbulk micromegas

More isobutane: higher voltages

Better energy

resolution with higher % of isobutane

https://iopscience.iop.org/article/10. 1088/1748-0221/7/04/P04007

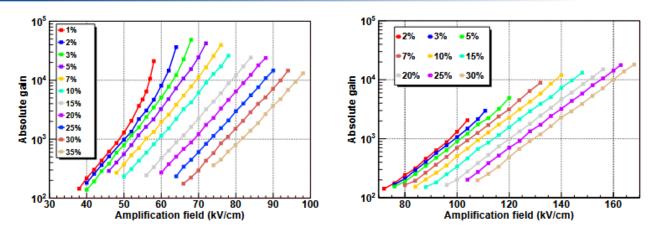
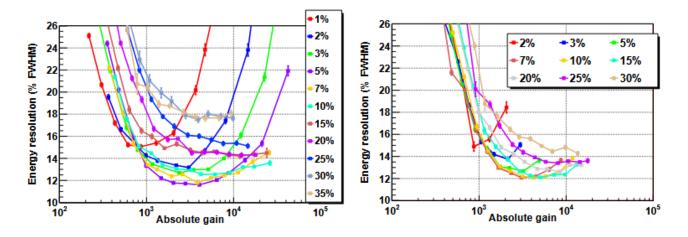
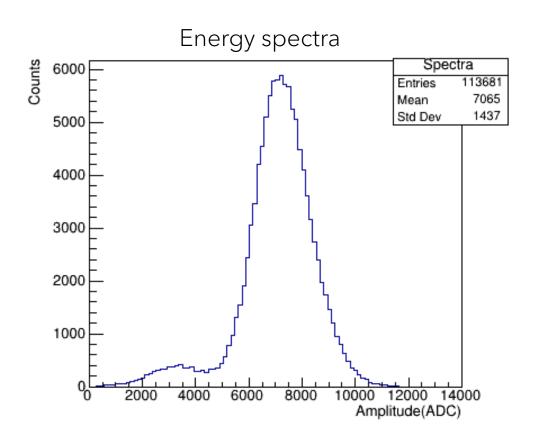
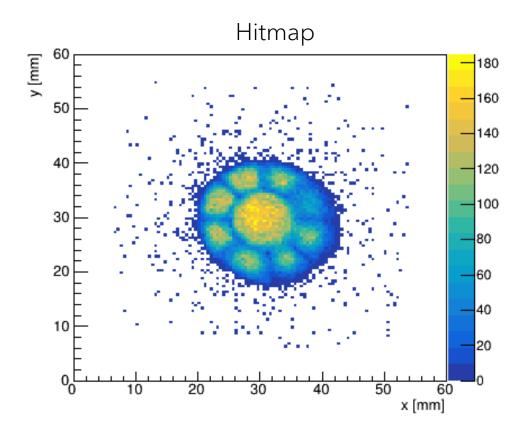


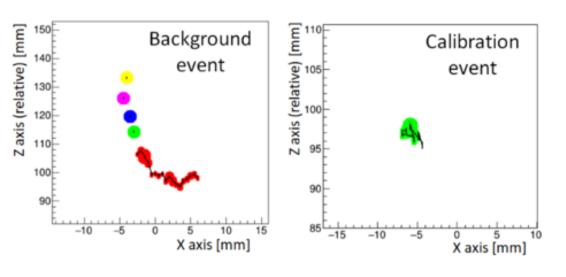
Figure 6. Dependence of the absolute gain with the amplification field for two microbulk detectors with gaps of 50 (left) and 25 μ m (right) in argon-isobutane mixtures. The maximum gain of each curve was obtained just before the spark limit. The percentage of each series corresponds to the isobutane concentration.

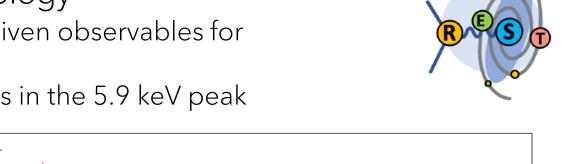



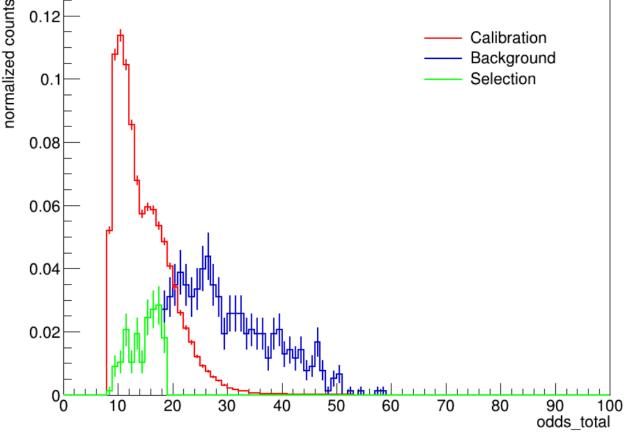

Figure 7. Dependence of the energy resolution with the absolute gain for two detectors of 50 (left) and $25 \,\mu$ m-thickness-gap (right) in argon-isobutane mixtures. The maximum gain of each curve was obtained just before the spark limit. The percentage of each series corresponds to the isobutane concentration.

