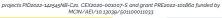
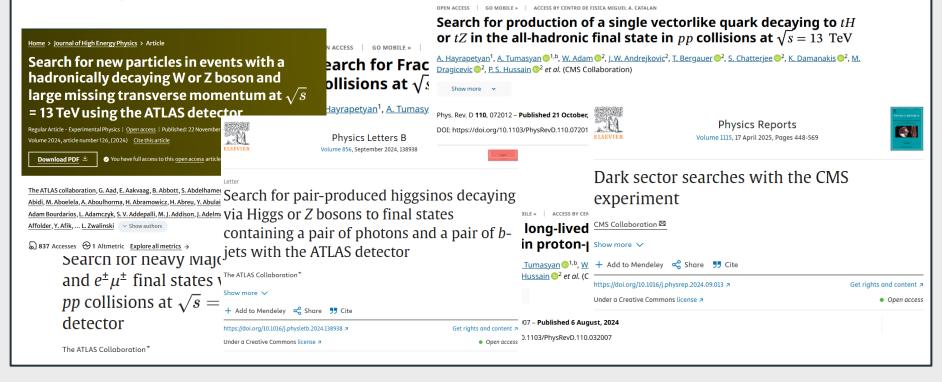
Mass-unspecific classifiers for mass-dependent searches

J.A. Aguilar Saavedra, **S. Rodríguez Benítez** Instituto de Física Teórica, UAM/CSIC, Madrid

Based on: 2503.20926

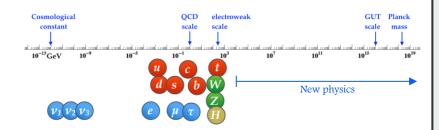


Collaborations have been extensively searching for **new physics** at colliders for years, continually improving their analysis techniques.



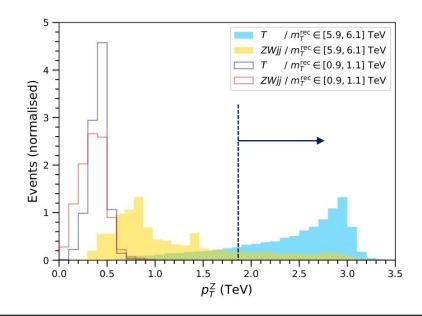
Machine learning techniques play a critical role in experimental analyses. But how can we enhance existing multivariate methods to improve the sensitivity of new physics searches?

- Searches for new physics must be sensitive to the entire allowed parameter space.
- Fixed cuts cannot be simultaneously optimised for new particles over a wide mass range.



Machine learning techniques play a critical role in experimental analyses. But how can we enhance existing multivariate methods to improve the sensitivity of new physics searches?

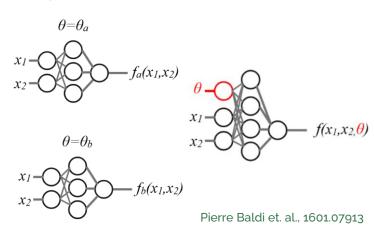
- Searches for new physics must be sensitive to the entire allowed parameter space.
- Fixed cuts cannot be simultaneously optimised for new particles over a wide mass range.



Machine learning techniques play a critical role in experimental analyses. But how can we enhance existing multivariate methods to improve the sensitivity of new physics searches?

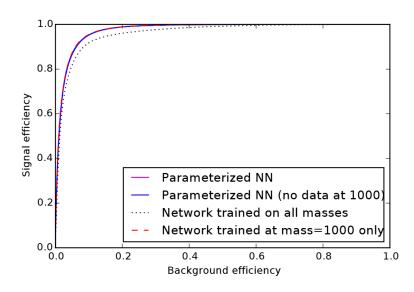
- Searches for new physics must be sensitive to the entire allowed parameter space.
- Fixed cuts cannot be simultaneously optimised for new particles over a wide mass range.

The ATLAS and CMS experiments use a parameterised neural network (pNN).

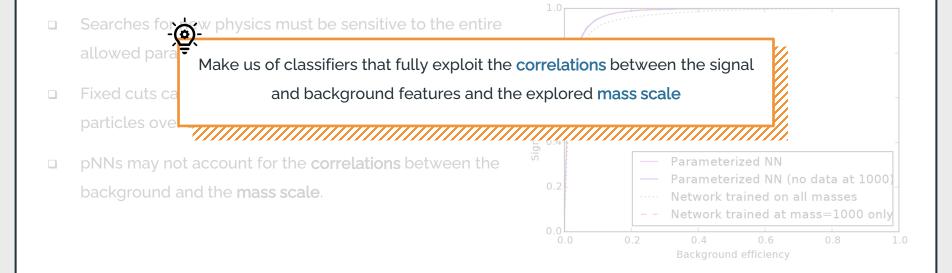


Machine learning techniques play a critical role in experimental analyses. But how can we enhance existing multivariate methods to improve the sensitivity of new physics searches?

