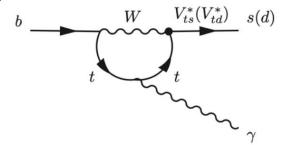
Radiative Decays at LHCb

Alèxia Martorell Granollers, La Salle, Universitat Ramon Lull

CPAN 2025

19/11/2025

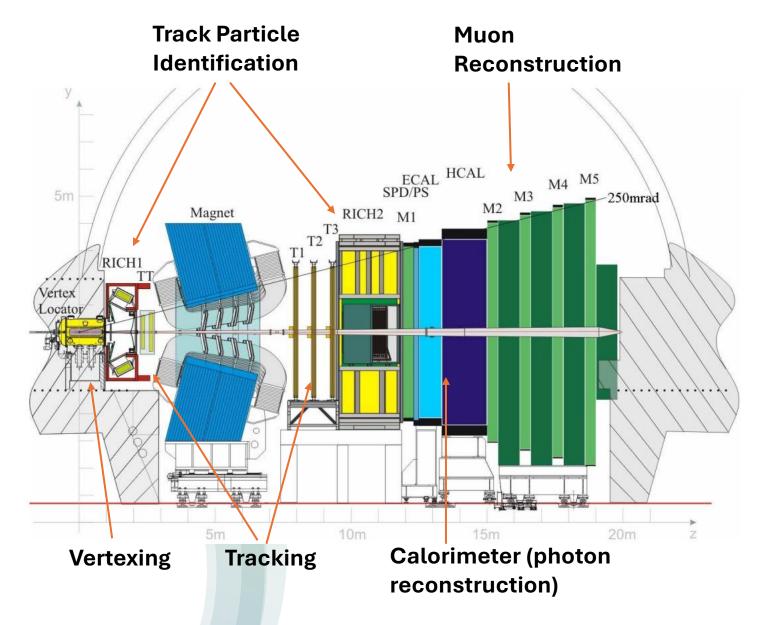


Radiative b-hadron decays

 $b \rightarrow s(d)\gamma$ transitions are Flavour Changing Neutral Current (FCNC)

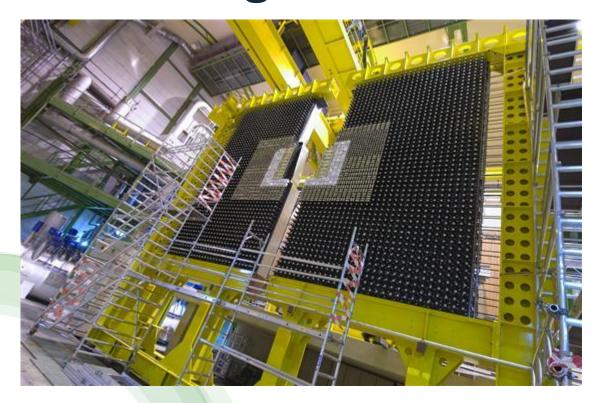
- Highly suppressed in the SM (BR $< 10^{-5}$)
- Sensitive to NP
- Access to test the couplings to 3rd generation quarks

Observables:


Branching ratios $\propto (|C_7|^2 + |C_7'|^2)$

Photon Polarisation
$$\propto \frac{1 - |C_7'|^2/|C_7|^2}{1 + |C_7'|^2/|C_7|^2}$$

CP asymmetries
$$\propto Im \; \frac{C_7 C_7'}{|C_7|^2 + |C_7'|^2}$$


$$H_{eff} \propto V_{tb}V_{ts}\sum_{i}(C_{i}O_{i} + C'_{i}O'_{i})$$

Radiative b-hadron decays at LHCb

- Designed for study b and c hadrons
- Forward arm spectrometer pseudorapidity $2 < \eta < 5$
- Good vertex resolution $\sigma_{IP} = 20 \ \mu m$
- Excellent momentum resolution $\frac{\Delta p}{p} = 0.5\% 1\% (5 200 GeV/c)$
- Efficient particle identification
- $\epsilon_{tracking} \sim 96\%$