BabylAXO Micromegas at the LSC: 55Fe calibrations

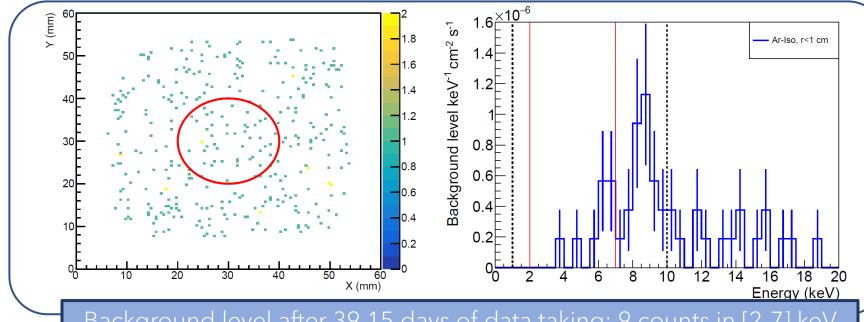
Gas: 99% Ar + 1% Isobutane @ 1.4 bar




XVII CPAN Days, Valencia

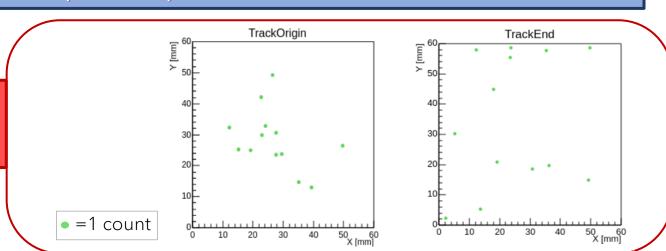

Analysis

- Background rejection based on event topology
 - Log-odd distribution is computed for a set of given observables for calibration and background events
 - Cut efficiency fixed at 80% for calibration events in the 5.9 keV peak
- Implemented in <u>REST-for-Physics</u>


Background measurements: Argon in open loop

Nominal gain

Data taking conditions


- 99%Ar-1%Isobutane (premixed)
- HVMesh = 320V-325V
- HVCathode = 750V
- P = 1.25 bar
- Gas flow 2l/h

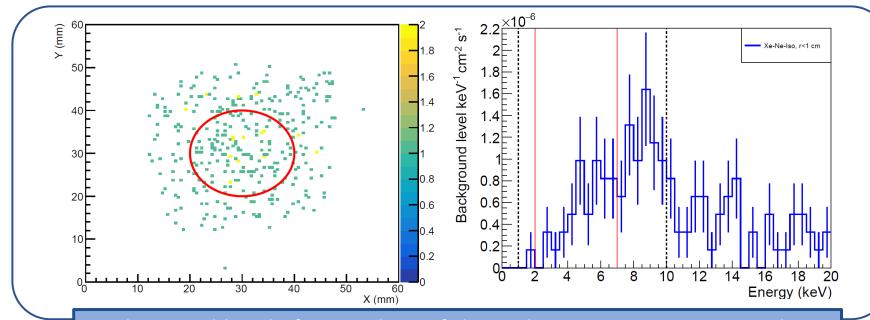
Background level after 39.15 days of data taking: 9 counts in [2-7] keV $(1.7 \pm 0.6) \times 10^{-7}$ counts/keV·cm²·s

HVMesh = 250 V

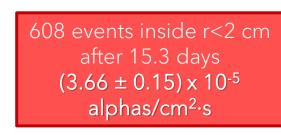
 Compatible rate at the beginning and end of the gas bottle 14 events inside r<2 cm after 13.9 days (9 ± 2) x 10⁻⁷ alphas/cm²·s

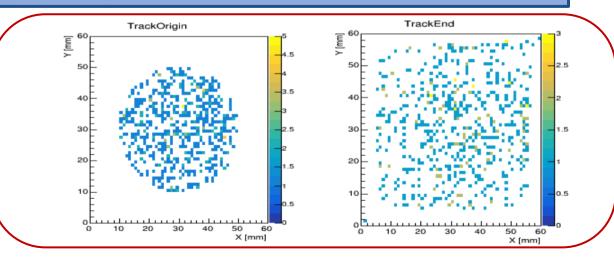
Background measurements: Xenon in recirculation