- Searches for new physics must be sensitive to the entire allowed parameter space.
- Fixed cuts cannot be simultaneously optimised for new particles over a wide mass range.
- pNNs may not account for the correlations between the background and the mass scale.



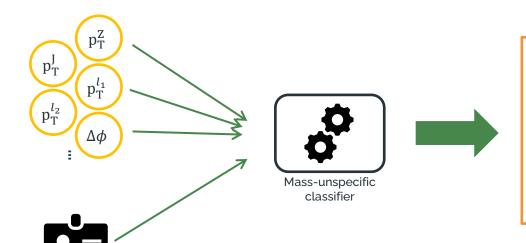
Machine learning techniques play a critical role in experimental analyses. But how can we enhance existing multivariate methods to improve the sensitivity of **new physics searches**?



Behind mass-unspecific classifiers

We make use of a multivariate method that fully exploits those **correlations** applying the mass unspecific supervised tagging (MUST) concept.

J.A. Aguilar-Saavedra et. al., 2008.12792



- ☐ The scale is meaningful for both signal and background.
- □ Captures the differences in the background distributions at different mass scales.

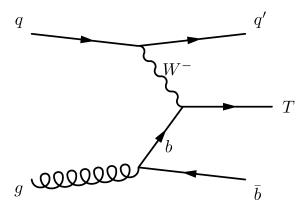
Characteristic scale (reconstructed m, m_T , p_T ...)

Event generation and reconstruction

Benchmark process

We used MadGraph, Pythia and Delphes to generate and simulate the events.

- □ Signal: Single production of a T quark (top partner), $pp \to T\bar{b}j$, with decay $T \to tZ \to l^+\nu b l^+ l^-$, with $l = e, \mu$
- □ Background: We include the leading one, $pp \rightarrow ZW^+jj$.



Signal samples generated for a range of *T* masses:

□ 1.5×10^5 events for *T* masses from 1 to 6.4 TeV

Inclusive and **binned** generation of the background:

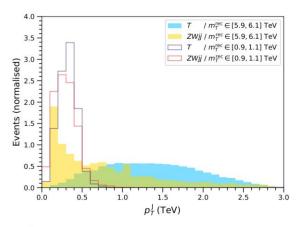
- $\sim 6 \times 10^6$ events, with $m_{ZWj} > 800$ GeV
- $ext{ }$ 4×10^5 events in 200 GeV intervals of m_{ZWj}

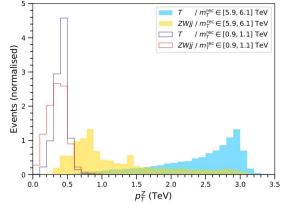
Discriminating variables

Kinematical distributions of interest in this work:

- \square Reconstructed T mass m_T^{rec} .
- \square Transverse momenta of Z leptons, $p_T^{l_1}$ and $p_T^{l_2}$.
- \square Reconstructed top quark mass, m_t^{rec} .
- \square Azimuthal angle between the reconstructed Z and the third lepton, $\Delta\phi(Z,l_3)$.
- □ Forward R = 0.4 jet multiplicity $(2.5 \le |\eta| \le 5)$.

Correlations with the mass scale help discriminate signal from background.





Shaping Data for Training

Training

The main difference between our mass-unspecific classifiers and the parameterised NN (pNN) lies in the training strategy:

μ NN & μ BDT

Training dataset:

- □ **Samples**: Uses binned generation for background.
- □ **Selection**: 5000 background + signal events per interval of m_T^{rec} .

Features:

- \square m_T^{rec} included as a feature.
- ullet Background has a **physical** value of m_T^{rec} .

pNN

Training dataset:

- □ **Samples**: Uses inclusive background events.
- □ **Selection**: 5000 signal events for each interval of m_T^{rec} .

Features:

- \square Include m_T as a feature.
- \square Background m_T value is assigned randomly.

