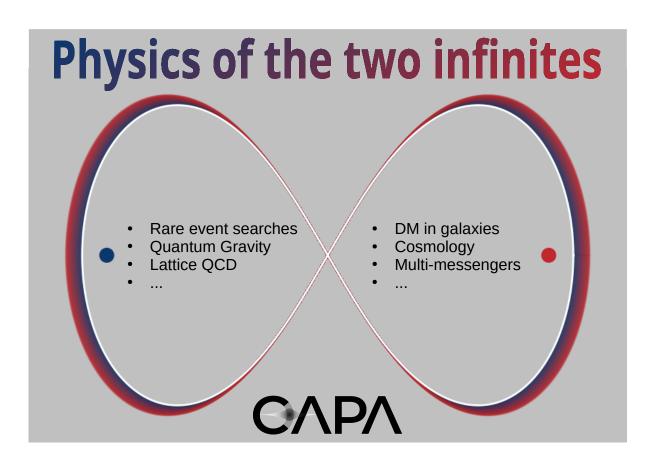


From Rare Events to Cosmic Correlations: Computational Developments at CAPA

CAPA's COMCHA Group: Jorge Alda, Swadheen Bharat, José Manuel Carmona, Iván Coarasa, Theopisti Dafni, Javier Galindo, *Héctor Gómez*, María Martínez, Alejandro Mir, Siannah Peñaranda, María Luisa Sarsa. Carmen Seoane



Outline

- **1.-** CAPA
- **2.-** COMCHA related activities
 - Rare events searches particularities
 - From low to high level analysis
 - Other activities
- **3.-** Prospects

CAPA

- Created in 2019, the Center for Astroparticles and High Energy Physics (CAPA) has been recently appointed as Research Institute of the University of Zaragoza
- Multidisciplinary research fields:
 - High energy physics
 - Nuclear and particle physics
 - Astrophysics
 - Cosmology
 - Astroparticles
 - Theoretical physics
 - Associated technological developments
- CAPA joined COMCHA network last summer

• Some particularities for the implementation of Machine Learning tools (w.r.t. HEP, for example):

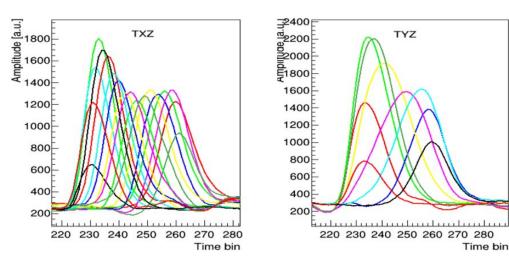
Limited and unbalanced datasets	Signal events far fewer than background / noise events	Training difficulty and/or bias
Low visibility of the signal	Low probability of signal process	Potential miss-classifications
Non-standard background distributions	Non-standard statistical distributions	Difficulty to design ML models
Dependence on high-precision simulations	Simulations depends on theoretical models and parameters	Uncertainties during training
Simulation to data mismatch	Unknown background sources, detector response,	Generalization problems
Low statistics	Low overall counting rate	ML models extremely sensitive to small systematic variations

• Data and Analysis Flow

Low Level

- Signal processing
- Deconvolution
- Noise filtering
- ...

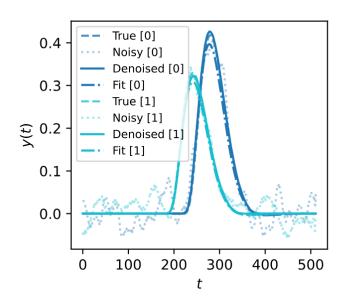
Intermediate Level

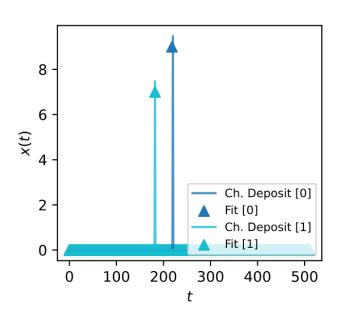

- Observable extraction:
 - Energy
 - Topology
 - PID

High Level

- Event classification
- Signal to noise discrimination
- Physics Analysis

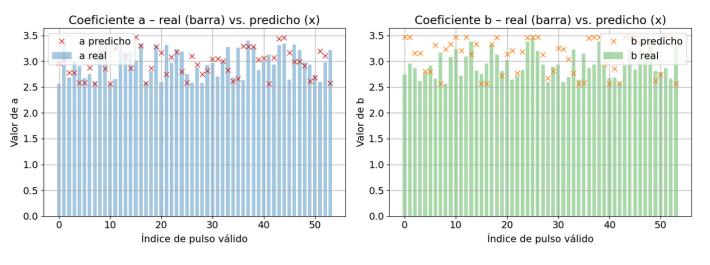
H. Gómez et al


- Same family of readout chips for the lecture of highly pixelated MPGDs detectors
 - AGET → AFTER → DREAM → STAGE (CEA / Irfu)
 - "Well known" transfer function
 - Axion Physics (IAXO), Dark Matter Searches (TREX-DM), Muography, ...



