

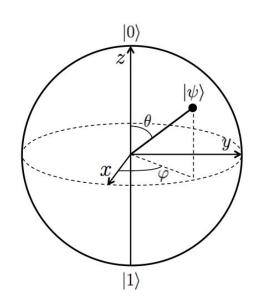
# Quantum Computing & High Energy Physics

Miriam Lucio Martínez





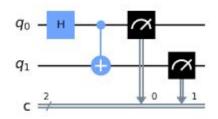





# Quantum Computing in a nutshell



- Instead of bits we use qubits, the fundamental units of quantum information
  - Not 0 or 1, but a two-state quantum system → coherent superposition of both
  - o They can be **measured** → probabilistic results
- There are quantum logic gates that operate on these qubits
  - Unitary transformations
  - Quantum gates can be single or multiple


$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$



# Quantum Computing in a nutshell



A sequence of gates acting on a register of qubits is called a quantum circuit



Some computational problems can profit from Quantum Computing using the principles of superposition and interference.

#### Quantum Computing - Hardware

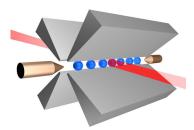
Several technologies are being explored as physical qubits:

#### **Superconducting**





Superconducting electric circuits at 10mK behave as quantum systems with discrete energy levels




#### **Trapped ions**





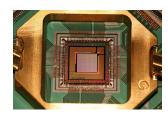
Charged atoms constrained in electromagnetic traps and manipulated with laser