Training

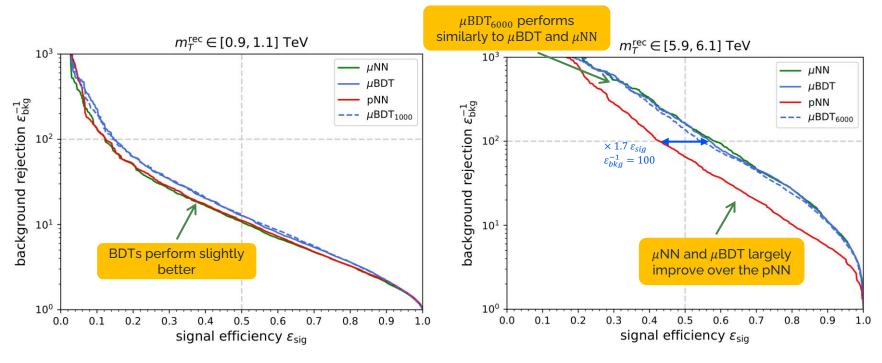
For comparison, additionally to our mass-unspecific classifiers we train a weighted NN (wNN), different parameterised NN (pNN) and a mass-specific BDT (μ BDT $_{m_T}$):

		Training range	Signal gen.	Background gen.	Mass label	
	μ NN, μ BDT	[0.9,6.5] TeV	0.2 TeV steps	0.2 TeV bins	m_T^{rec}	
	wBDT	[0.9,6.5] TeV	0.2 TeV steps	inclusive, weighted	m_T^{rec}	
	pNN	[0.9,6.5] TeV	0.2 TeV steps	inclusive, unweighted	$m_T / { m random}$	
	pNN _B	[0.9,6.5] TeV	0.2 TeV steps	0.2 TeV bins	m_T / random	
	pNN _X	[0.9,6.5] TeV	0.2 TeV steps	inclusive, unweighted	(m_T / random), m_T^{rec}	
	wNN	[0.9,6.5] TeV	0.2 TeV steps	inclusive, weighted	m_T^{rec}	
	μ BDT ₁₀₀₀	[0.9,1.1] TeV	$m_T = 1 \text{ TeV}$	[0.9,1.1] TeV	m_T^{rec}	
Ĺ	μ BDT ₆₀₀₀	[5.9,6.1] TeV	$m_T=6\mathrm{TeV}$	[5.9,6.1] TeV	m_T^{rec}	

Results

Performance

Receiver operating characteristic (ROC) curves comparing the different discriminators for different values of the *T* mass:



Performance

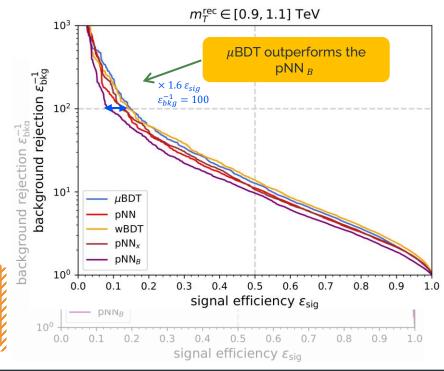
Receiver operating characteristic (ROC) curves comparing the different discriminators for different values of the *T* mass:

Why the μ NN and μ BDT perform better?

The mass label is meaningful for the background. (pNN $_B$ vs μ BDT)

The model is trained using **balanced sets** within each m_T^{rec} bin. (pNN vs pNN $_R$)

The mass-unspecific discriminator is able to learn the **correlations** between the **background** distributions and the **mass scale**.



Performance

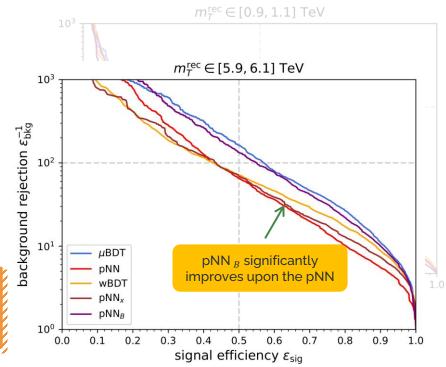
Receiver operating characteristic (ROC) curves comparing the different discriminators for different values of the *T* mass:

Why the μ NN and μ BDT perform better?

