

Autoencoders for real-time event selection at the LHCb experiment

XVII CPAN days
COMCHA session

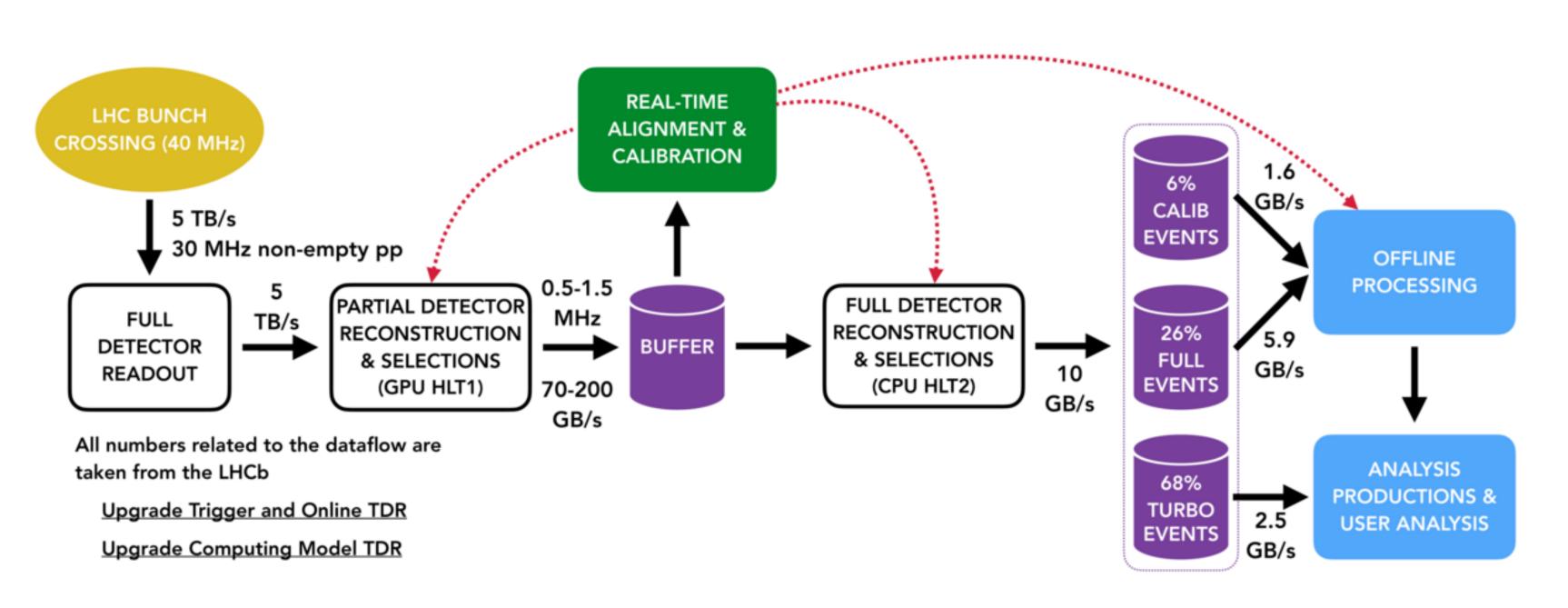
Carla Marin, Lukas Calefice, Paloma Laguarta

The LHCb trigger system

Full detector readout at <u>40MHz</u> without hardware trigger

 $BW = rate \times event \ size$

- + Fully **software-based trigger** in two stages:
 - + High Lever Trigger 1 (HLT1): partial reconstruction on GPUs at 30MHz, mostly inclusive selections
 - + High Level Trigger 2 (HLT2): full offline-quality reconstruction in CPUs, mostly exclusive selections
 - * selective persistency: for each selection the part of the event to save offline is chosen



- Offline quality level thanks to real-time alignment and calibration
- For HLT2: limited output
 bandwidth of 10GB/s
- Key computing

 challenge: efficiently
 select signal while
 keeping rate low

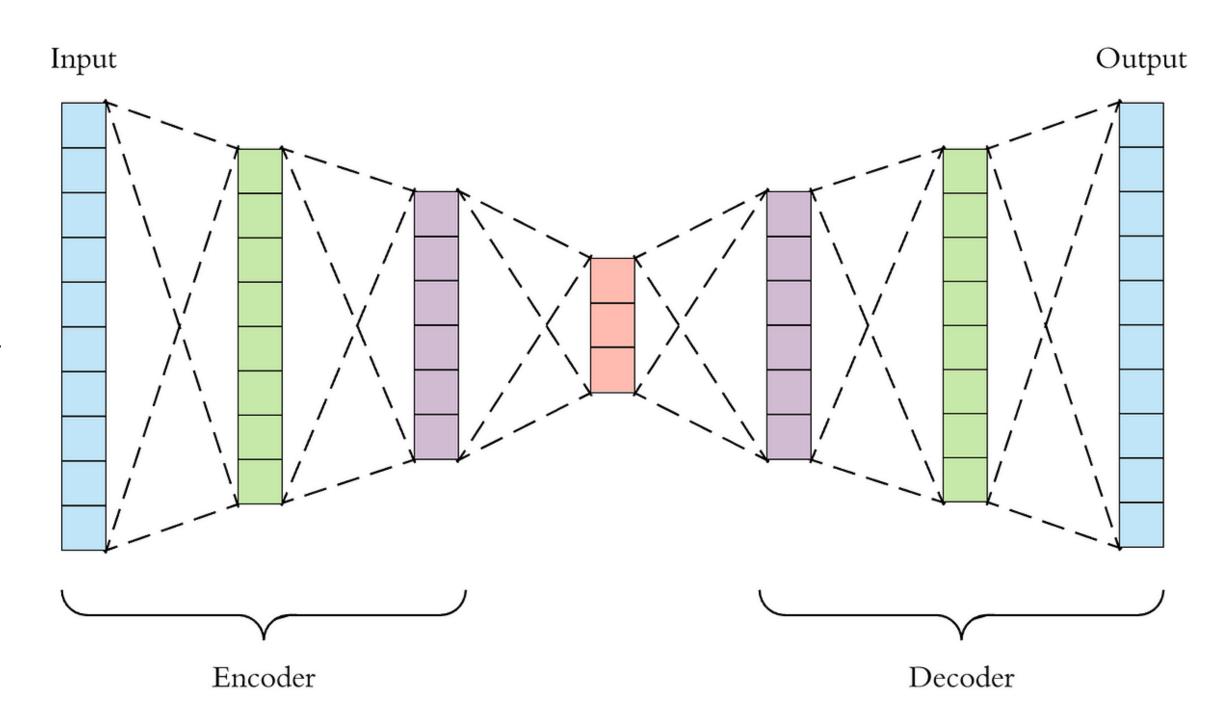
From cut-based to unsupervised ML selection strategies

- * Traditional approach: cut-based selections to keep signal and suppress backgrounds
- * Improved performance with <u>supervised Machine Learning</u> (ML) algorithms such as BDTs and MLPs
- * Our work: alternative unsupervised method based on an autoencoder (AE) trained only on signal for model-independent background rejection

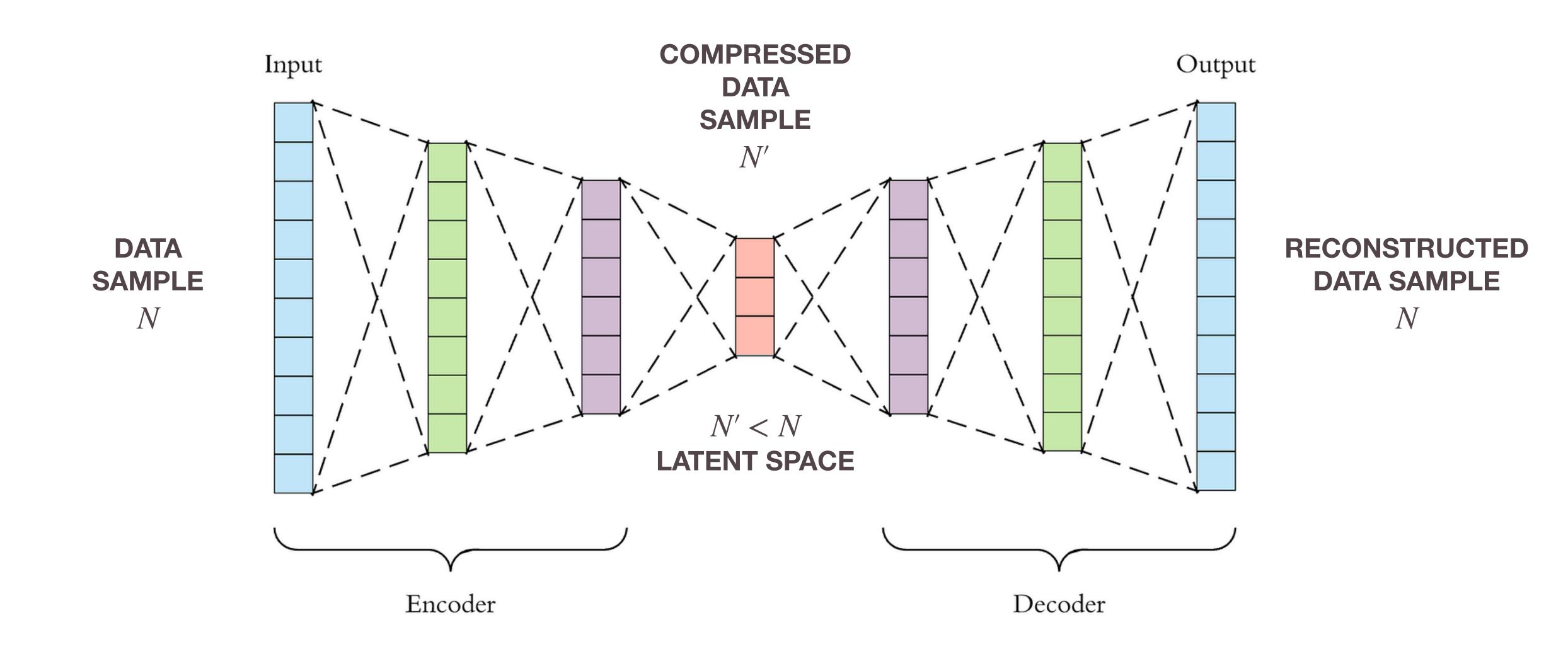
Cut-based	Supervised ML	Autoencoder
 + Simple, interpretable - Hard to optimize globally - Limited discrimination power in high-dimensional spaces - Manual tuning 	 + Can capture non-linear correlations between variables - Requires explicit background samples - Limited robustness for unseen backgrounds 	 + Can learn the essential patterns of data + Only trained on signal + Does not require explicit background samples - Requires larger training samples

What is an autoencoder (AE)?

- A type of <u>Neural Network</u> (NN) trained to <u>output the</u>
 same that was inputted
- * Fancy way of learning the identity function? No!
- Dimensionality is reduced before getting reconstructed using a bottleneck architecture
- NN learns a <u>compact representation with a higher degree</u>
 of abstraction and a deeper understanding of data
- * Traditionally used for <u>anomaly detection</u>: trained on majority class, can trigger on anomalous events (LLPs)
- Our approach: train on signal (minority class), use to discard background

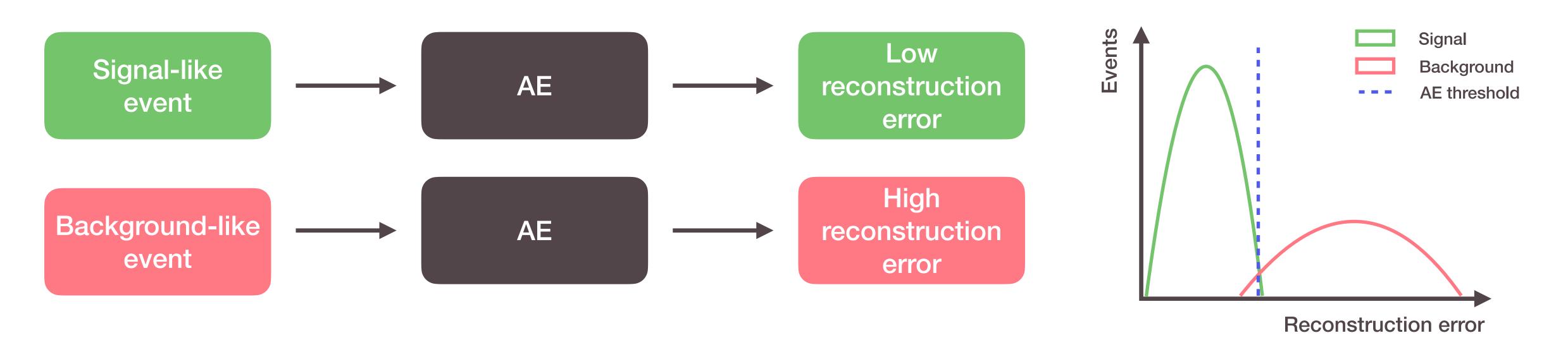


How does an AE work?



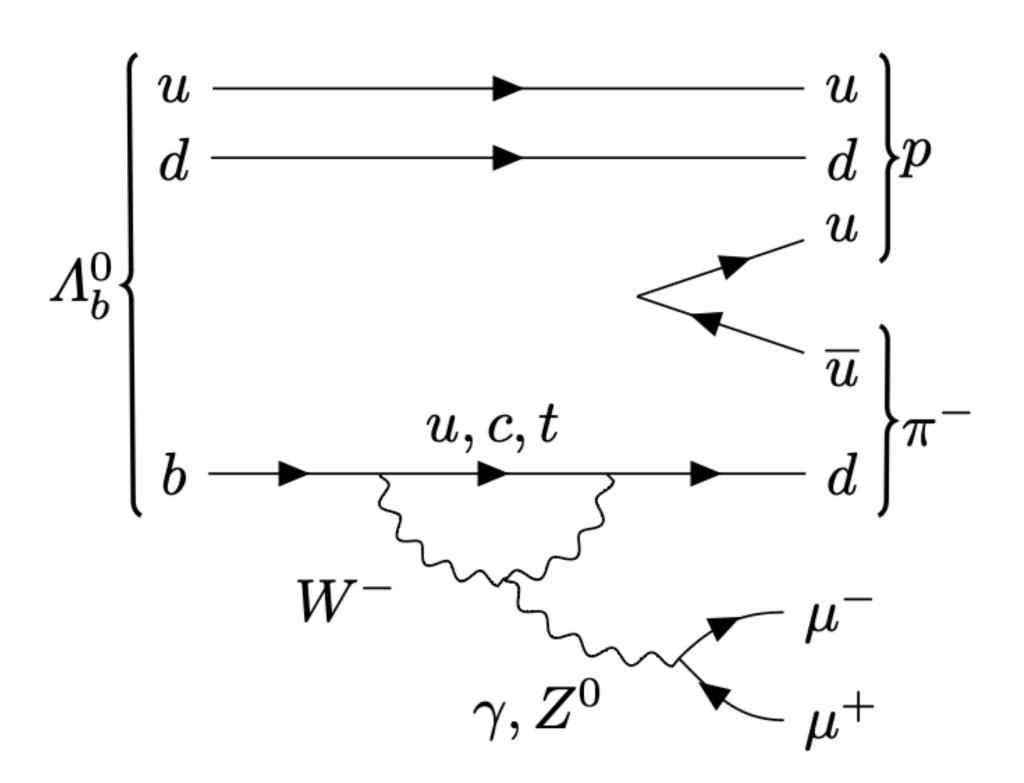
Why is an AE useful for our problem?

- * The AE is trained on a specific signal sample
- + Learning process \rightarrow minimization of $\mathcal{L}_{loss} = F$ (output input), reconstruction error
- * The weights of the network converge into a meaningful representation of the data
- * By setting a **threshold** in the reconstruction error, we can <u>filter signal and background</u> without needing a background-like training sample (i.e. model independent background rejection)

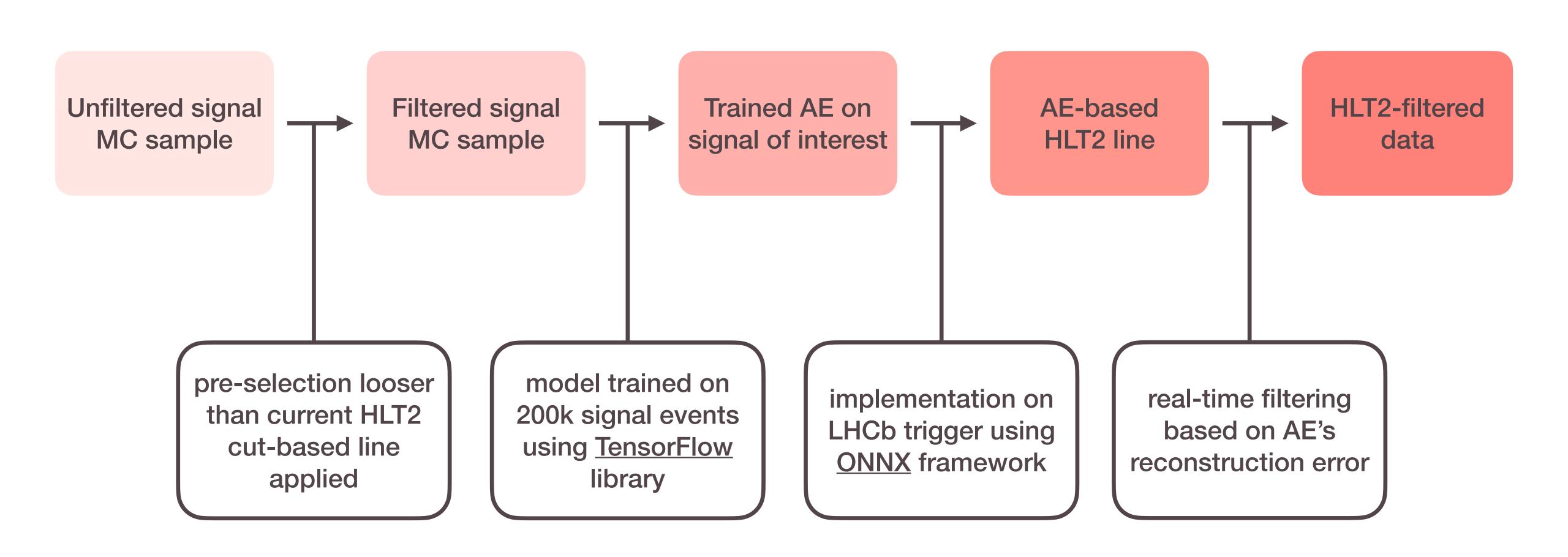


Signal of interest: $\Lambda_b^0 \to p \, \pi^- \mu^+ \mu^-$

- Flavour changing neutral current only occurring via loop diagrams
- + Suppressed by CKM and GIM mechanisms: very rare decay in the SM with $\mathscr{B}\sim 10^{-8}\,$ sensitive to NP
- Run 3 analysis in preparation: first step → improve trigger
 efficiency
- Cut-based selection already in HLT2, cutting on:
 - Vertex and track quality variables
 - + Kinematic (p and p_T) variables
 - Particle identification variables



Implementation for $\Lambda_b^0 \to p \; \pi^- \mu^+ \mu^-$



Some technical details

model uses <u>kinematic</u>, <u>vertex and track quality</u> <u>variables</u> 24 features in total

5 internal layers with a total of 100k tunable parameters

mean squared error loss used for training

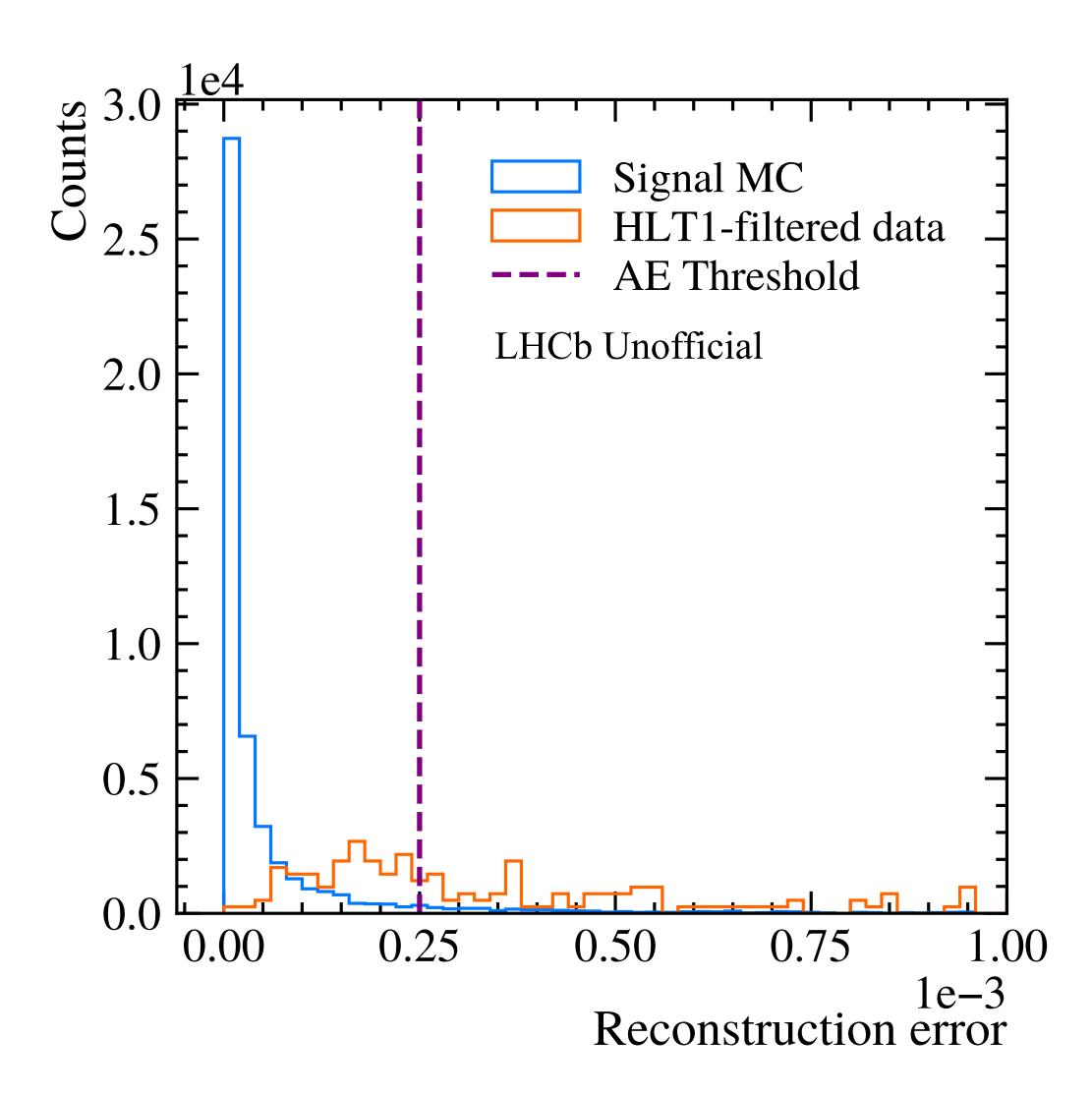
$$rec \ err = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - y_i)^2}{x_i}$$

where N = 24 features

trained for 6k epochs, with batch size 32 using Adam optimizer

algorithm takes an average of 0.3 % of throughput in HLT2

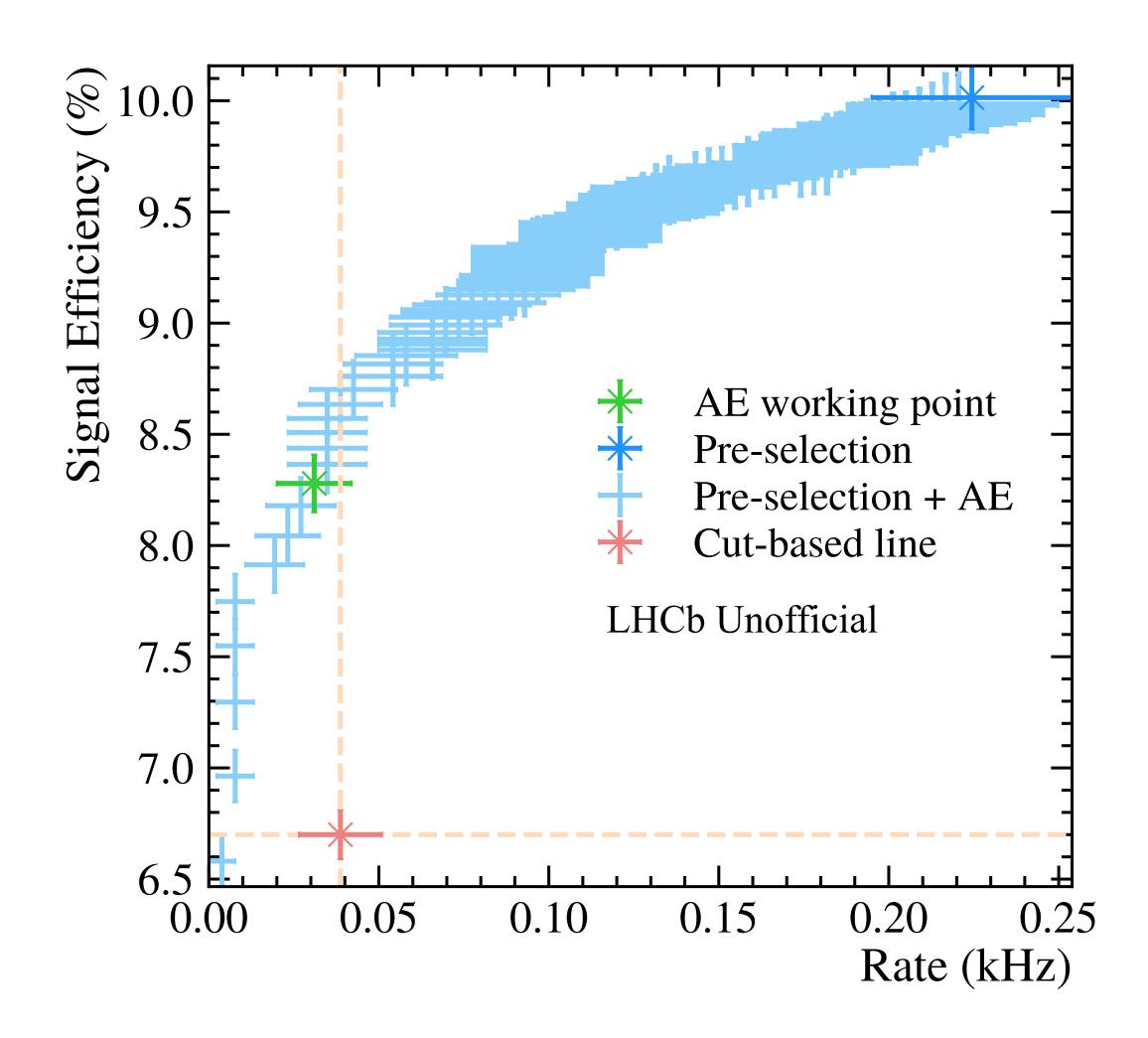
Results



- MC simulation of 2024 data used to evaluate model's performance on signal
- + HLT1-filtered data of 2024 run used to
 evaluate model's performance on background
- Reconstruction error provides a **tunable trade- off** between signal efficiency and background
 rejection, which translates into rate

Results

- AE achieves stronger separation power than current cut-based line
- Same rate: increase in signal efficiency by
 28 % with AE
- Same signal efficiency: decrease in rate by
 80 % with AE



Conclusions and future work

- This proof-of-concept work has shown that an autoencoder-based selection at HLT2 level can achieve improved performance with respect to cut-based methods.
- * This showcases the potential of unsupervised ML algorithms for real-time event selection.
- * The enhanced signal efficiency could be crucial for analyses of suppressed decays studied at LHCb.
- * AE has been **running** in the LHCb trigger since October!
- Ongoing steps: validate performance on data and evaluate impact on analyses.
- + Future possible approaches with this method involve inclusive selections at both HLT1 and HLT2 level.
- Ideas are welcome!

Thanks for your attention! Questions?:)

Results, towards LbToPpHmMuMu

- Similar procedure with LbToPpKmMuMu:
 - Get signal MC with looser cuts than line 'Hlt2RD_LambdabToPKMuMu'
 - Apply same pre-cuts we had for LbToPpPimMuMu
 - Apply AE trained on LbToPpPimMuMu
 - Check signal efficiency dependency on AE output
- The idea is to do a similar study considering the rate, WIP