Electromagnetic Calorimeter at LHCb

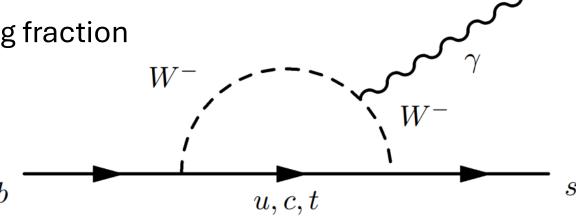
- Shashlik technology with 4x4, 6x6 and $12x12 cm^2$ cell size
- photon energy resolution $\frac{\sigma E}{E} = 1\% + 10\%/\sqrt{E}$
- Optimised for π^0 and γ identification in the few GeV to few 100 GeV
- Large array of $\sim 50~m^2$ with 3312 modules and 6016 channels

Upgrade II

- Timing capabilities with O(20) ps resolution
- Increased granularity in the central region with denser absorber (Upgrade Ib)

Radiative b-hadron decays

Recent Results


- Measurement of the $B^0 \to \rho (770)^0 \gamma$ branching fraction [Submitted to JHEP] https://arxiv.org/abs/2507.14401
- Search for the $B_s^0 \to K^-\pi^+\gamma$ decay with converted photons [LHCb-PAPER-2025-056 in preparation]

To constraint $|V_{td}/V_{ts}|^2$

Currently Analysis:

Measurement of the $arLambda_b^0
ightarrow arLambda^0 \gamma$ branching fraction

Many different theoretical predictions

Measurement of the $B^0 \to \rho (770)^0 \gamma$ branching fraction [Submitted to JHEP] https://arxiv.org/abs/2507.14401

- First measurement associated to the transitions $b \to d\gamma$ in LHCb
- First observation by Belle and BaBar

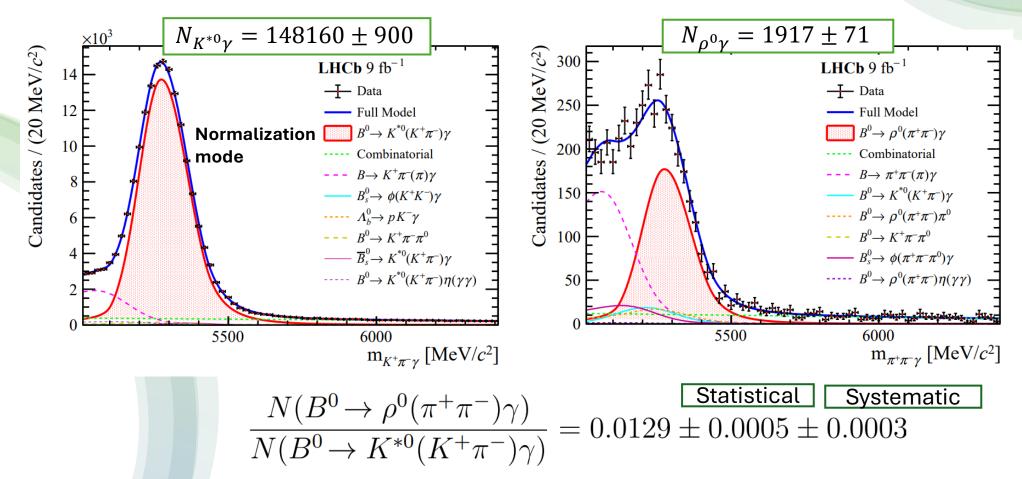
A recent combination of the measurements using Belle II:

$$B(B^0 \to \rho^0 \gamma) = (8.2 \pm 1.3) \times 10^{-7}$$

- Using Run 1+ 2 LHCb data (9 fb^{-1})
- Extraction of the ratio of the branching fraction

$$\frac{\mathcal{B}(B^0 \to \rho^0 \gamma)}{\mathcal{B}(B^0 \to K^{*0} \gamma)} = \boxed{\frac{N(B^0 \to \rho^0 (\pi^+ \pi^-) \gamma)}{N(B^0 \to K^{*0} (K^+ \pi^-) \gamma)}} \times \boxed{\frac{\varepsilon(B^0 \to K^{*0} (K^+ \pi^-) \gamma)}{\varepsilon(B^0 \to \rho^0 (\pi^+ \pi^-) \gamma)}} \times \mathcal{R}_{\mathcal{B}}$$

