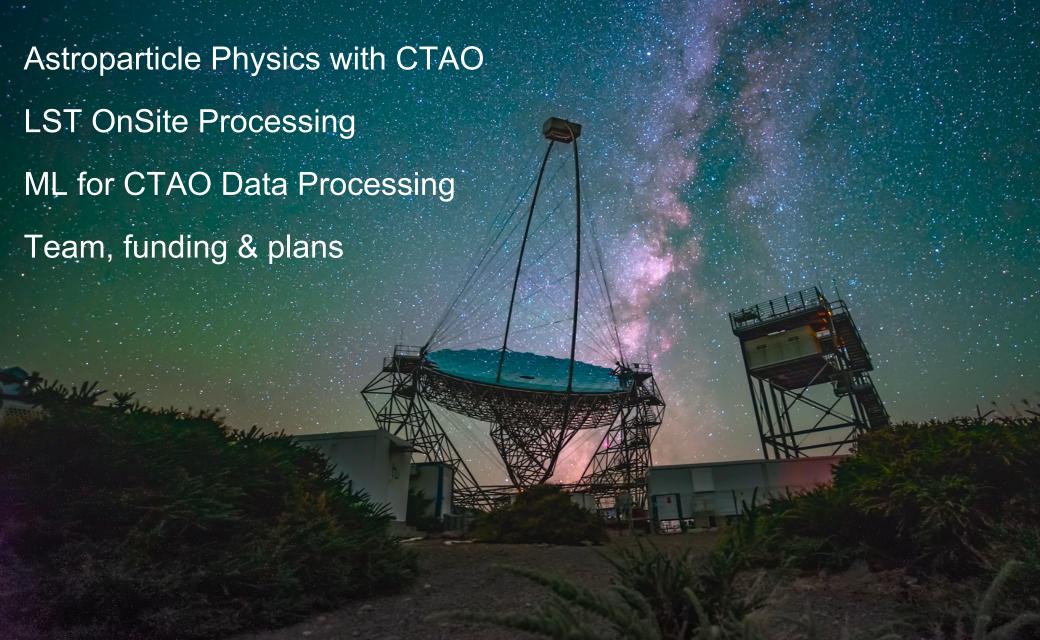


Machine-Learning-based CTAO Telescope data processing

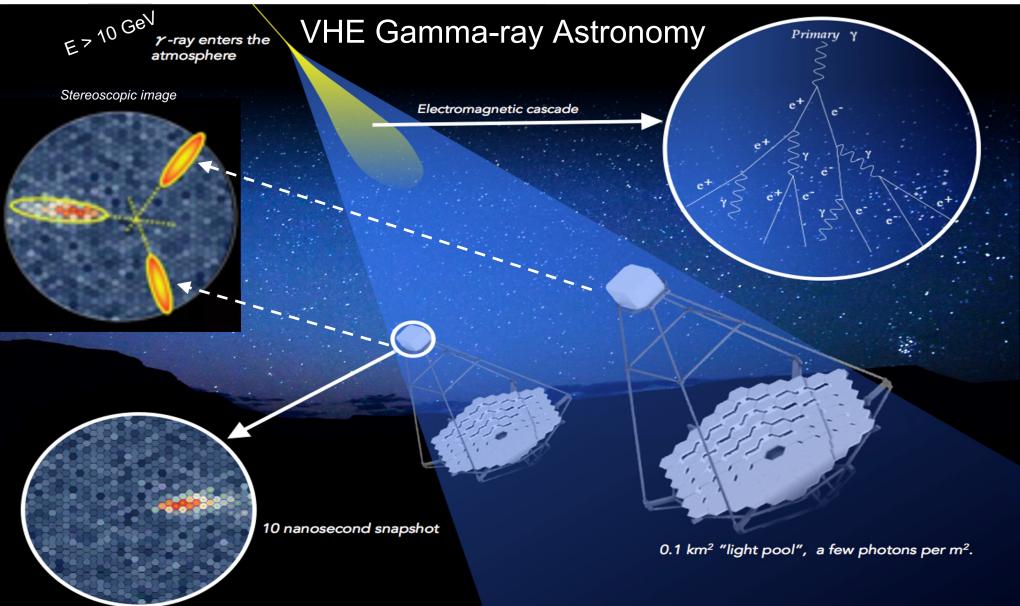
XVII CPAN Days - COMCHA Session - November 2025