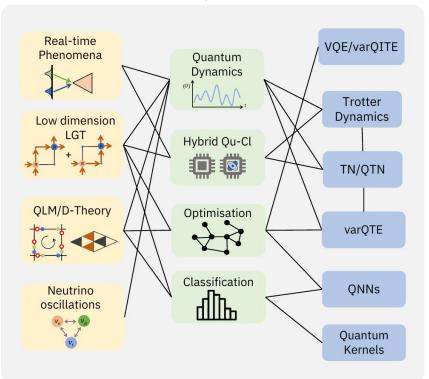
#### Optical

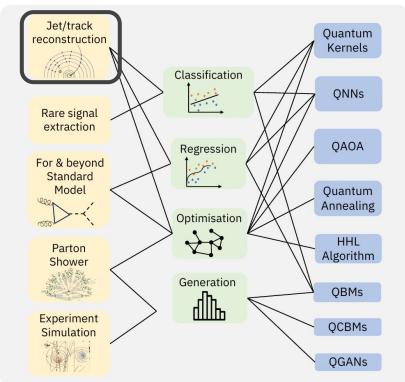


Linear optics devices using photons as information carriers



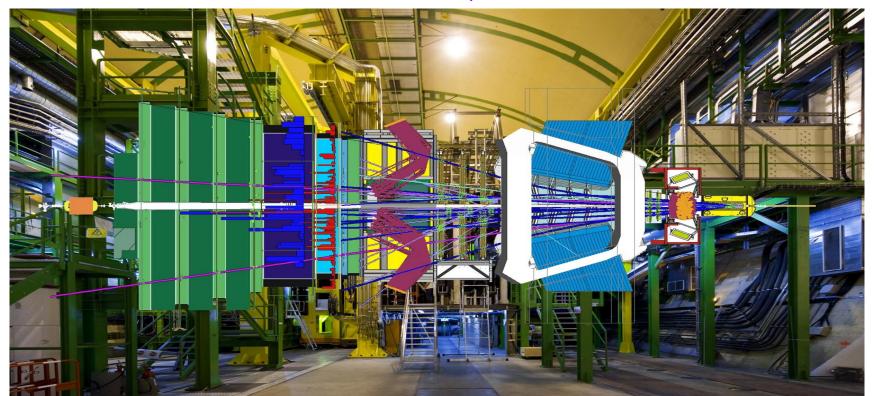

#### **Annealing**



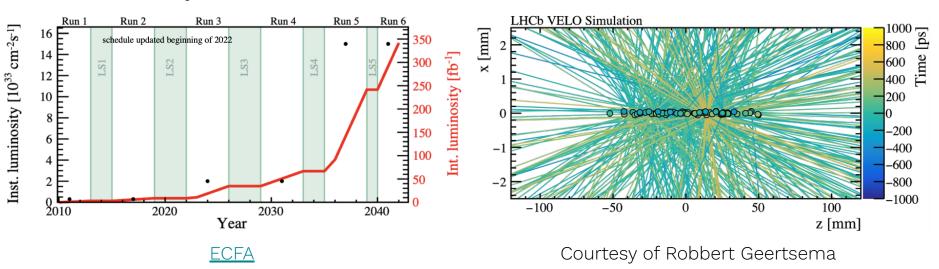

Ising-chain qubits interacting with a customizable Hamiltonian




#### HEP: Theory and experiment





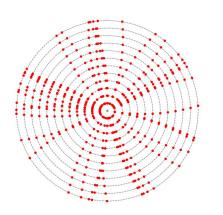

#### How does an LHCb event look like?

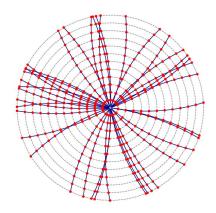
Reconstruct events 40 Million times per second.



#### Motivation for QC

 New algorithms and architectures needed to deal with the increased luminosity & limited bandwidth @ HL-LHC





#### Track Reconstruction

- Local tracking methods: steps are performed sequentially. Some studies exist on QC for local tracking methods [arXiv:2104.11583]
- <u>Global tracking methods</u>: all hits are processed by the algorithm in the same way. Global algorithms are **clustering** algorithms. E.g.: QAOA, quantum annealing, Hopfield Networks, Hough transform

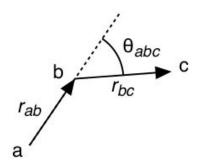
→ LHCb's current method of s<u>earch by</u> <u>triplet</u>

→ Focus of this talk: *global* algorithms





#### QC for Track Reconstruction


#### Ising-like Hamiltonian:

$$H = -\frac{1}{2} \sum_{ij} \omega_{ij} \sigma_z^i \sigma_z^j - \sum_i \omega_i \sigma_z^i$$

Tracks, modelled by a collection of segments

Segment  $[S_{ab}]$ : combination of hit a and hit b  $\rightarrow$  in consecutive layers - for now

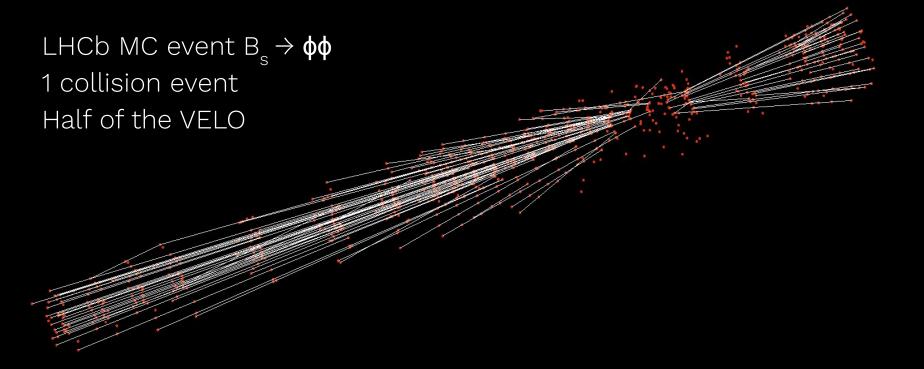
Hamiltonian accounts for all possible segments



#### HHL for Track Reconstruction [arXiv:2308.00619]

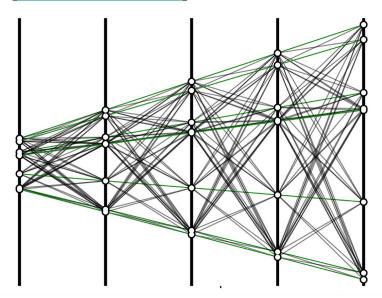
Differentiable Hamiltonian:

$$\nabla \mathcal{H} = 0 \Rightarrow A\mathbf{S} = \mathbf{b}$$


**HHL**: QC algorithm to solve the **system of linear equations** 

$$\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \left[ \sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right]$$

$$f(\theta_{abc},\varepsilon) = \begin{cases} 1 & \text{if } \cos\theta_{abc} \geq 1 - \varepsilon \\ 0 & \text{otherwise} \end{cases}$$
• (a) regularization term: makes the spectrum of A positive
• (b) gap term: ensures gap in the


- (a) regularization term: makes the
- solution spectrum

#### Validation with a classical linear solver



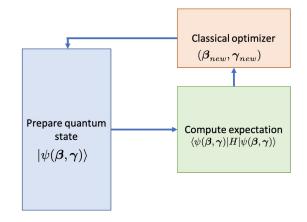
#### Performance results

- Very good performance (around 90%) with LHCb MC.
- Current work has significantly reduced the **circuit depth** [arXiv:2511.11458].