Nominal gain


Data taking conditions

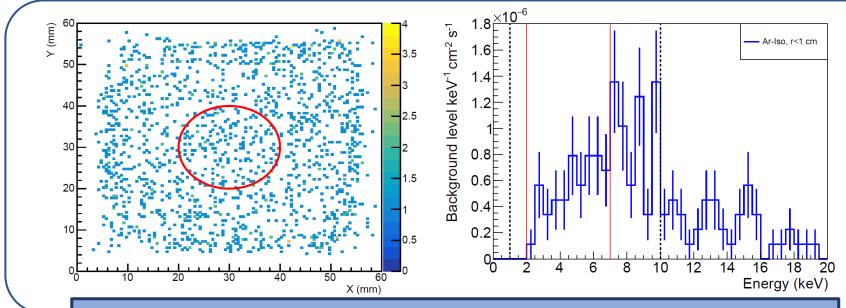
- Xe-Ne-Isobutane (premixed)
- HVMesh = 395V
- HVCathode = 750V
- P = 1.0 bar
- Gas flow 2l/h (recirculating)
- → Background rejection based on event topology


Low gain


Same data taking conditions, except HVMesh = 395V →**250** V

→ Dedicated analysis to reconstruct the alpha tracks

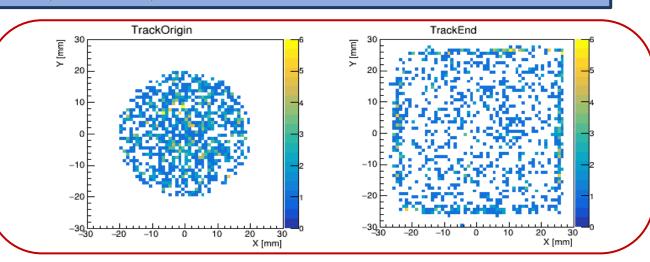
Background level after 45 days of data taking: 33 counts in [2-7] keV, $(5.4 \pm 0.9) \times 10^{-7} \text{ counts/keV} \cdot \text{cm}^2 \cdot \text{s}$


Background measurements: Argon in recirculation

Nominal gain

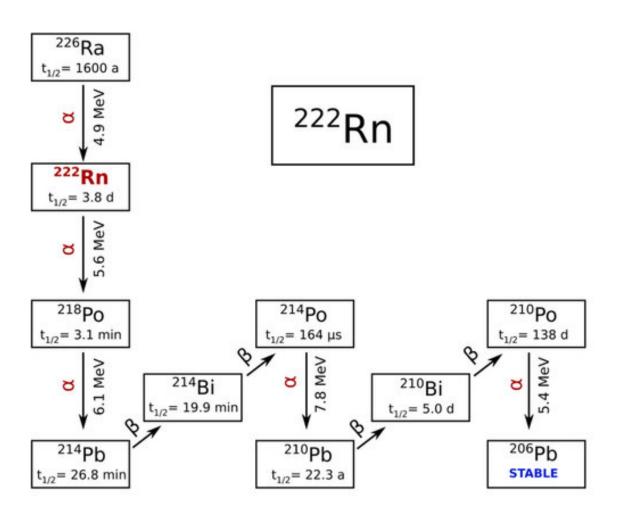
Data taking conditions

- 99%Ar-1%Isobutane (premixed)
- HVMesh = 320V
- HVCathode = 750V
- P = 1.25 1.4 bar
- Gas flow 2l/h



Background level after 65 days of data taking: 49 counts in [2-7] keV, $(5.5 \pm 0.8) \times 10^{-7} \text{ counts/keV} \cdot \text{cm}^2 \cdot \text{s}$

Low gain


HVMesh = 250 V

1159 events inside r<2 cm after 15 days (7.11 ± 0.21) x 10⁻⁵ alphas/cm²·s

F (1.10)		_	Origin*	Levels		
Energy (keV)	Intensity (%)*	Type		Start*	End*	Parent
12.56455 (-)	22.0 (5)	X_L	Bi			Pb-210
12.89 (-)	12.42 (22)	X_L	Bi			Pb-214
72.805 (-)	7 (4)	$X_{\text{K}\alpha2}$	Pb			Tl-210
72.8725 (-)	3.9 (8)	$X_{K\alpha 1}$	TI			Hg-206
74.8157 (-)	6.26 (12)	X_{Ka2}	Bi			Pb-214
74.97 (-)	11 (6)	$X_{K\alpha 1}$	Pb			Tl-210
77.1088 (-)	10.47 (20)	$X_{K\alpha 1}$	Bi			Pb-214
84.9527 (-)	3.8 (19)	$X_{K'\beta 1}$	Pb			Tl-210
87.347 (-)	3.59 (9)	$X_{K'\beta 1}$	Bi			Pb-214