J.A. Barrio, J. Buces, A. Cerviño, J.L. Contreras, M. Lainez, D. Martín, M. Molina, D. Nieto, A. Pérez-Aguilera, L.A. Tejedor

Contents



Astroparticle Physics



Cherenkov Telescope Array Observatory

Sensitivity improvement x10
Energy range extension x10
Angular resolution improvement

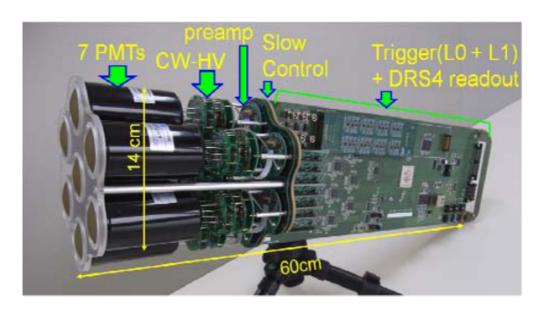
Two observatories:
La Palma (Canaries) / Chile
~100 telescopes

CTAO-North

Sensitivity improvement x10
Energy range extension x10
Angular resolution improvement

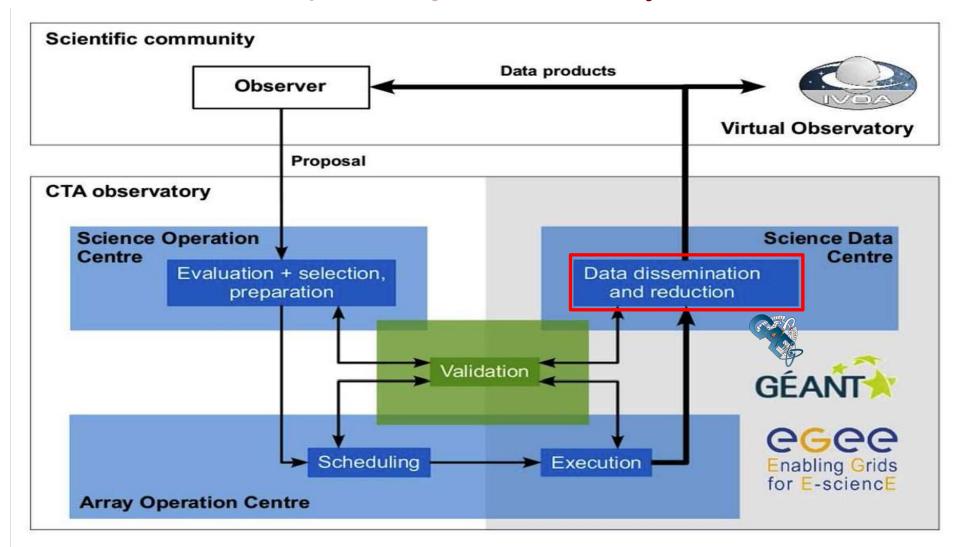
Two observatories:
La Palma (Canaries) / Chile
~100 telescopes

Cherenkov Telescope Array Observatory



~2000-pixel PMT-based camera

Cherenkov Telescope Array Observatory



Data Processing @CPUs

LST OnSite Processing for Data Volume Reduction

OnSite Processing

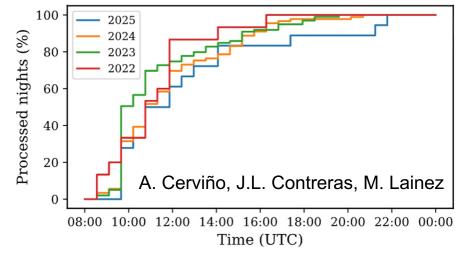
- LST1 alone produces ~10-20 TB/night raw data; 3 more LSTs to enter commissioning in ~2026
- Data is processed on-site in a temporary data center at the telescope base with ~1800 cores and 5.7 PB HD