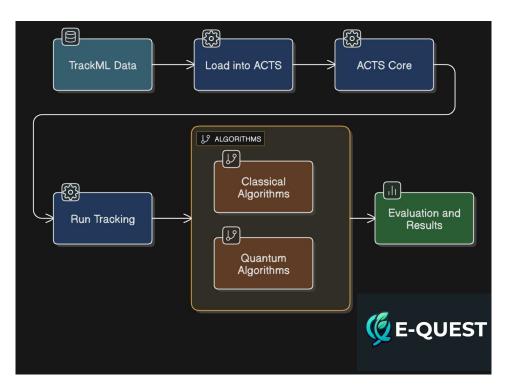


#### QAOA for Track Reconstruction


Quantum Approximate Optimization Algorithm [arXiv:1411.4028, tutorial]

- A variational algorithm ideal to solve <u>combinatorial optimization problems</u>, e.g. <u>Max-Cut problem</u>
  - 'Finding an optimal object out of a finite set of objects'

$$|\psi(\beta,\gamma)\rangle = U(\beta)U(\gamma)...U(\beta)U(\gamma) |\psi_0\rangle$$
  
 $U(\beta) = e^{-i\beta H_B}, \ U(\gamma) = e^{-i\gamma H_P}$ 


**Goal:** find optimal parameters ( $\square_{opt}$ , $\gamma_{opt}$ ) such that the quantum state encodes the solution to the problem

- Successful implementation and validation for small simulations
- Scalability poses an issue, affecting especially the simulator

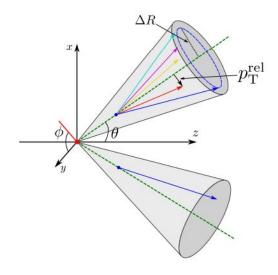


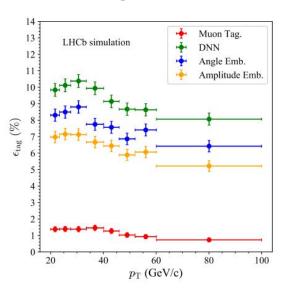
#### Sustainability & Quantum

- Using <u>ACTS</u> as framework
- Hardware-dependent and/or computational complexity dependent
- Work done by K. Singh, check out <u>talk by A.</u>
   <u>Oyanguren</u> on CTD



## Ongoing/future work


- Try simulation using Rydberg atoms
- Distributed QAOA
- Try a different algorithm, e.g. Pauli Correlation Encoding
- Further applications of QAOA for HEP with better scalability and/or different use-cases

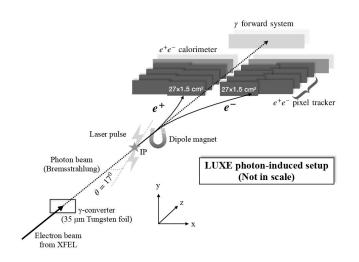

# Moltes gràcies!

# QML for b-jet flavour tagging

# b-jet flavour tagging [JHEP 08 (2022) 014]

- Identify if a jet contains a hadron formed by a b or anti-b quark at the moment of production
  - (Q)ML algorithm that uses variables from the particles of the jets to do so
- Deep Neural Network vs 16-qubit **Variational Quantum Classifier**

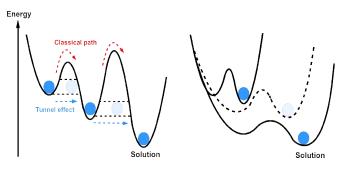





### Related work [arXiv:2210.13021]



- LUXE experiment @ DESY to study QED in the strong-field regime
- Tracking of positrons traversing 4 layers of tracking detectors
- Classical methods:
  - Combinatorial Kalman Filter using triplets of hits
  - o GNN where each hit is a node


$$O = \sum_{i=1}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \quad T_i, T_j \in \{0, 1\}$$