The mass label is meaningful for the background. (pNN $_B$ vs μ BDT)

The model is trained using **balanced sets** within each m_T^{rec} bin. (pNN vs pNN $_R$)

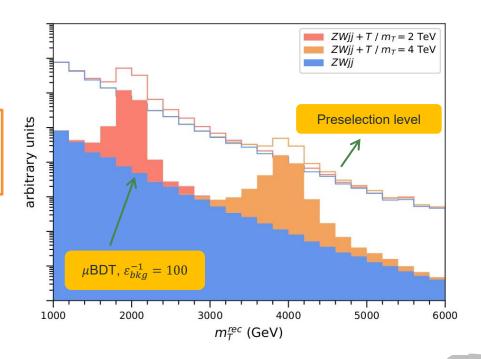
The mass-unspecific discriminator is able to learn the **correlations** between the **background** distributions and the **mass scale**.



Shape preservation

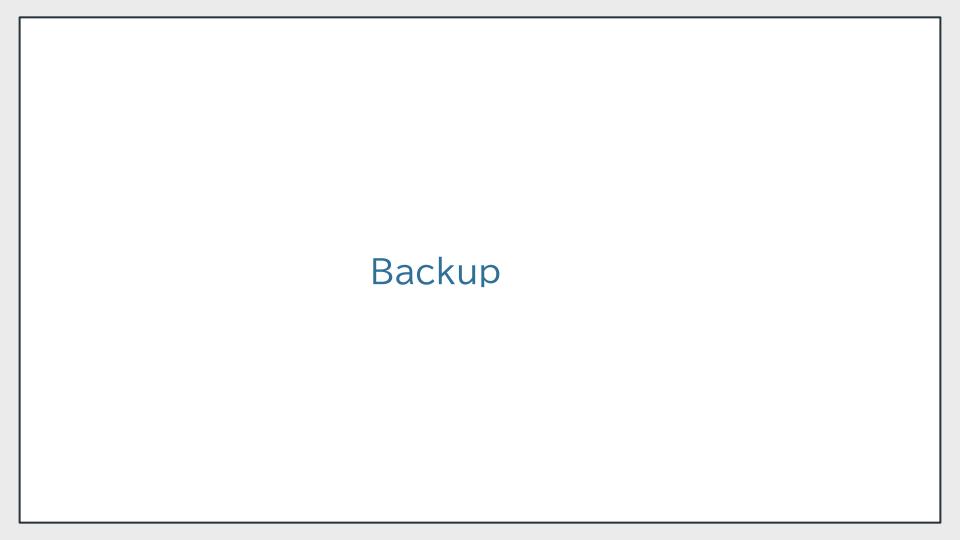
It is possible to preserve the **background and signal shape** after the application of mass-unspecific classifiers by **varying the threshold**.

Despite being trained in bins of m_T^{rec} , the μBDT produces a **continuous output** across bins.



Conclusions

- The performance of the μNN and μBDT is quite close to the one of the mass-specific classifiers.
- The μ NN and μ BDT perform as well or better than a pNN. There are two key factors:
 - The background mass scale is correlated with the actual background shape.
 - The training sample sets equal weight for high and low scales, allowing the classifier to learn those differences.
- Despite the use of a benchmark of single T production at the HL-LHC, our conclusions extend to other
 new physics processes and colliders.

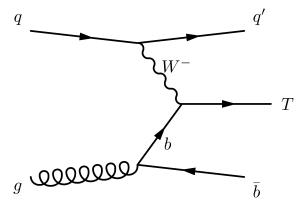


Benchmark process

The benchmark process is the single production of a vector-like quark singlet T with charge 2/3 at the HL-LHC. Why?

The cross-section is proportional to the square of the mixing angle, and it also depends on the quark mass. The process can probe:

Suited to test the mass-unspecific classifiers for a mass-dependant search



Preselection cuts

Minimal preselection cuts are required to efficiently reconstruct the signal and background events.

- 1. \geq 3 leptons, which we require to have $p_T \geq$ 25 GeV, $|\eta| <$ 2.5 and $p_T^{leading} >$ 40 GeV.
- 2. We require the Z boson to have $p_T^Z > 60$ GeV.
- 3. \geq 1 fat jet (R=0.8), with the Z leptons outside the radius, and the third lepton inside; with $p_T>80$ GeV and $|\eta|<2.5$.
- 4. \geq 1 light slim jet (R=0.4) without any lepton inside the radius, $p_T>25$ GeV and $|\eta|<5$.
- 5. $\Delta R(Z,J) \ge 1$, with $\Delta R = [(\Delta \eta)^2 + (\Delta \phi)^2]^{1/2}$.