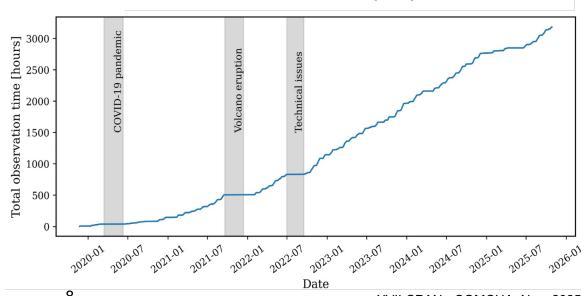
Onsite pipeline, processing raw data every morning in a highly parallel way

Until recently saving all raw data

Data Volume Reduction OnSite

- 1st step: select only one of the 2 PMT-amplifier gains
- 2nd step: Region of Interest selection, in collaboration with UAH
- LST as test-bed for CTAO DVR





ML@GPUs for CTAO Reco

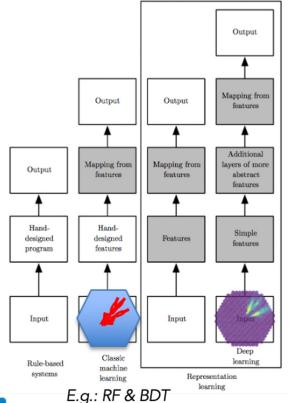
CTLearn

- CTLearn is a high-level Python package for using Deep Learning models aiming for:
 - IACT data analyses
 - CTAO Offline Data Volume Reduction
- Core functionality:
 - Full-event reconstruction of various IACTs in monoscopic and stereoscopic mode
 - CNN-based analysis on raw waveforms possible through the efficiently data management package dl1-data-handler
 - Application of an Al-based Trigger system, where neural networks are ported on FPGAs for real time processing.
- Latest release: v0.10.2 (21/03/2025)
- Local computing resources + Artemisa

J. Buces, A. Cerviño, D. Martín, D. Nieto

earr

Output: event type, energy, incoming direction

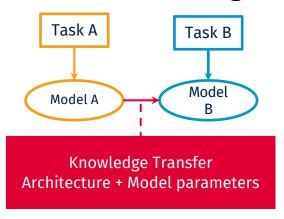


Input: observed events

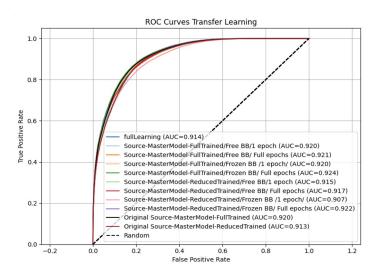
ML@GPUs for CTAO Reco

CTLearn - Optimization techniques - Preliminary results

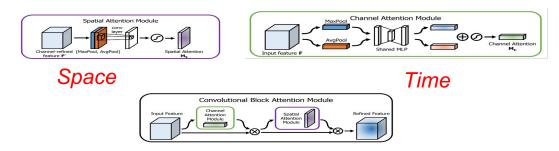
Transfer Learning



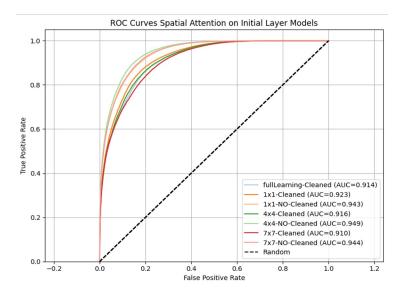
- Save up to **75% of training time**
- Good metrics with less resources