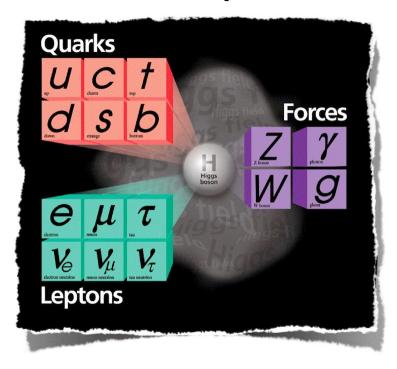


#### Quantum Annealers

The Quantum Computing Company<sup>TM</sup>

- Different hardware, not gate-based
- Optimal for minimizing Ising-like Hamiltonians



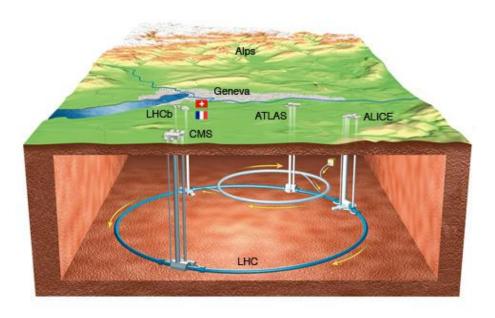

**Quantum Tunnelling** 

Adiabatic evolution

| SIMULATED                                 | QUANTUM                                   | LEAP HYBRID                                                                                                                        |  |
|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| ANNEALING                                 | ANNEALING                                 | SOLVER                                                                                                                             |  |
| Low energy state: -40     Time: 1.5 hours | Low energy state: 2     Time: few minutes | <ul> <li>Low energy state: -40</li> <li>QPU access time: 38.993 milliseconds,</li> <li>Run time: 3000.198 milliseconds.</li> </ul> |  |
|                                           |                                           |                                                                                                                                    |  |

#### The Standard Model of Particle Physics

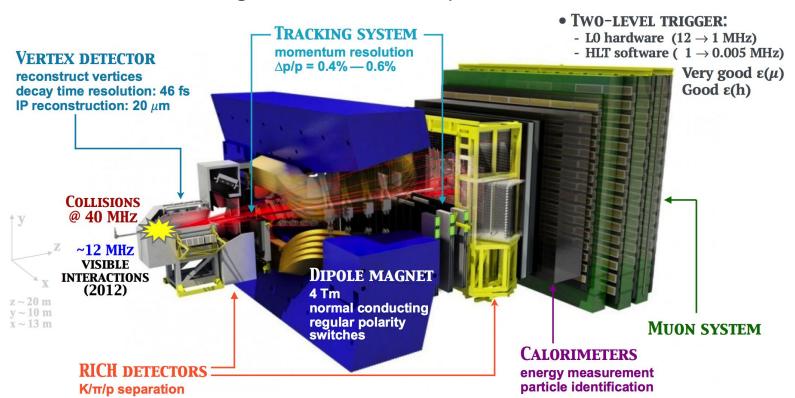
A successful theory that describes the interactions among particles ...




... **but** fails to explain several phenomena observed in the Universe:

- Neutrinos masses
- Origin of Dark Matter & Dark Energy
- etc
- → need of Beyond the Standard Model physics!!

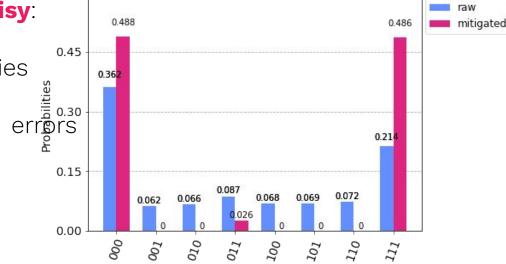
#### The LHCb detector


One of the 4 main experiments @ Large Hadron Collider at CERN



- Initially designed for the study of the b,c-quarks
- Now evolved into a general purpose spectrometer in the forward region

#### The LHCb detector


#### Single forward-arm spectrometer



#### Quantum Computing - Noise

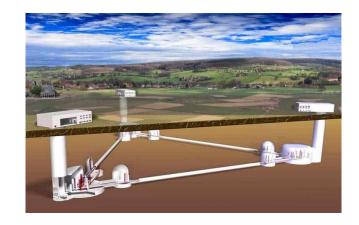
All the previous technologies are far from being perfect. Current qubits are **noisy**:

- Measurement errors
- 1-qubit and 2-qubit gates fidelities
- T1 and T2 decoherence time
- Calibration
- → Noise Error Mitigation



#### QC & Gravitational Waves

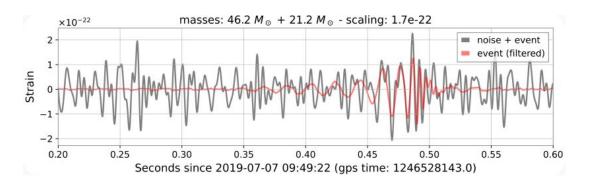
Next generation of GW detectors: increased bandwidth and sensitivity.


→ new techniques are needed on top classical template matching

**Grover search:** for template matching.

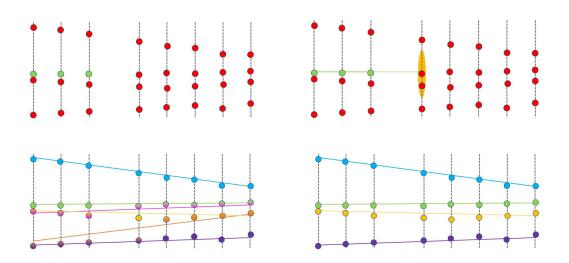
Theoretical studies ongoing on the feasibility of this for GW detection.

#### **Solving Einstein Field Equations:**


- The GW signals need to be calculated by solving the set of non-linear equations of the FFF.
- A proof of principle using the algorithms proposed by [2011.10395] to solve a simplified model has been implemented.



#### QC & Gravitational Waves


#### **Quantum-enhanced Feature Spaces:**

- Data is too noisy and large to be used directly by a QML algorithm.
- The number of events is too small for proper training.
- Real noise samples and a simulated event signal are used asc a signal database →
  a set of time-series features is extracted to create the training dataset.
- **Detection:** kernel method. **Characterisation:** support vector machine.

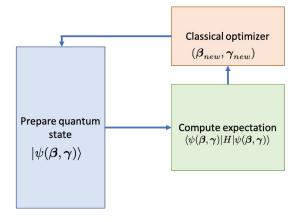


#### Local tracking methods [arXiv:2104.11583]

- 1. Seeding
- 2. Track building
- 3. Cleaning
- 4. Selection



| Tracking stages           | Input size               | Output size            | Classical complexity           | Quantum complexity                                     |
|---------------------------|--------------------------|------------------------|--------------------------------|--------------------------------------------------------|
| Seeding                   | O(n)                     | $k_{ m seed}$          | $O\left(n^{c}\right)$          | $	ilde{O}\left(\sqrt{k_{ m seed}\cdot n^c} ight)$      |
|                           |                          |                        | (Theorem 2)                    | (Theorem 3)                                            |
| Track Building            | $k_{\text{seed}} + O(n)$ | $k_{ m cand}$          | $O(k_{\mathrm{seed}} \cdot n)$ | $\tilde{O}\left(k_{\mathrm{seed}}\cdot\sqrt{n}\right)$ |
|                           |                          |                        | (Theorem 4)                    | (Theorem 5)                                            |
| Cleaning (original)       | $k_{ m cand}$            | $O(k_{ m cand})$       | $O(k_{ m cand}^2)$             |                                                        |
|                           |                          |                        | (Theorem 6)                    | _                                                      |
| Cleaning (improved)       | $k_{ m cand}$            | $O(k_{\mathrm{cand}})$ | $	ilde{O}(k_{	ext{cand}})$     |                                                        |
|                           |                          |                        | (Theorem 7)                    |                                                        |
| Selection                 | $O(k_{ m cand})$         | $O(k_{\mathrm{cand}})$ | $O(k_{ m cand})$               | :                                                      |
|                           |                          |                        | (Theorem 8)                    | , <del>-</del>                                         |
| Full Reconstruction       | n                        | $O(n^c)$               | $O\left(n^{c+1}\right)$        | $\tilde{O}\left(n^{c+0.5}\right)$                      |
|                           |                          |                        | (Theorems $2, 4, 7, 8$ )       | (Theorems $3, 5, 7, 8$ )                               |
| Full Reconstruction with  | n                        | O(n)                   | $O\left(n^{c+1}\right)$        | $\tilde{O}\left(n^{(c+3)/2}\right)$                    |
| O(n) reconstructed tracks |                          |                        | (Theorems 2, 4, 7, 8)          | (Theorem 9)                                            |


n: number of particles, c: number of hits,  $k_{\rm seed}$ : total number of generated seeds,  $k_{\rm cand}$ : number of track candidates

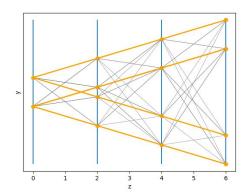
#### QAOA for Track Reconstruction

- Quantum Approximate Optimization Algorithm [arXiv:1411.4028, tutorial]
- A variational algorithm ideal to solve <u>combinatorial optimization problems</u>, e.g. <u>Max-Cut problem</u>
  - 'Finding an optimal object out of a finite set of objects'

$$|\psi(\beta,\gamma)\rangle = U(\beta)U(\gamma)...U(\beta)U(\gamma) |\psi_0\rangle$$
  
 $U(\beta) = e^{-i\beta H_B}, \ U(\gamma) = e^{-i\gamma H_P}$ 

- H<sub>R</sub>: mixing Hamiltonian, H<sub>P</sub>: **problem** Hamiltonian
- Goal: find optimal parameters ( $\square_{opt}, \gamma_{opt}$ ) such that the quantum state encodes the solution to the problem



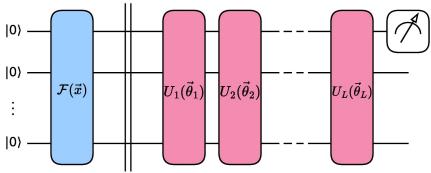

#### QAOA implementation

$$\mathcal{H} = -\frac{1}{2} \left[ \left( \sum_{a,b,c} \frac{\cos^{\lambda}(\theta_{abc})}{r_{ab} + r_{bc}} s_{ab} s_{bc} \right) - \alpha \left( \sum_{b \neq c} s_{ab} s_{ac} + \sum_{a \neq c} s_{ab} s_{cb} \right) - \beta \left( \sum_{a,b} s_{ab} - N \right)^2 \right]$$
(1)
(2)
(3)

- (1) main term: favours aligned, short segments
- (2) 1st penalty term: forbids segments that share head/tail from belonging to the same track
- (3) 2nd penalty term: keeps the number of active segments equal to #hits

#### Results from simulation

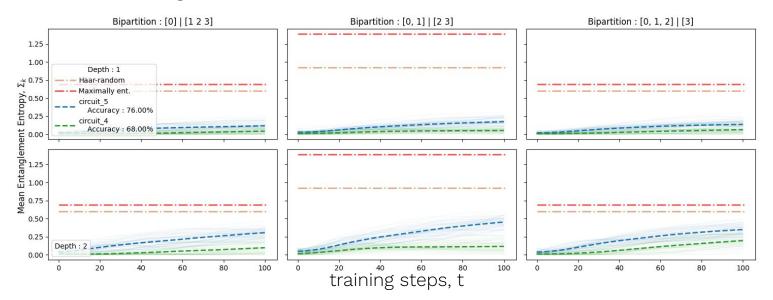
- Successful implementation and validation for small simulations
- Scalability poses an issue, affecting especially the simulator
  - triplets instead of doublets → worse scalability




| # tracks | # layers | #qubits<br>(segment<br>s) | Circuit<br>depth |
|----------|----------|---------------------------|------------------|
| 2        | 3        | 8                         | 103              |
| 2        | 4        | 12                        | 223              |
| 3        | 3        | 18                        | 497              |
| 3        | 4        | 27                        | 1105             |
| 4        | 3        | 32                        | 1553             |
| 4        | 4        | 48                        | 3473             |
| 5        | 3        | 50                        | 3775             |
| 5        | 4        | 75                        | 8463 3           |

### Entropy studies

Study of the Entropy production within a Variational Quantum Circuit during its training phase:

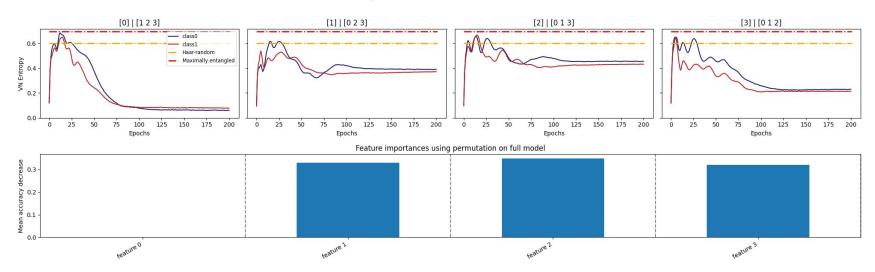

**Goal:** Use the information of the entropy values to enhance the training performance for the task of jet-tagging (b vs c)



Values of Entropy were inspected

- For each training step "t"
  - At each "depth" of the circuit:
    - lacksquare depth 0 :  $\mathcal{F}(\vec{x}) \left| 0^{\otimes N} \right\rangle$
    - $\blacksquare$  depth 1 :  $U_1(\vec{\theta_1})\mathcal{F}(\vec{x})|0^{\otimes N}\rangle$
    - lacksquare depth lacksquare:  $U_L(\vec{ heta}_L)...U_1(\vec{ heta}_1)\mathcal{F}(\vec{x})\left|0^{\otimes N}\right>$

# Study of the Entropy production within a Variational Quantum Circuit

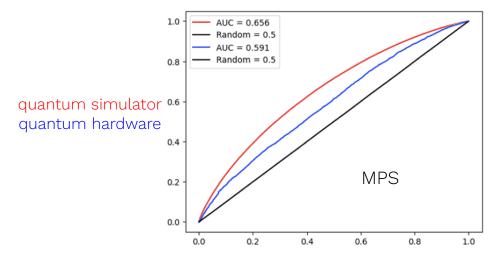


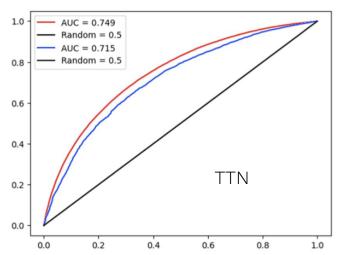

- different circuits
- different datasets (b vs c jet-tagging and IRIS)

- different parameters initializations (Gaussian vs Uniform)
- different loss functions

# Study of the Entropy production within a Variational Quantum Circuit

Feature importance from Entropy values





More results coming soon!

#### Optimization for hardware

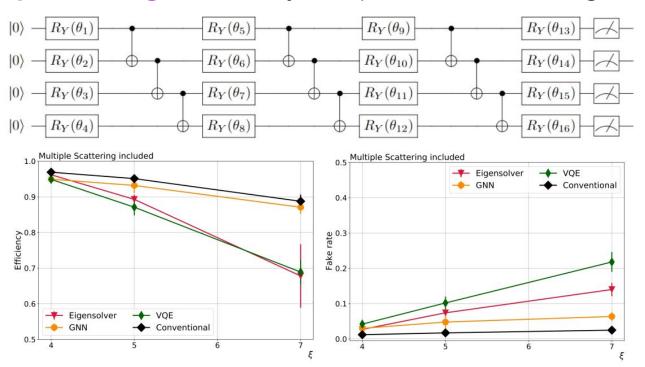
#### **IBM Quantum**

- ullet Ported from quantum simulations to real quantum computers  ${f V}$
- Tested and optimised several architectures
  - Different advantages in terms of robustness against noise from hardware imperfections
- Currently trying noise error mitigation techniques





#### IBM: Qiskit, Xanadu: Pennylane


Tracking problem -> Ising-like Hamiltonian -> minimize Hamiltonian -> happiness

- HHL (Davide)
- QAOA (simulated annealing)
  - Toy simulation [Z, ZZ]
    - Approximated simulators -
    - Pennylane [GPUs] ongoing
    - Circuit depth: pytket, qiskit transpiler to be tried
    - Classical counterpart, energy spectrum <H> (local minima, hyperparameters?) to be tried
    - Circuit cutting/ sub-QUBO: pre-processing, clustering geometrically, KDE to be tried
  - MC simulation
    - Realistic effects: add curvature, material effects [Bette-Bloch]
  - Performance numbers, timing estimates
  - Comparison with classical algorithm
- Quantum annealing (DWave) Xenofon
  - Try on hardware
  - Realistic tracks

## Related work [arXiv:2210.13021]



Variational Quantum Eigensolver: hybrid quantum-classical algorithm