Ratio of Signal Yields:


From simultaneous mass fit to data

Efficiencies: from simulation and data

$$\frac{B(K^{*0} \to K^+ \pi^-)}{B(\rho^0 \to \pi^+ \pi^-)}$$

Measurement of the $B^0 \to \rho (770)^0 \gamma$ branching fraction [Submitted to JHEP] https://arxiv.org/abs/2507.14401

- Normalization and signal modes shared most of the signal shape parameters
- Most individual background contributions fixed as fraction of the $B^0 \to K^{*0}(892)\gamma$ yields Shapes of specific backgrounds obtained from simulation

Measurement of the $B^0 \to \rho (770)^0 \gamma$ branching fraction [Submitted to JHEP] https://arxiv.org/abs/2507.14401

• Combining the ratio of branching fraction measured with the known branching fraction for $B^0 \to K^{*0} \gamma$

$$\mathcal{B}(B^0 \to \rho^0 \gamma) = (7.9 \pm 0.3 \pm 0.2 \pm 0.2) \times 10^{-7}$$
 Statistical Systematic

- Assuming $\rho^0 \to \pi^+\pi^-$ decay saturates the dipion spectrum in the range used $m_{\pi\pi} \in [630,920]~MeV/c$
- Most precise + good agreement with existing measurements
- Systematics uncertainties

Limited knowledge of the
branching fraction of the $B^0 \rightarrow$
$\rho^0(\pi^+\pi^-)\pi^0$ decay mode

	Source	Uncertainty [%]
	Signal mass model	(+0.5, -0.6)
•	Background contributions	(+2.0, -2.2)
	Background mass models	(+1.1, -0.8)
	Total systematic uncertainty	(+2.3, -2.4)

Yield ratio

7.8 + 1.9

7.5 ^{+ 1.6} _{- 1.5}

 8.6 ± 1.5

 8.2 ± 1.3

 7.9 ± 0.4

 $B(B^0 \to \rho^0 \gamma)[10^{-7}]$

Belle PRL101 (2008) 111801

BABAR PRD78 (2008) 112001

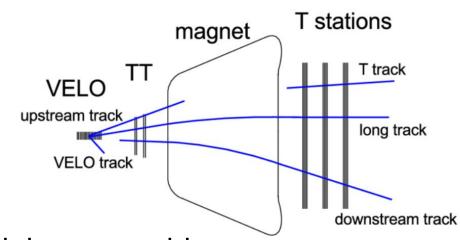
Belle+Belle II PRD111 (2025) L071103

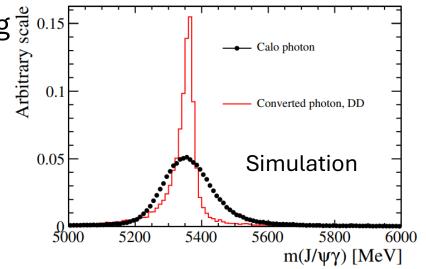
LHCb LHCb-PAPER-2025-017

PDG

-HFLAV 2025

Source	Uncertainty [%]
Simulated samples size	(+0.8, -0.8)
Kinematics corrections	(+1.1, -0.2)
Kaon/pion reconstruction	(+0.3, -0.3)
Charged PID	(+0.7, -1.3)
Neutral PID	(+0.1, -0.1)
Total systematic uncertainty	(+1.6, -1.6)
	8

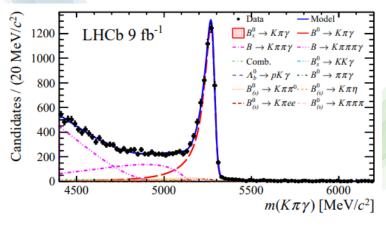

Search for the $B_S^0 \to K^-\pi^+\gamma$ decay with converted photons [LHCb-PAPER-2025-056 in preparation]