Attention Experiments



- Better understanding of the CNN Explainability
- Cleaning step may be omitted

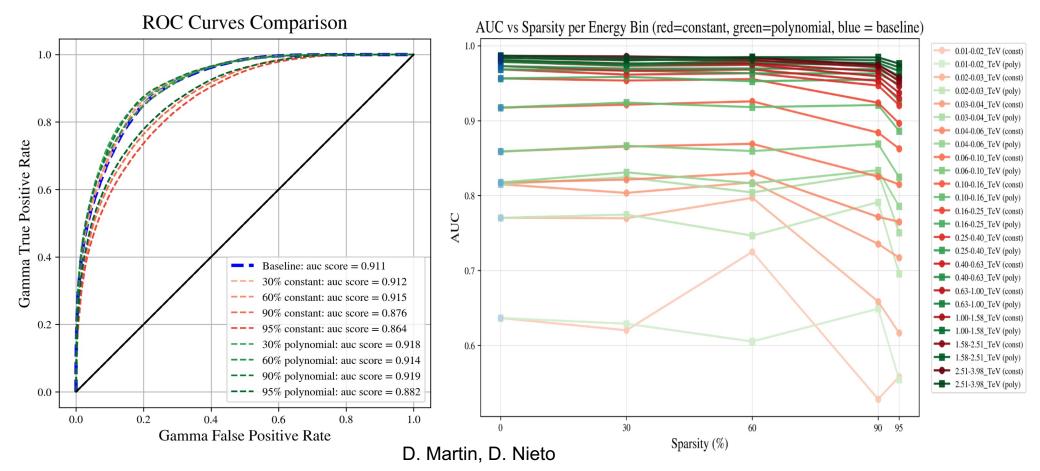


A. Cerviño, D. Nieto

ML@GPUs for CTAO Reco

ML algorithm compression

- Prunning algos on Reco data → later to be used for camera trigger
- Polynomial prunning reducing 90% parameters maintaining performance

