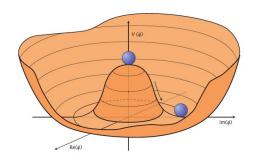
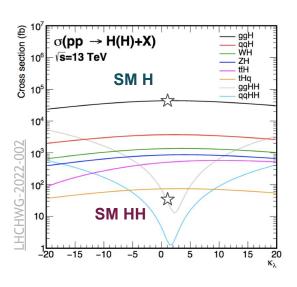
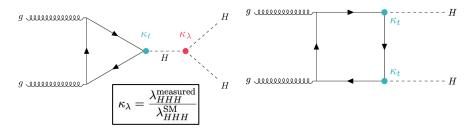

$X \rightarrow SH \rightarrow b\overline{b}b\overline{b}$ search in ATLAS

Marta Lanzac Berrocal (IFIC, CSIC-UV)



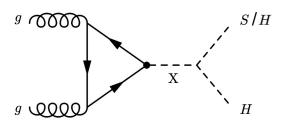


Higgs boson potential



• The Higgs boson potential remains partially unconstrained:

$$V(\phi) = \mu^2(\phi^\dagger\phi) + \lambda(\phi^\dagger\phi)^2 \qquad \qquad V_H = \frac{1}{2}m_HH^2 + \lambda vH^3 + \dots \qquad \qquad H$$


• Measuring **Higgs boson pair production (HH)** is the only direct probe of the Higgs boson self-coupling (λ_{HHH})

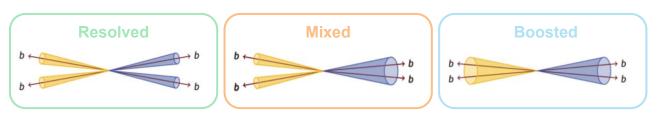
- In the Standard Model, the HH production is rare ($\sigma_{SM} \approx 33$ fb at $\sqrt{s} = 13$ TeV)
- No observation yet expected to be observed at HL-LHC

Beyond the Standard Model Theories in Higgs Physics

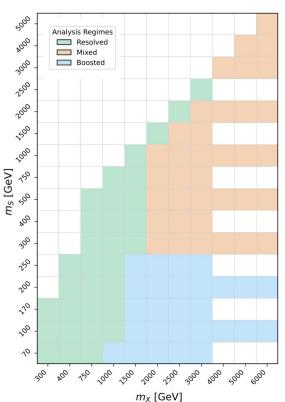
- Non-resonant production (pp → HH) enhancements can arise from:
 - Loop corrections involving new particles
 - **Anomalous coupling** between the Higgs boson and SM particles
 - Modified Higgs potential, affecting the trilinear self-coupling (λ_{HHH})
- Resonant production (pp → X → HH / SH) motivated by different BSM theories:
 - TRSM (Two Real Singlet Model):
 - → adds to two CP even neutral bosons alongside the SM Higgs
 - 2HDM (Two Higgs-Doublet Model):
 - → two new Higgs doublets; e.g. CP-conserving: 1 lighter and 1 heavier (wrt. to the SM-Higgs) CP-even scalar
 - NMSSM (Next-to-Minimal Supersymmetric Standard Model): 2HDM+S model
 - → multiple charged and neutral scalars
 - → less constrained than the pMSSM

H: SM Higgs (m = 125 GeV)

S: additional scalar

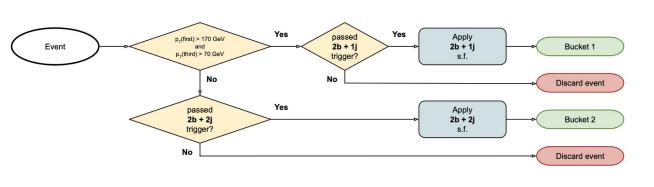

Signal topologies and phase space in $X \rightarrow SH \rightarrow 4b$

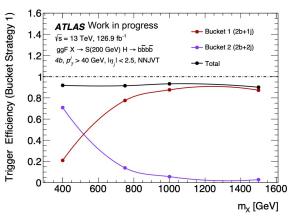
The resonant HH searches in the 4b final state have similar characteristics as in the non-resonant case:


- Main advantage: largest branching ratio
- Challenges: complex QCD multijet background estimation

Mass coverage and regimes:

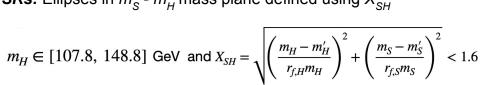
- Full analysis scan: m_x ∈ [300, 6000] GeV, m_s ∈ [70, 5000] GeV
- Phase space divided by topology:

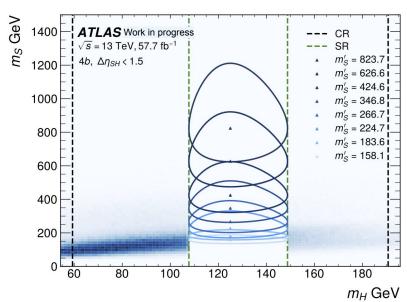



In this talk we will focus on the resolved regime

Trigger strategy

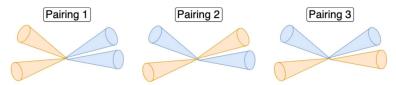
- Multi-b-jet triggers (2b+2j and 2b+1j) used in the analysis
- Trigger efficiencies measured at the jet-level for each trigger leg as a function of the reconstructed jet kinematics
- Scale Factors (SFs) applied to MC events to correct the simulated trigger efficiency to the performance measured in data
- Event-level SFs are calculated from jet-level inputs, taking into account the combination of different jets and the correlation between different triggers
- To simplify the calculation of event-level SFs, a **trigger bucket strategy** is used (events split in different categories, in each category only a single trigger is used)
- Triggers and trigger bucket scheme chosen to **maximize the yield of X** → **SH** → **4b signal events** using MC samples

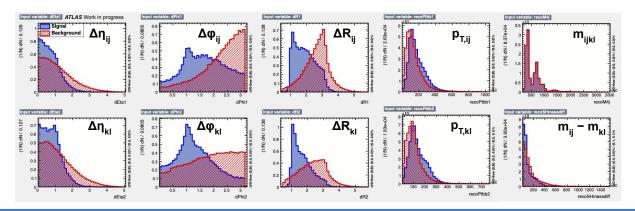

Event selection


Offline selection:

- ≥4 jets reconstructed using the anti-k, algorithm with R=0.4:
 - $p_{T} > 40 \text{ GeV}$
 - $|\eta| < 2.5$
 - Jet Vertex Tagger using NN
 - b-tagged with GN2 @ 85% efficiency
- BDT for S and H reconstruction
- $|\Delta \eta_{SH}|$ < 1.5 for QCD background rejection

Kinematic regions:

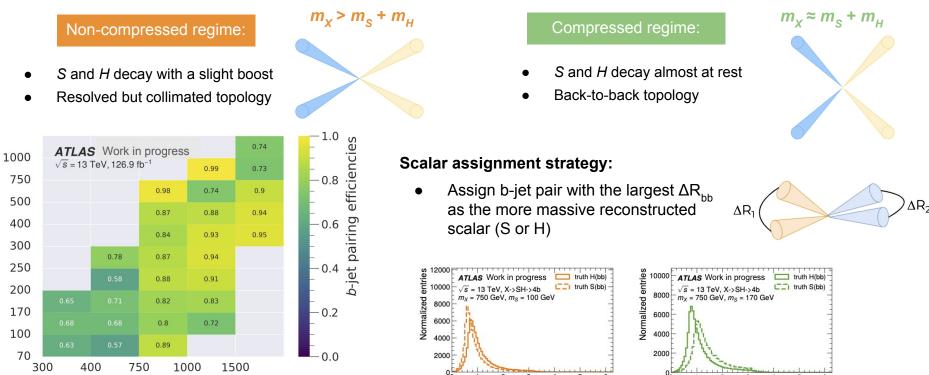

- Signal Region (SR) strip: m, window
- Control Region (CR): m_H sidebands
 - $m_{L} \in [59.3, 107.8] \text{ GeV}$
 - $m_{\perp} \in [148.8, 190.7] \text{ GeV}$
- **SRs:** Ellipses in m_S m_H mass plane defined using X_{SH}



Jet pairing strategy: BDT

Three possible combinations to pair four b-tagged jets, having two dijet systems to reconstruct the H and S candidates:

- **BDT** developed for b-jet pairing:
 - → BDT trained to assign scores to each combination
 - → Pairing with highest score = correct pair
 - \rightarrow Training variables: $\Delta \eta_{ij}$, $\Delta \phi_{ij}$, ΔR_{ij} , $P_{T,ij}$, $\Delta \eta_{kl}$, $\Delta \phi_{kl}$, ΔR_{kl} , $P_{T,kl}$, M_{ijkl} , M_{ij} M_{kl}
 - \rightarrow Training performed using MC X \rightarrow SH \rightarrow 4b (using correct pairs as signal and incorrect pairs as background)



Jet pairing strategy: BDT

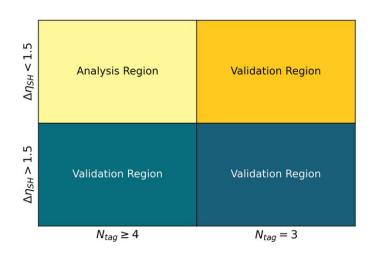
Training groups:

 $m_{\rm S}$ [GeV]

→ BDT training split in two regions based on the X and S masses and final state topology:

truth $\Delta R(bb)$

Marta Lanzac Berrocal - CPAN Valencia 2025


 m_X [GeV]

truth $\Delta R(bb)$

Kinematic regions

Define additional kinematic regions (Validation Regions, VRs) orthogonal to SR where predictions in m_H window can be validated using collision data:

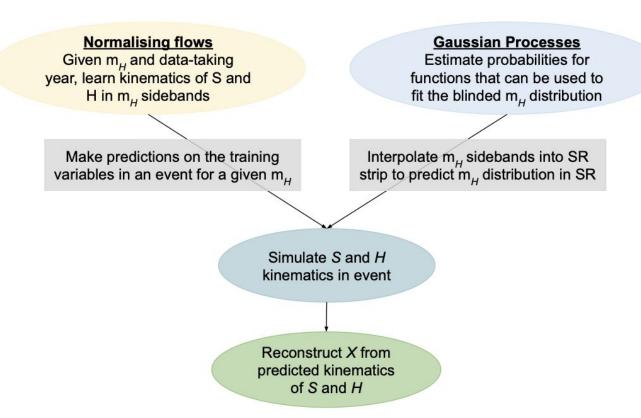
- 4b nominal $\Delta \eta_{SH}$: Analysis Region (signal expected here, full analysis selection applied, m_H window blinded)
- 3b nominal $\Delta \eta_{SH}$ VR: kinematics similar to $4b \Rightarrow$ used for background validation
- 4b and 3b reversed $\Delta \eta_{SH}$ VRs: almost purely QCD \Rightarrow conservative validation of analysis workflow

Nominal $\Delta \eta_{SH}$: $\Delta \eta_{SH} < 1.5$

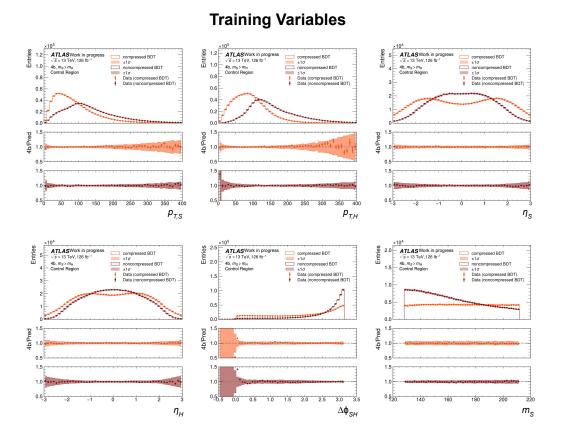
Reversed $\Delta \eta_{SH}$: $\Delta \eta_{SH} > 1.5$

4b: ≥4 jets *b*-tagged with GN2v01@85%

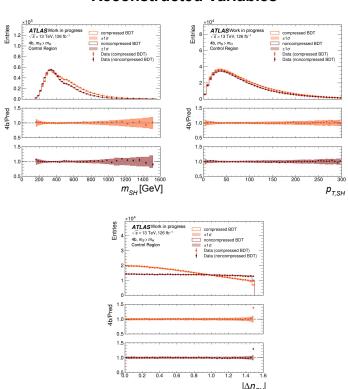
3b: 3b + 1 jet failing GN2v01@85%


Discriminant variable: m_{SH}

Analysis using 6 categories:

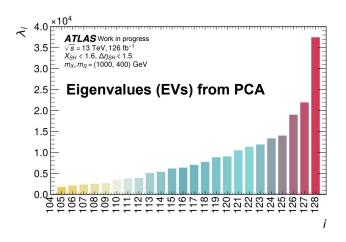

- $|\Delta \eta_{SH}| \in [0, 0.5, 1.0, 1.5]$
- $X_{SH} \in [0, 0.95, 1.96]$

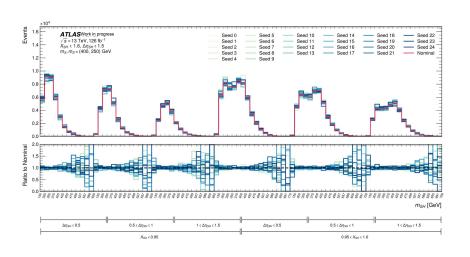
Background estimation


Dominant backgrounds: **QCD multijet** and *tf* production → entirely data-driven background estimation

Background validation

Reconstructed Variables

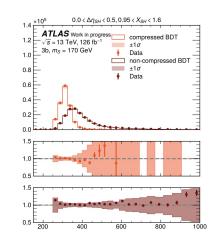


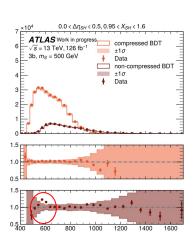

Systematic uncertainties (I)

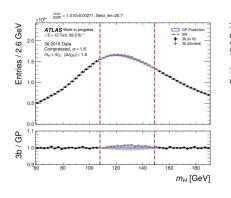
Dominant uncertainties arise from the data-driven background estimation technique

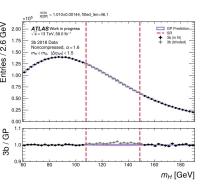
Background systematics:

- Principal Component Analysis (PCA):
 - Used to reduce dimensionality and capture the dominant shape variations in the m_{SH} spectrum
 - Eigendecomposition of 1σ uncertainty band on 25 NF+GP predictions
 - Large EVs → correlated (shape) uncertainties, smaller EVs → uncorrelated uncertainties (applied to account for residual discrepancies in the validation region)

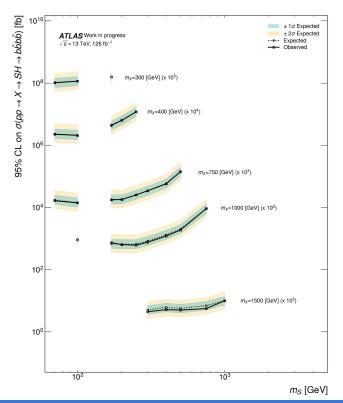


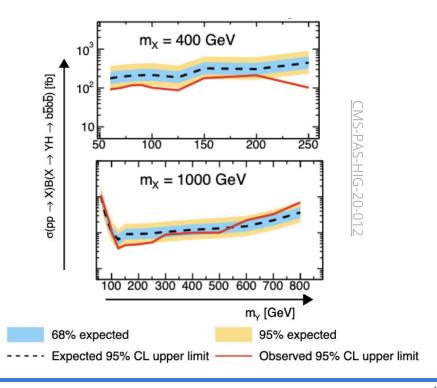



Systematic uncertainties (II)

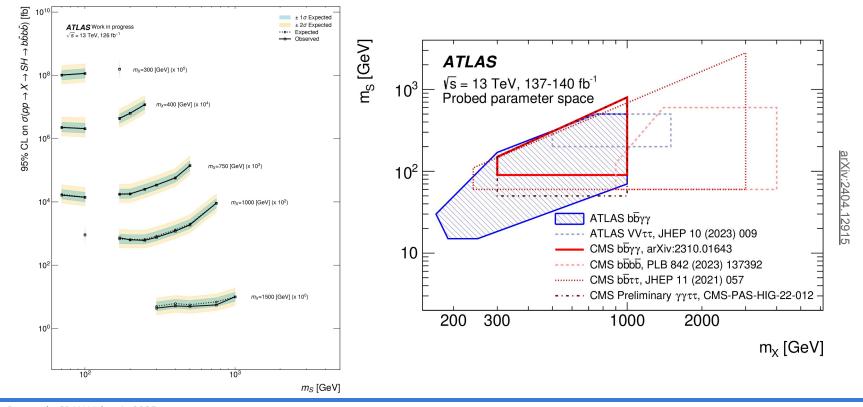

Background systematics:

- NF+GP 3b non-closure uncertainty (shape uncertainty):
 - Quantifies disagreement between prediction and data in the 3b validation region
 - Captures potential mismodeling of QCD multijet background
- GP non-closure (normalisation uncertainty):
 - Apply normalisation discrepancy in 3b as additional normalisation uncertainty on background





Results


- Upper limits set on $\sigma(pp \to X \to SH \to b\overline{b}b\overline{b})$, no excess observed in any category
- Mass range explored: $m_{\chi} \in [200, 3000]$ GeV, $m_{S} \in [70, 2500]$ GeV

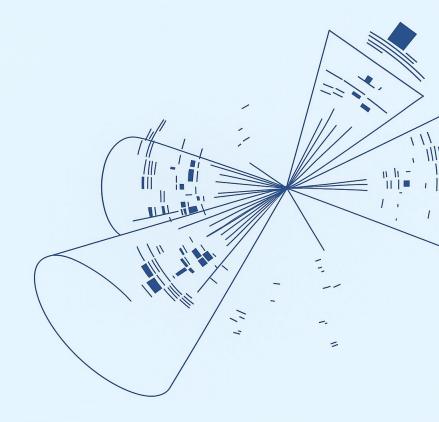
Results

ATLAS search for $X \to SH \to b\overline{b}b\overline{b}$ including resolved, boosted and mixed topologies covers the widest mass grid yet $(m_X \in [300, 6000] \text{ GeV}, m_S \in [70, 5000] \text{ GeV})$

Summary

$X \rightarrow SH \rightarrow b\bar{b}b\bar{b}$ search with Run 2 ATLAS data:

- Asymmetric scalar cascade decays to 4b final states performed for the first time in ATLAS
- Analysis focuses on the resolved topology, covering $m_{\chi} \in [300, 1500]$ GeV, $m_{S} \in [70, 1000]$ GeV
- Targets a broad mass plane using a dedicated strategy per signal region
- Categorisation of the signal regions to harmonised sensitivity across the full grid

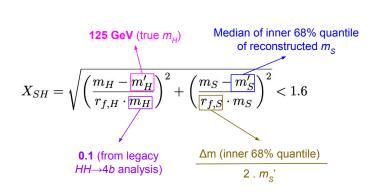

Novel techniques:

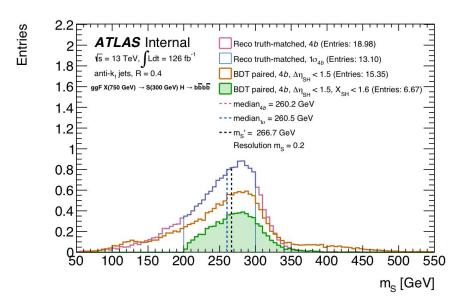
- Transformer (GN2) for jet flavour tagging and BDT for jet pairing
- Normalising Flows + Gaussian Process for fully data-driven background estimation

Results:

- No excess observed
- 95% CL upper limits on $\sigma(pp \to X \to SH \to b\bar{b}b\bar{b})$ set for full resolved grid
- Limits competitive with CMS

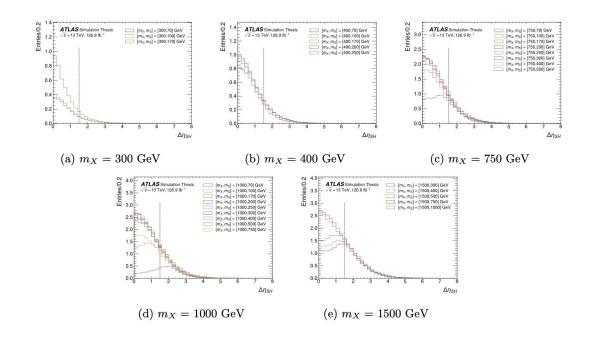
THANKS!




Trigger strategy

• List of all triggers considered:

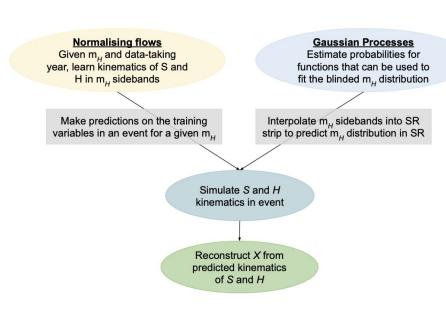
Trigger Type	Trigger Name
	2016
2b + 2j	HLT_2j35_bmv2c2060_split_2j35_L14J15p0ETA25
2b + 1j	$HLT_{j}100_2j55_bmv2c2060_split$
1b	$HLT_{j225_bmv2c2060_split}$
	2017
2b + 2j	$HLT_2j15_gsc35_bmv2c1040_split_2j15_gsc35_boffperf_split_L14J15p0ETA25$
2b + 1j	$HLT_j110_gsc150_boffperf_split_2j35_gsc55_bmv2c1070_split_L1J85_3J30$
2b + HT	HLT_2j35_gsc55_bmv2c1050_split_ht300_L1HT190_J15s5pETA21
1b	$HLT_{j225_gsc300_bmv2c1070_split}$
	2018
2b + 2j	HLT_2j35_bmv2c1060_split_2j35_L14J15p0ETA25
2b + 1j	$HLT_j110_gsc150_boffperf_split_2j45_gsc55_bmv2c1070_split_L1J85_3J30$
2b + HT	HLT_2j45_gsc55_bmv2c1050_split_ht300_L1HT190_J15s5pETA21
1b	$HLT_j225_gsc300_bmv2c1070_split$


Event Selection: signal regions

Event Selection: signal regions

• Cut on $|\Delta \eta_{SH}|$ < 1.5 for QCD background rejection

Background estimation

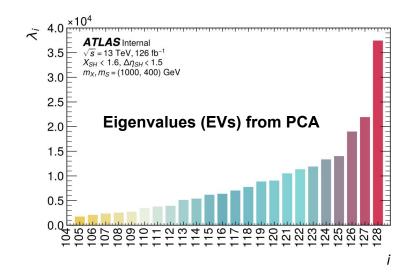

Dominant backgrounds: **QCD multijet** and **tt production** → entirely **data-driven background estimation**

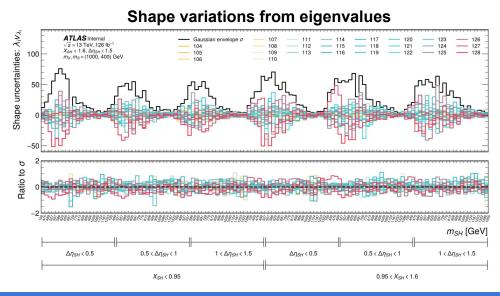
Normalising Flows (NF):

- Used to model the m_{SH} distribution
- Uses a series of invertible transformation to learn known distributions into random data
- Capture nonlinear correlations and tails
- Trained using unbinned CR data for each (m_x, m_s) point
- Provide sampling, interpolation and uncertainty quantification

Gaussian Process (GP):

- Model the SR/CR as a function of m_{SH}
- Bayesian regression technique: learns a function with a prior over function space
- Provides smooth interpolation and pointwise uncertainties
- Trained on sideband data to extract SR/CR correction
- Applied as a multiplicative weight to the NF output




Systematic uncertainties (I)

Dominant uncertainties arise from the data-driven background estimation technique

Background uncertainties contribution:

- Principal Component Analysis (PCA):
 - Used to reduce dimensionality and capture the dominant shape variations in the m_{SH} spectrum
 - Perform 25 retrainings and reduce to their principal components
 - Largest components included as shape uncertainties on the discriminant

Fit validation

Statistical uncertainties:

- Discriminant variable (mSH) rebinning:
 - o initial binned with 25 GeV in [150, 500] GeV → many empty bins
 - o rebinned requiring at least 16 predicted background events per bin

Fit validation strategy:

- Full fit performed in validation regions
- NF + GP background models are fixed; only nuisance parameters float
- Compare post-fit prediction with data for mSH spectrum
- Good closure observed in all six categories
- Systematics are profiled; pulls and constraints checked