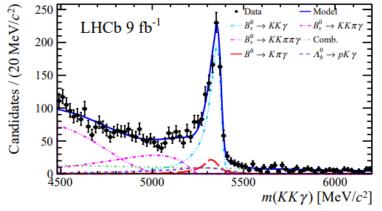

- First evidence of the $B_s^0 \to K^-\pi^+\gamma$
- Using Run 1+ 2 LHCb data $(9 fb^{-1})$
- Use photons converting to e^+e^-
 - Better resolution (by a factor 3)
 - Reduced yields (by a factor of 10)

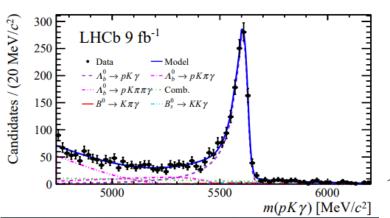
Improved resolution by rejecting electrons with bremsstrahlung

Downstream conversions emit less bremsstrahlung ਭੂੰ 0.15

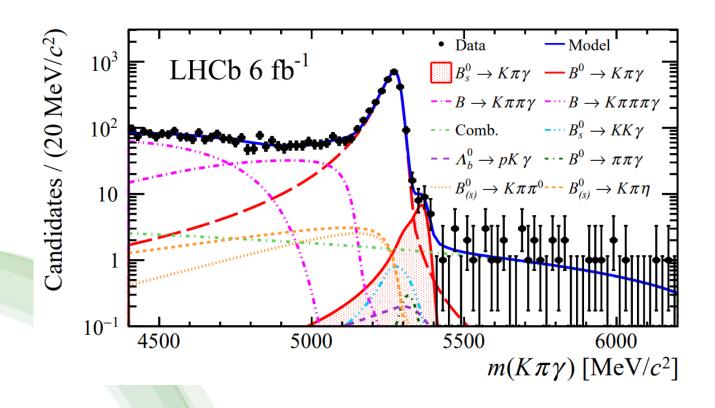
• Analyse separately low (796 < m($K\pi$) < 996 MeV) and high (996 < m($K\pi$) < 1800 MeV)



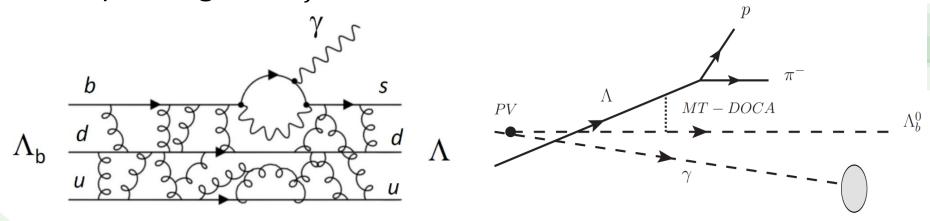



Search for the $B_S^0 \to K^-\pi^+\gamma$ decay with converted photons [LHCb-PAPER-2025-056 in preparation]

Background subtraction


- Misidentified $B_s^0 \to K^-K^+\gamma$ and $\Lambda_b^0 \to pK^-\gamma$ decays reduced using information from RICH
- Combinatorial background: reduced by > 95% with boosted decision tree (BDT) classifier trained on kinematic and topological properties of decay

Search for the $B_S^0 \to K^-\pi^+\gamma$ decay with converted photons [LHCb-PAPER-2025-056 in preparation]


- 38 ± 18 signal decays $(32 \pm 11 \, \text{Run 2 downstream low-m}(K^-\pi^+))$
- In agreement with SM predictions
- 3.5 standard deviations significance

Ratio of cross section

$$\mathcal{R} \equiv \frac{\mathcal{B}(B_s^0 \to K^- \pi^+ \gamma)}{\mathcal{B}(\overline{B}^0 \to K^- \pi^+ \gamma)} = \frac{N(B_s^0 \to K^- \pi^+ \gamma)}{N(\overline{B}^0 \to K^- \pi^+ \gamma)} \frac{\varepsilon(\overline{B}^0 \to K^- \pi^+ \gamma)}{\varepsilon(B_s^0 \to K^- \pi^+ \gamma)} / \frac{f_s}{f_d} = (3.2 \pm 1.1 \pm 0.3) \times 10^{-2}$$

$\Lambda_b^0 \to \Lambda^0 \gamma$ branching fraction

• First observation of the decay ${\it \Lambda}_b^0 \to {\it \Lambda}^0 \gamma$ was published using the 2016 Run 2 data corresponding to 1.7 fb^{-1}

• Combination of a long-lived particle (Λ^0) and a photon Challenging reconstruction

Dedicated strategy ———— HLT2 and offline reconstruction

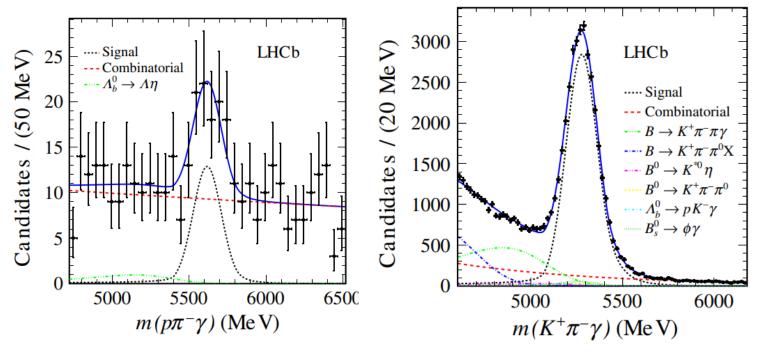
2016 branching fraction analysis https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.031801
2015-2018 Angular analysis https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.L051104

$\Lambda_b^0 \to \Lambda^0 \gamma$ branching fraction

Result in agreement with SM

$$\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma) = (7.1 \pm 1.5 \,(\text{stat}) \pm 0.9 \,(\text{syst})) \cdot 10^{-6}$$

Dominated by External fragmentation fractions
And Data simulation agreement


Predictions from theory:

$$\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \gamma) = (7.3 \pm 1.5) \times 10^{-06}$$

LCSR https://arxiv.org/pdf/0804.0648.pdf

$$\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \gamma) = (7.1 \pm 3.4) \times 10^{-06}$$

SU(3) Flavor Symmetry (IRA) https://arxiv.org/pdf/2008.06624.pdf

https://doi.org/10.1103/PhysRevLett.123.031801

$\Lambda_h^0 \to \Lambda^0 \gamma$ branching fraction

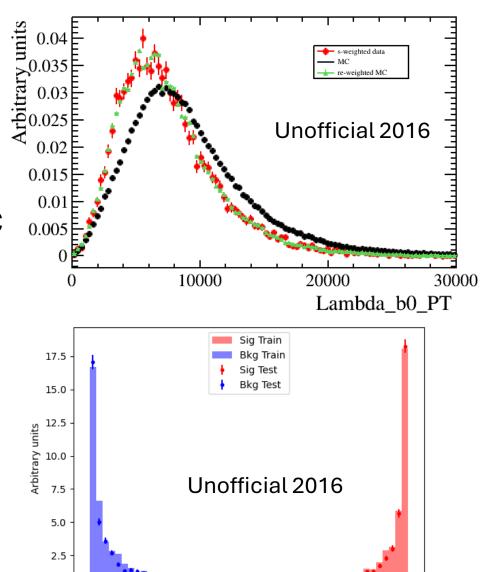
On going:

- Extend to 2017 and 2018 data \longrightarrow 5.4 fb^{-1} (Increase by factor of 3)
 - ---- Precise measurement
- Normalisation channel $B^0 \to K^{*0} \gamma$

combined reconstruction and selection efficiency ratio of yields

$$\frac{N(\Lambda_b^0 \to \Lambda \gamma)}{N(B^0 \to K^{*0} \gamma)} = \frac{f_{\Lambda_b^0}}{f_{B^0}} \times \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma)}{\mathcal{B}(B^0 \to K^{*0} \gamma)} \times \frac{\mathcal{B}(\Lambda \to p \pi^-)}{\mathcal{B}(K^{*0} \to K^+ \pi^-)} \times \frac{\epsilon(\Lambda_b^0 \to \Lambda \gamma)}{\epsilon(B^0 \to K^{*0} \gamma)}$$

ratio of hadronization fractions


 $B^0 \to K^{*0} \gamma$ is the most precise measurement of the possible normalisation modes

$\Lambda_b^0 \to \Lambda^0 \gamma$ branching fraction

Selection process

- Trigger (dedicated Line) + stripping + preselection
- Control mode $\Lambda_b^0 \to pK^-J/\psi$ $\Lambda_b^0 p, \Lambda_b^0 p_t$ corrections are applied to the $\Lambda_b^0 \to \Lambda^0 \gamma$ MC Splot technique with control mode

BDT after a preselection
 Signal — Reweighted simulated data
 Background — Data in high side band

BDT output

1.0 15

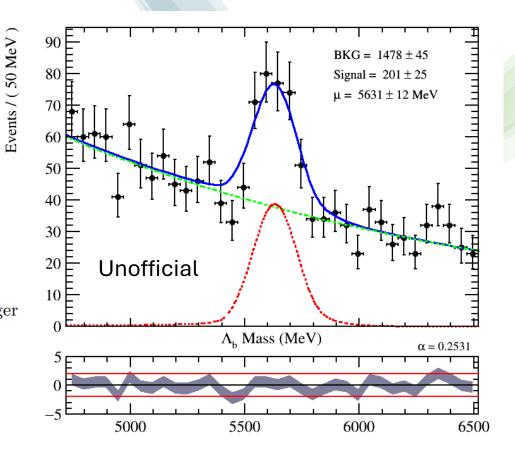
$\Lambda_b^0 \to \Lambda^0 \gamma$ branching fraction

• Invariant mass fit of $\varLambda_b^0 \to \varLambda^0 \gamma$ Preliminary results for 2016+2017+2018

In progress:

- Background studies $(\Lambda_b^0 \to \Lambda^0 \gamma \text{ and } B^0 \to K^{*0} \gamma)$
- Efficiencies

$$\epsilon^{\rm sel} = \epsilon^{\rm gen} \times \epsilon^{\rm reco, strip} \times \epsilon^{\rm presel} \times \epsilon^{\rm tr~PID} \times \epsilon^{\rm BDT} \times \epsilon^{\gamma \rm ~PID} \times \epsilon^{\rm trigger}$$

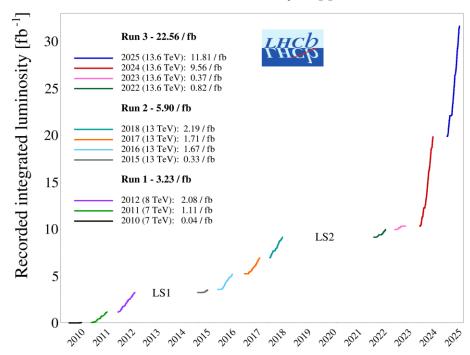

Hadronisation factors

$$f_{\Lambda_b^0}/(f_d + f_u) \ (\Lambda_b^0 \ p_T) = A[p_1 + \exp(p_2 + p_3 p_T)]$$

Systematic uncertainties

From the fit model + From normalization constant

$$\frac{N(\Lambda_b^0 \to \Lambda \gamma)}{N(B^0 \to K^{*0} \gamma)} = \frac{f_{\Lambda_b^0}}{f_{B^0}} \times \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma)}{\mathcal{B}(B^0 \to K^{*0} \gamma)} \times \frac{\mathcal{B}(\Lambda \to p \pi^-)}{\mathcal{B}(K^{*0} \to K^+ \pi^-)} \times \frac{\epsilon(\Lambda_b^0 \to \Lambda \gamma)}{\epsilon(B^0 \to K^{*0} \gamma)}$$



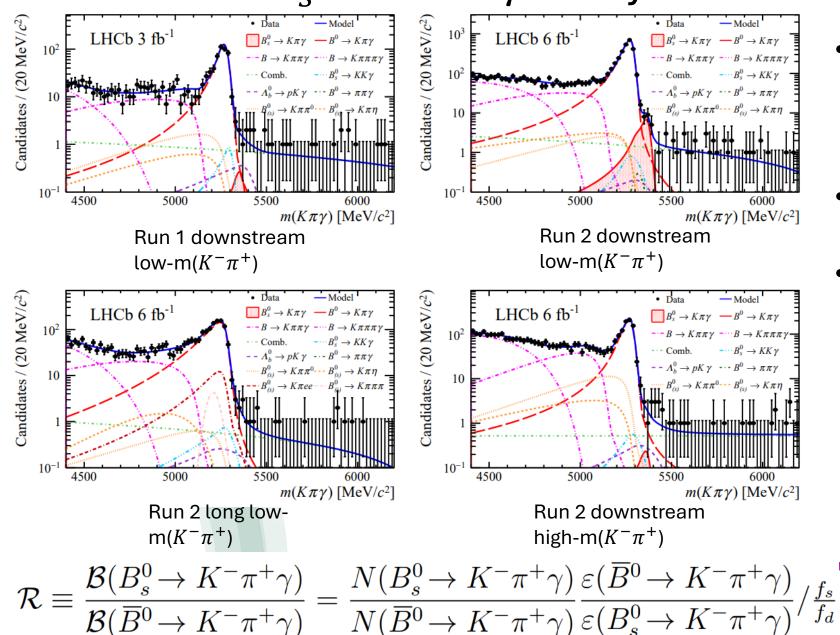
Summary and prospects

- LHCb is an excellent laboratory to study b-hadron radiative decays
- Radiative decays offer a unique environment to look for BSM physics
- Many analyses using Run 1 and Run 2 (9 fb^{-1}) currently ongoing at LHCb
- Run 3 data taking $> 20 \ fb^{-1}$ Upgraded detector with fully software-based trigger system
- Future Run 4 and Run 5 (target $300\,fb^{-1}$): Fully new detector to exploit flavour physics potential Upgrade II: Improved granularity in ECAL and Precise timing information

I statistical uncertainty

Total recorded luminosity $-pp - 31.7 \text{ fb}^{-1}$

Thank you



Backup

Search for the $B_s^0 \to K^-\pi^+\gamma$ decay with converted photons

- 38 ± 18 signal decays $(32 \pm 11 \, \text{Run 2 downstream low-m}(K^-\pi^+))$
- In agreement with SM predictions
- 3.5 standard deviations significance

Ratio of cross section

Statistical Systematical $= (3.2 \pm 1.1 \pm 0.3) \times 10^{-2}$

$\Lambda_h^0 \to \Lambda^0 \gamma$ branching fraction

Selection process of control mode $arLambda_b^0 ightarrow arLambda^0 \gamma$

Trigger:

- L0 Photon || L0 Electron
- Hlt2RadiativeLb2L0GammaLL
- Hlt1TrackMVA

Stripping:

Lb2L0Gamma

Preselection:

Variable	$\Lambda_b^0 \to \Lambda J/\psi$	Units
Track χ^2/ndof	< 4	
π ProbNNpi	> 0.2	
p ProbNNp	> 0.2	
μ ProbNNmu	> 0.2	
$\Lambda \Delta M$	< 6	MeV/c^2
Λ IP	> 0.15	mm
$\Lambda \; \chi_{ m IP}^2$	> 16	
$\Lambda~\chi^2_{ m FD}$	> 225	
$J/\psi \Delta M$	< 60	MeV/c^2
$J/\psi \chi^2_{ m Vtx}$	< 16	
$\Lambda_b^0 p_T$	> 4000	MeV/c

Table 7: Selection for the $\Lambda_b^0 \to \Lambda J/\psi$ decay channel.

+ PID cuts

BDT input variables:

Variables	
$\pi^{\pm}~p_{ m T}$	
$p_{\rm T} + \pi^{\pm} p_{\rm T} + r$	γp_{T}
$p \text{ IP } \chi^2$	
π^{\pm} IP	
Tracks DOCA	L
$\frac{\gamma}{4} \frac{p_{\mathrm{T}}}{n}$	
$rac{\Lambda}{\Lambda} rac{p_{\mathrm{T}}}{\mathrm{IP}}$	
Λ IP χ^2	
$\frac{\Lambda}{\Lambda}$ FD	
$A_h^0 p_{\mathrm{T}}$	
A_b^0 MTDOCA	L
$\Lambda \operatorname{Cone}(1.0) \mathcal{A}$	p
$\Lambda \operatorname{Cone}(1.0) \mathcal{A}_{I}$	$p_{ m T}$
$\gamma \text{ Cone}(1.0) A_{I}$	T