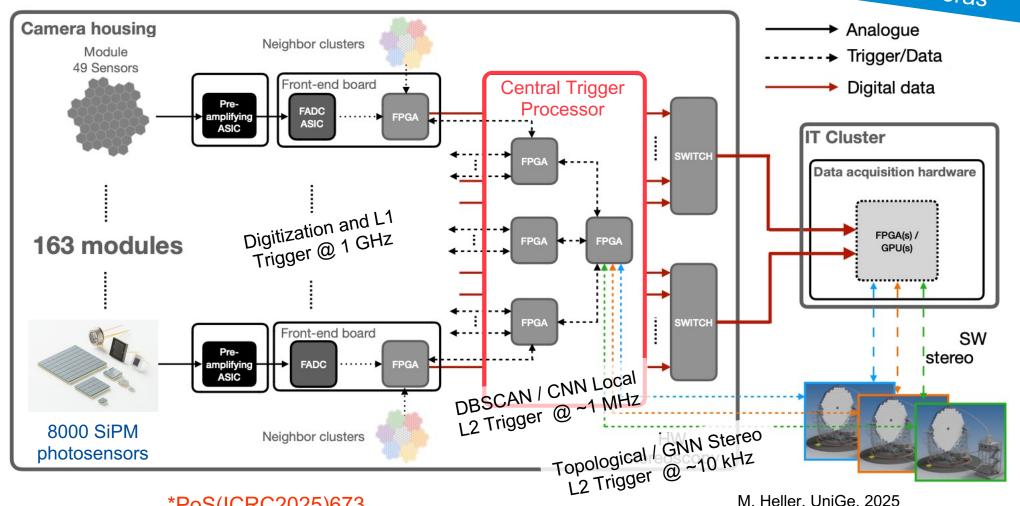


J.A. Barrio, UCM-GAE

ML@FPGAs for CTAO Trigger CTAO

CTAO-LST SiPM Advanced Camera*

Candidate for mid-term upgrade of CTAO telescope cameras



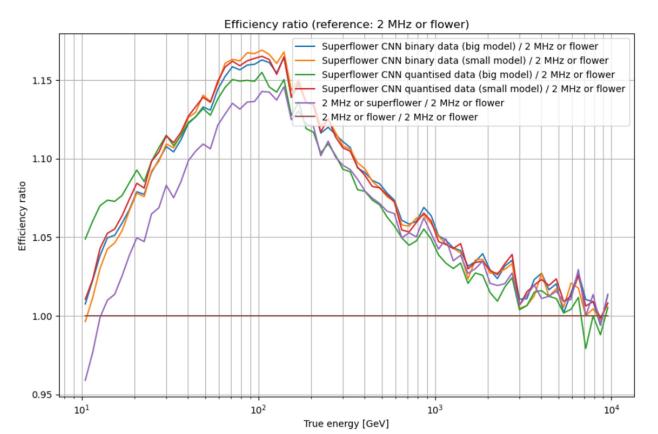
*PoS(ICRC2025)673

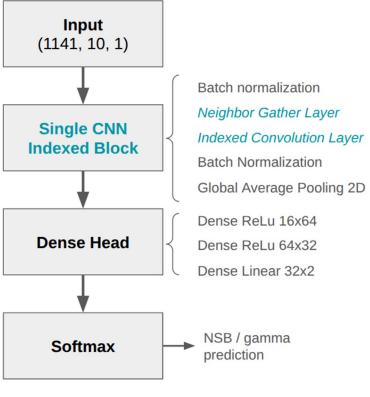
M. Heller, UniGe, 2025

ML algorithms for CTAO camera LL2 trigger

Very light models with custom layers with ~ 3k parameters

Moderate gain in gamma-ray efficiency

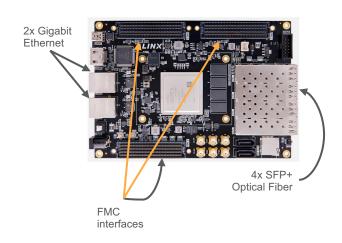




J. Buces, D. Nieto, J.A. Barrio

CTP test benches

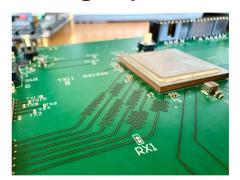
#1 Machine Learning @ FPGAs



- 2x ALINX AMD Xilinx Kintex UltraScale XCKU040
 - 20 gigabit transceivers @ 16.3 Gbps
 - 4GB high-speed DDR4 RAM
- Data transfer between PC and FPGA using IPBus protocol

M. Molina, A. Pérez-Aguilera, L.A. Tejedor, J.A. Barrio

#2 High-speed lines



Main components

- Xilinx UltraScale+ with 12 gigabit transceivers
- Two 12-channel Samtec FireFly 14 Gbps optical connectors (TX and RX)

Design and manufacturing

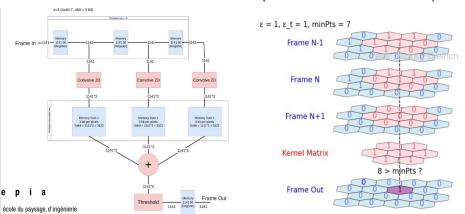
- 12 layer PCB design and high-speed differential pair routing
- Validation of the substrate and the PCB manufacturer

Latest results

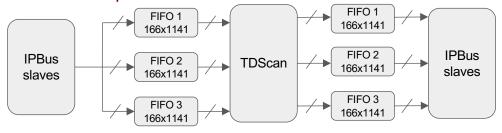
- Slow control firmware for configuration and monitoring of FireFly modules on real time
- Successful signal integrity testing
- Excellent performance up to 10 Gbps

CTP test bench #1: Machine Learning algorithms

TDSCAN: DBSCAN-like parallel 2+1D conv. over the whole camera (HESGE-HEPIA)



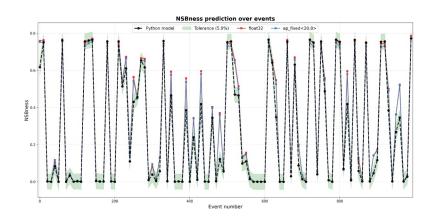
Firmware implementation



- Latency tests demonstrated proper operation @ 1 GHz (processing 1141 bit frame per ns)
- Data check tests confirmed same results as the Python script

Custom CNNs @ FPGAs using Vitis

- Reconstruction of the original Python model on C++
- Data quantization (PTQ) from float32 to fixed point



- **HLS** optimization
- Post-synthesis results: ~7µs latency/interval on XCKU040 and ~3.5µs on XCKU115 (bottleneck on 1141 cycles)
- Next steps: overcome the bottleneck with different models with smaller input dimensions

CTP test bench #2: Signal integrity (BER) testing

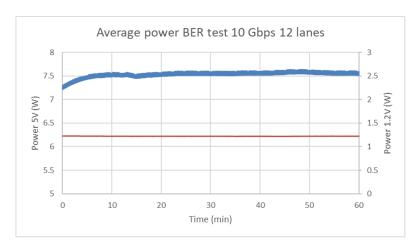
No failed bits detected during the tests