Mass	Cut 1	Cut 2	Cut 3	Cut 4	Cut 5	Cut 6
$m_T = 1000 \text{ GeV}$	0.73304	0.68898	0.58860	0.30207	0.29762	0.29734
$m_T = 2000 \text{ GeV}$	0.76763	0.73699	0.64231	0.50801	0.50137	0.50107
$m_T = 6400 \text{ GeV}$	0.78919	0.7692	0.66545	0.60937	0.59738	0.59704

Reconstruction

After applying a minimal set of preselection cuts, the reconstruction is done:

- □ Z boson: opposite-sign same-flavour pair of leptons, $p_Z = p_{l_1} + p_{l_2}$. If more than one candidate, the pair with invariant mass closest to the Z boson mass is chosen.
- □ Fat jet: R = 0.8 fat jet containing the third lepton l_3 .

Boosted top quark from the *T* decay

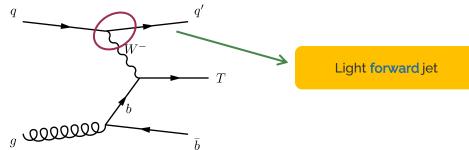
- □ Neutrino: we assumed it is produced in the W decay. $(p_{\nu})_{x,y} = (\not\!\!E_T)_{x,y}$ and $(p_{l_3} + p_{\nu})^2 = M_W^2$ provides two solutions for $(p_{\nu})_z$.
- \Box Slim jet: R = 0.4 light jet.

Take the one such that $[(p_J + p_v)^2]^{1/2} \rightarrow M_t$

Reconstruction

After applying a minimal set of preselection cuts, the reconstruction is done:

- extstyle Z boson: opposite-sign same-flavour pair of leptons, $p_Z = p_{l_1} + p_{l_2}$. If more than one candidate, the pair with invariant mass closest to the Z boson mass is chosen.
- □ **Fat jet**: R = 0.8 fat jet containing the third lepton l_3 .
- □ Neutrino: we assumed it is produced in the W decay. $(p_{\nu})_{x,y} = (\not\!\!E_T)_{x,y}$ and $(p_{l_3} + p_{\nu})^2 = M_W^2$ provides two solutions for $(p_{\nu})_z$.
- \square Slim jet: R = 0.4 light jet.



Reconstruction

After applying a minimal set of preselection cuts, the reconstruction is done:

- extstyle Z boson: opposite-sign same-flavour pair of leptons, $p_Z = p_{l_1} + p_{l_2}$. If more than one candidate, the pair with invariant mass closest to the Z boson mass is chosen.
- □ Fat jet: R = 0.8 fat jet containing the third lepton l_3 .
- □ Neutrino: we assumed it is produced in the W decay. $(p_{\nu})_{x,y} = (\not\!\!E_T)_{x,y}$ and $(p_{l_3} + p_{\nu})^2 = M_W^2$ provides two solutions for $(p_{\nu})_z$.
- \square Slim jet: R = 0.4 light jet.

The T signal produces a peak in the reconstructed T mass $m_T^{rec} = [(p_I + p_{\nu} + p_Z)^2]^{1/2}$

Test and validation samples

In order to **prevent overtraining**, we use validation samples generated using the same procedure as the training data:

- \square μ NN and μ BDT: 3500 signal and background events per m_T^{rec} bin.
- \blacksquare wNN and pNN: 3500 signal events for each T mass. 9.4×10^4 background events from the inclusively generated sample.
- \square μBDT_{m_T} : 3500 signal and background events.

For the test we used the number of events that remain after removing the ones used for the training and validation:

$$m_T^{rec} \in [0.9,1.1] \text{ TeV}$$
 \longrightarrow 51428 signal and 20894 background events $m_T^{rec} \in [5.9,6.1] \text{ TeV}$ \longrightarrow 15456 signal and 15752 background events

Model architectures

A detailed description of all the models we trained in this work:

NNs

- Implemented using Keras with a Tensorflow backend.
- □ [64,64] with ReLU activation for the hidden layers and a sigmoid function for the output one.
- □ Binary cross entropy los function, optimisation using the Adam algorithm.
- □ From 5 trainings with different initial seeds, we select the one that gives the best AUC.

BDTs

- □ Implemented using XGBoost.
- □ A maximum of 500 boosting trees and a depth of 5.
- □ Learning rate of **0.15**.
- □ From 5 trainings with different initial seeds, we select the one that gives the best AUC.

D. P. Kingma et. al., 1412.6980

T. Chen et. al., 1603.02754

Signal efficiency

Signal efficiencies of the μ BDT as a function of the T quark mass:

