Software and Computing activities at UB

Carla Marin

Experimental High Energy Physics group

UNIVERSITAT DE BARCELONA

Experimental High Energy Physics group @UB

Seniors:

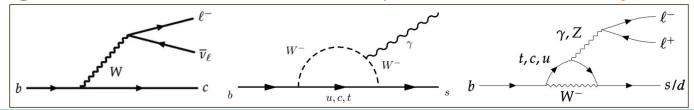
- Dr. Lluís Garrido
- Dr. Eugeni Graugés
- Dr. Ricardo Vázquez
- Dr. Carla Marin

PhD students:

- Dr. Aniol Lobo (→ LAPP, France)
- Albert Lopez
- Paloma Laguarta
- Pol Vidrier
- Alejandro Rodriguez
- Ernest Olivart

Postdoctoral researchers:

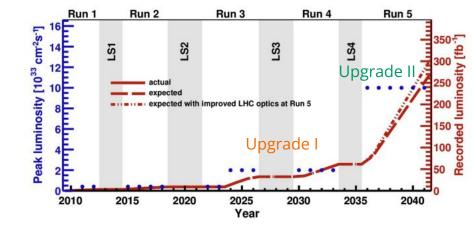
- Dr. Alessandra Gioventu (→ USC)
- Dr. Lukas Calefice
- Dr. Felipe Souza



Experimental High Energy Physics group @UB

Long-standing trajectory, member of LHCb since 1998

- strong expertise in calorimetry:
 - design, construction and operation of SPD detector in Run 1 & 2
 - o design of calorimeter ASIC (ICECAL), operation and monitoring for LHCb Upgrade (Run 3)
 - design of calorimeter ASIC for LHCb Upgrade II (Run 5)
- strong expertise in Real Time Analysis:
 - \circ y, e[±] and μ [±] reconstruction, identification (PID) and calibration in Run 2 & 3
 - development of ML-based trigger selections for Run 2 & 3
- strong involvement in rare and semileptonic b-hadron decays


LHCb upgrades

Upgrade I:
$$L_{inst} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1} \text{ (x5)}$$

- Higher granularity tracking detectors
 - \circ ECAL: same hardware \rightarrow much higher occupancy than in Run 2
- Triggerless readout + fully-software based trigger system
 - HLT1: Real-Time reconstruction at 30 MHz
 - HLT2: offline-quality reconstruction, after real-time detector & calibration

Upgrade II:
$$L_{inst} = 10 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \text{ (x5 again!)}$$

- Higher granularity detectors, (most) including timing
 - ECAL partly upgraded in LS3
- Fully-software based trigger exploiting 4D reconstruction (including timing)

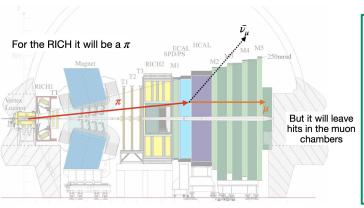
Software & computing activities @UB

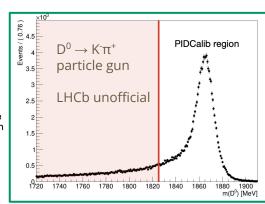
Run 1 & 2: muon misidentification (misID) calibration

Run 3:

- calorimeter and trigger operation, and data quality monitoring
- photon and electron reconstruction
- electron particle identification (PID) and its calibration
- Machine Learning (ML)-based HLT2 selections:
 - inclusive radiative trigger
 - $\circ\quad \text{autoencoder for } \Lambda_b^{} \to p \pi^{\text{-}} \mu^{\text{+}} \mu^{\text{-}} \text{ decays}$ see Paloma's talk

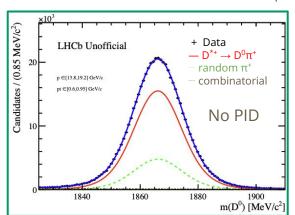
Run 4 & 5:

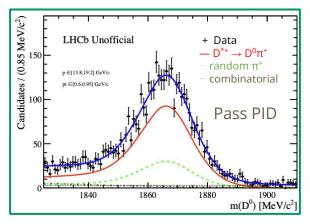

- LHCb software and computing strategy
- calorimeter reconstruction using GNN's see Felipe's talk

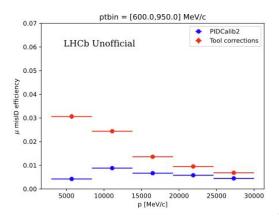


Muon misidentification calibration

- $\pi \rightarrow \mu \nu$ decays in flight: significant background for μ identification
 - 1. tail of calibration sample out of range → correction from simulation

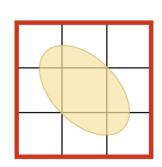


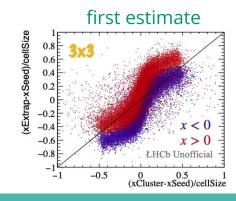

Muon misidentification calibration


 $\pi \rightarrow \mu \nu$ decays in flight: significant background for μ identification

- 1. tail of calibration sample out of range \rightarrow correction from simulation
- 2. distortion of mass shape \rightarrow mass model including tail

calibration sample: $D^{*+} \rightarrow D^0 (\rightarrow K^-\pi^+)\pi^+$

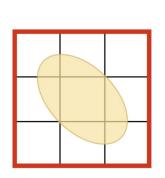


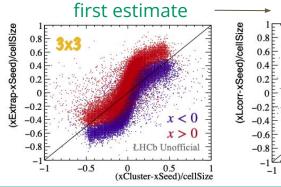

y reconstruction in Run 3

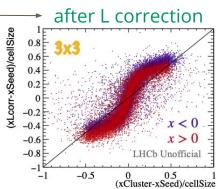
ECAL cluster reco: energy & position corrections critical for resolution

1. first estimate: weighted-average barycenter

$$E = \sum_{i} E_{i} \qquad x_{b} = \frac{1}{E} \sum_{i} x_{i} E_{i} \qquad y_{b} = \frac{1}{E} \sum_{i} y_{i} E_{i}$$




y reconstruction in Run 3


ECAL cluster reco: energy & position corrections critical for resolution

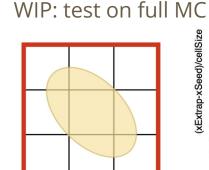
- 1. first estimate: weighted-average barycenter
- $E = \sum_{i} E_{i} \qquad x_{b} = \frac{1}{E} \sum_{i} x_{i} E_{i} \qquad y_{b} = \frac{1}{E} \sum_{i} y_{i} E_{i}$
- 2. L correction: redefine (x,y) at z of shower maximum

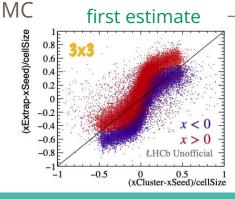
$$z^{L} = \gamma_0 \ln(E) + \delta_0$$

y reconstruction in Run 3

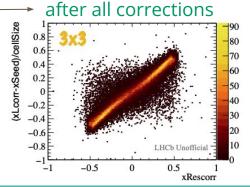
ECAL cluster reco: energy & position corrections critical for resolution

1. first estimate: weighted-average barycenter

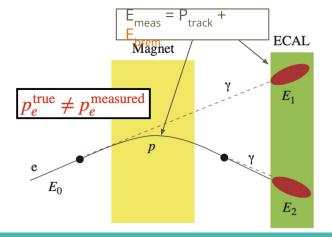

$$E = \sum_{i} E_{i} \qquad x_{b} = \frac{1}{E} \sum_{i} x_{i} E_{i} \qquad y_{b} = \frac{1}{E} \sum_{i} y_{i} E_{i}$$

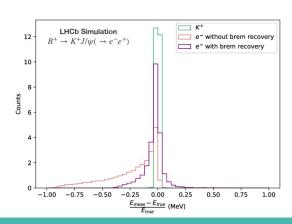

2. L correction: redefine (x,y) at z of shower maximum

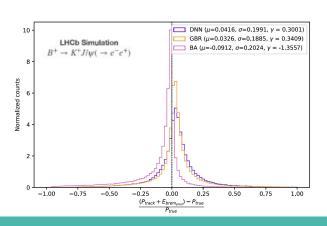

$$z^L = \gamma_0 \ln(E) + \delta_0$$


- 3. S correction: correct for non-linear energy distribution among cluster cells
 - a. angular and residual corrections

$$(x_i)_{\text{reco}}^S = b \sinh^{-1} \left(\frac{(x_i)_{\text{Cluster}} - (x_i)_{\text{seed}}}{\Delta} \cosh \frac{\Delta}{b} \right)$$

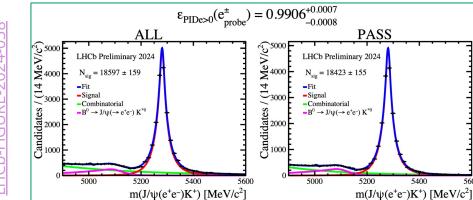

See Paloma's <u>talk</u> at COMCHA workshop & <u>Lukas'</u> at last CPAN




e[±] reconstruction in Run 3

Significant energy (E) loss due to Bremsstrahlung \rightarrow degraded momentum (p) resolution \rightarrow Idea: E_{brem} recovery with ML inference (DNN and GBR)

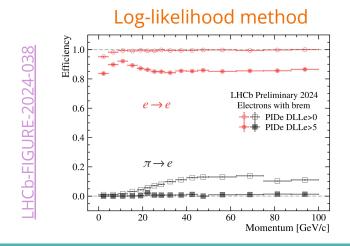
- ullet calorimeter + tracking information to infer total brem energy o ${\sf E}_{\sf brem,pred}$
- new approach (WIP): correct existing brem algorithm instead \rightarrow E_{brem} = E_{BremAdder} * $\alpha_{corr,pred}$
- challenge: impact on low-mass background shape

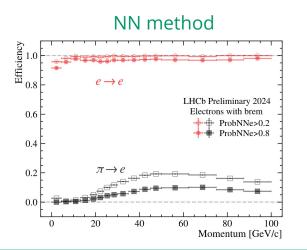


See Pol's <u>talk</u> at COMCHA workshop

Accurate calibration of e[±] ID and misID critical for analyses. Method:

- $B^+ \to J/\psi \ (\to e^+ e^-) \ K^+$ with tag-and-probe selection • π^+_{probe} from $D^{*+} \to (D^0 \to K^-\pi^+_{probe})\pi^+$ to estimate $\pi^+ \to e^\pm$ misID
- apply PID to $e_{probe} \rightarrow obtain selection efficiency from data, using mass fits$
- fit-and-count in kinematic bins to account for resolution variations

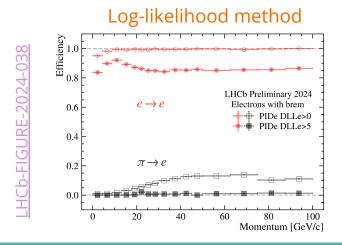


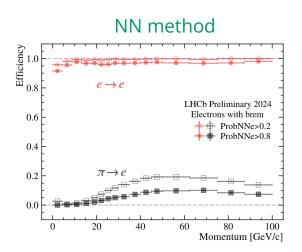


See Pol's talk at COMCHA workshop

Results:

- Performance comparable to Run 2
- Efficiency and misID tables available for all Run 3 analyses (through <u>PIDCalib2</u>)





See Pol's talk at COMCHA workshop

Results:

- Performance comparable to Run 2
- Efficiency and misID tables available for all Run 3 analyses (through <u>PIDCalib2</u>)
- ullet Room for improvement in NN-based classifier o see Ernest's poster

1.00E+08 LHCb Run 5 1.00E+07 LHCb Run 3 1.00E+06 Bandwidth (MB/s) 1.00E+05 1.00E+04 1.00E+03 ATLAS / CMS **DUNE SuperNova** LHCb Runs 1&2 NA62 DUNE 1.00E+02 H1 / ZEUS NA49 1.00E+01 1.00E+00 1990 2000 2020 Year

LHCb Upgrade II

Biggest bandwidth challenge in HEP: > 10⁷ MB/s

- heterogeneous system:
 - FPGA-based DAQ cards
 - high-speed dedicated network cards
 - o GPUs for partial (HLT1) and full-quality reco (HLT2), both exploiting timing info
- large simulation needs → flash simulation and parallelisation (CPUs and GPUs)
- huge samples for offline analysis → optimised storage formats and access models
- see LHCb-PUB-2025-004 submitted to ESPPU

1.00E+08 1.00E+07 LHCb Run 4 LHCb Run 4 CMS HL-LHC ALICE Run 3 ATLAS / CMS DUNE SuperNova LHCb Run 5 CMS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 18 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 CMS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS LHCb Run 5 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS DUNE SuperNova LHCb Run 5 ATLAS HL-LHC ATLAS / CMS ATLAS HL-LHC ATLAS / CMS LHCb Run 5 ATLAS HL-LHC ATLAS / CMS ATLAS / CMS ATLAS HL-LHC ATLAS / CMS ATLAS HL-LHC ATLAS / CMS ATLAS /

Biggest bandwidth challenge in HEP: > 10⁷ MB/s

- heterogeneous system:
 - FPGA-based DAQ cards
 - high-speed dedicated network cards
 - o GPUs for partial (HLT1) and full-quality reco (HLT2), both exploiting timing info
- large simulation needs → flash simulation and parallelisation (CPUs and GPUs)
- huge samples for offline analysis → optimised storage formats and access models
- see LHCb-PUB-2025-004 submitted to ESPPU

ECAL reconstruction also very challenging due to high occupancy

- baseline reco: Run 3 approach (Graph Clustering + cluster corrections) + timing
- alternative: Graph-Neural-Network (GNN) inference → see Felipe's + Uzzi's talks

Summary

High Energy Physics group @UB strongly involved in LHCb software & computing, leveraging expertise in calorimeter.

- Past years focused on Run 3 developments: trigger, reco, calibration
- Shifting to Run 4 (partial ECAL upgrade) and Run 5 (full upgrade, x5 L_{inst})

ML approaches proving crucial in most tasks.

A lot of work is WIP, happy to get input and discuss!

BACK-UP