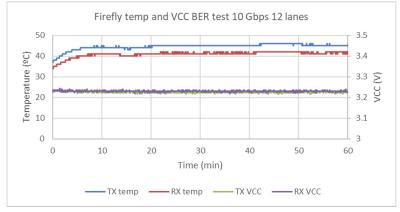
- BER @ 6 Gbps $< 4.394 \cdot 10^{-14}$
- BER @ 10 Gbps < 2.63 · 10⁻¹⁴

Testing conditions: raw signal (no encoding) and approx one hour duration with continuous monitoring of FireFly's temperature and power supplying

- Channels #6 and #11 BER ~4.4 · 10-11
- Remaining channels BER < $1.35 \cdot 10^{-13}$ (0 errors)
- Resonance or impedance matching issues
- Further investigation is required

Next steps → Repeat tests with candidate protocols for the final CTPB (e.g., Aurora, JESD204C) and characterize their latency, throughput and other relevant metrics





Team, funding & plans

Team

- ML@FPGAs: 2 faculty (phys + h/w eng), 4 predoc (2 phys + 2 h/w eng)
- ML@GPUs: 1 faculty (phys), 1 predoc (phys & s/w eng)
- OnSite Processing: 1 faculty (phys), 1 predoc (phys)

Network

- Spain: CNID/COMCHA (ML@xx, OnSite Proc.); Ciemat/IFIC (ML@FPGAs)
- International: AdvCam (Ciemat, UniGe, INFN-Padova); CERN DRD7 (ML@FPGAs)

Dedicated grants

- Running: Spanish (PDC2023+PPCC) 2-year for predocs & h/w
- Requested: Spanish 2-year for predocs (PDC2025 call), Spanish 4-year for predocs & h/w (CDTI call for Fire Detection on-board Satellites, incl. CIEMAT), EU-InfraTECH-2026 4-year for predocs & h/w

Plans for AdvCam Trigger

- 2026: complete 2-testbench demonstrator, deploy & benchmark simple CNNs, compressed CNNs & DBSCAN-like for LL2, test GNNs for SL2
- 2028: build 1/4-scale CTP prototype, deploy & benchmark optimized Al-based trigger

Summary

- CTAO ESFRI construction started
- PDC2023 + PPCC → involvement in ML-based R&D for CTA
- Sinergies with COMCHA teams to be pursued
- Transfer of knowledge pursued/expected from ML@FPGA activities

Acknowledgements

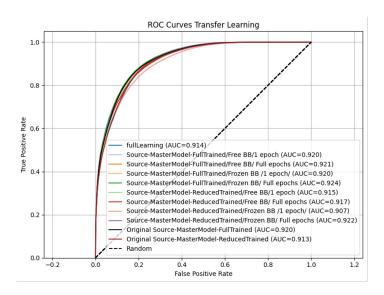
The research here presented has been partially supported by the MICIU/AEI/10.13039/501100011033 and by the EU-NextGenEU/PRTR under grant PDC2023-145839-I00, and ERDF/EU under grant PID2022-138172NB-C42

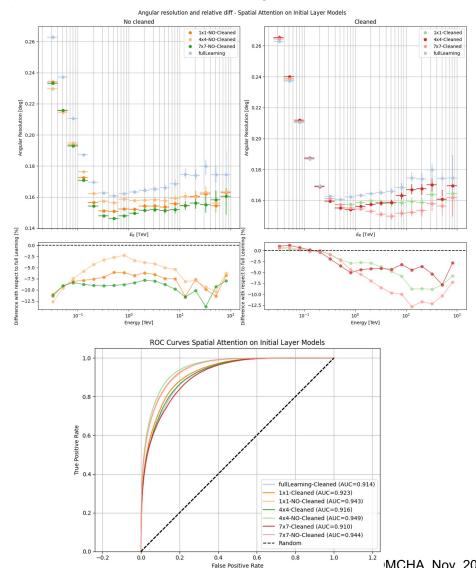
Backup

ML@GPUs for CTAO Reco CTAO

CTLearn - Optimization techniques - Preliminary results

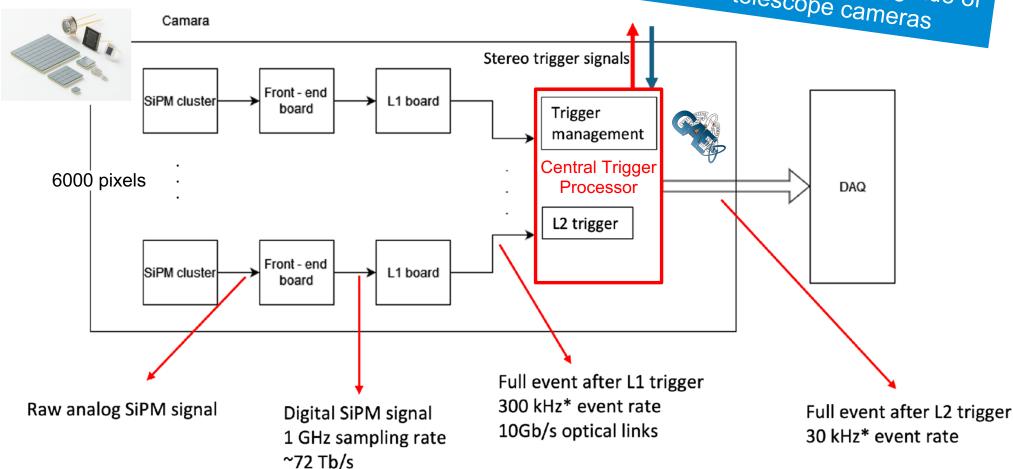
Time (relative to full learning)	Energy	Direction	Туре
Full Learning	1	1	1
Full Trained - Free - 1epoch	1.46	0.55	1.35
Full Trained - Free - full epochs	1.45	0.54	1.27
Full Trained - Frozen - <u>1epoch</u>	0.45	0.31	0.44
Full Trained - Frozen - full epochs	0.49	-	0.45
Reduced Trained - Free - 1epoch	1.87	1.72	1.55
Reduced Trained - Free - full epochs	1.85	1.81	1.16
Reduced Trained - Frozen - 1epoch	0.21	0.31	0.27
Reduced Trained - Frozen - full epochs	0.30	0.5	0.19





Advanced LST SiPM Camera*

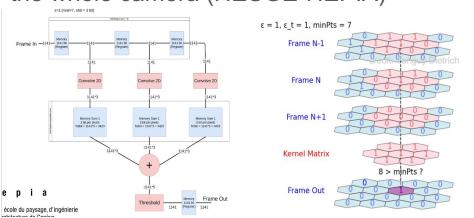
Candidate for mid-term upgrade of CTAO telescope cameras



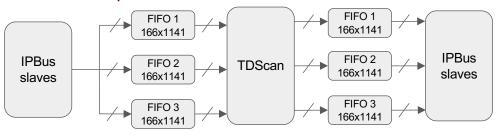
*M. Heller et al. PoS(ICRC2023)740

CTP test bench #1: Machine Learning algorithms

TDSCAN → parallel 2+1D convolution over the whole camera (HESGE-HEPIA)



Firmware implementation



- Latency tests demonstrated proper operation @ 1 GHz (processing 1141 bit frame per ns)
- Data check tests confirmed same results as the Python script

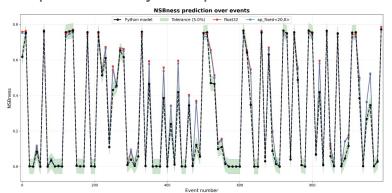
Custom CNNs @ FPGAs using Vitis

Reconstruction of the original Python model on C++

- Weights and biases extraction into .h files
- Pre-computation of batch normalization layers
- Development of core functions and wrappers on C++

Data quantization (PTQ) from float32 to fixed point

- Profiling of activations and accumulators range
- Comparative analysis of precision between models



HLS optimization: Loop and function pipelining → Loop unrolling and parallelization → Dataflow and array partition→ Interface optimization and data packing Post-synthesis results: ~7µs latency/interval on XCKU040 and ~3.5µs on XCKU115 (bottleneck on 1141 cycles) Next steps: overcome the bottleneck with different models with smaller input dimensions