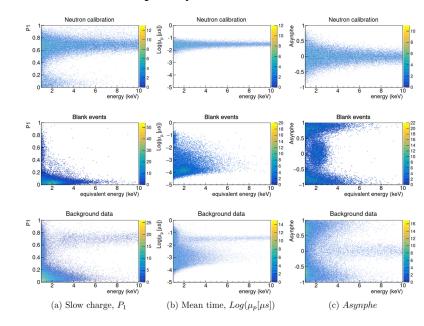
Real µM event

H. Gómez et al


- Same family of readout chips for the lecture of highly pixelated MPGDs detectors
 - AGET → AFTER → DREAM → STAGE (CEA / Irfu)
 - "Well known" transfer function
 - Axion Physics (IAXO), Dark Matter Searches (TREX-DM), Muography, ...
 - **1.-** Perfect transfer function → Noise management: **Convolutional Autoencoders**

H. Gómez et al

- Same family of readout chips for the lecture of highly pixelated MPGDs detectors
 - AGET → AFTER → DREAM → STAGE (CEA / Irfu)
 - "Well known" transfer function
 - Axion Physics (IAXO), Dark Matter Searches (TREX-DM), Muography, ...
 - 2.- Variable transfer function → Fit management: Specialized Transformer Model


- Preliminary results
 - For ~10 energy deposits
 - $\Delta t < 0.6$ Time bins
 - ΔA ~ 10 ADC units

S. Bharat, I. Coarasa, M. Martínez, M.L. Sarsa. C. Seoane

Boosted Decision Tree (BDT)

Event classification: Bulk scintillation vs Noise / Bkg

- 30% improvement in detection efficiency @ Rol
- ~18% Bkg reduction @ Rol
- 15 discrimination parameters @ BDT (vs 4 parameters used in "classical" analysis)
- Neutron calibrations for signal like events
- "Empty " modules for Noise / Bkg events
- Sensitivity improvement
 - → Faster comparison with DAMA / Libra results

Improving ANAIS-112 sensitivity to DAMA/LIBRA signal with machine learning techniques. JCAP11 (2022) 048

ANAIS–112 three years data: a sensitive model independent negative test of the DAMA/LIBRA dark matter signal. Comm Phys (2024) 7:345

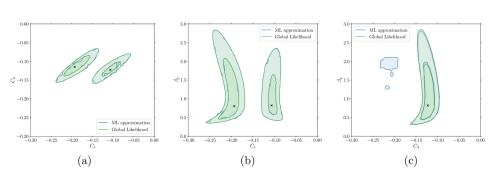
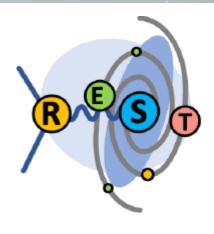
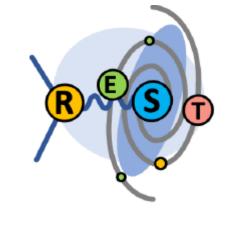
J. Alda, A. Mir, S. Peñaranda

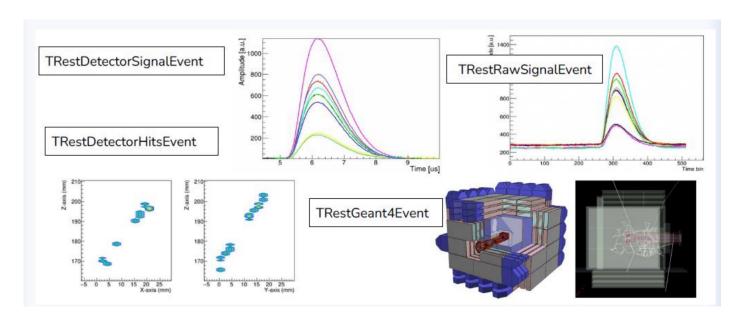
- Machine Learning techniques for data analysis in Particle Physics and Flavour Phenomenology
- Implementation of methods such as:
 - Regression Trees
 - SHAP values (Shapely Additive exPlanation)
- Goals / Outcomes
 - Identification of complex correlations between experimental observables
 - Improvement on the precision of the Physical Parameters estimation
 - Interpretation of Predictive Models

A comparative analysis of results on B-anomalies using a machine learning algorithm. e-Print: 2412.15830 [hep-ph]

Using Machine Learning techniques in phenomenological studies on flavour physics. JHEP 07 (2022) 115

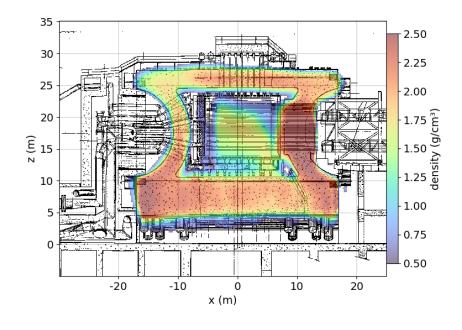
Exploring B-physics anomalies at colliders. PoS EPS-HEP2021 (2022) 494


Figure 10: Comparison between the $1\,\sigma$ and $2\,\sigma$ likelihood contours obtained using the ML approximation (blue) and the actual contours (green) in (a) C_1 and C_3 plane, (b) C_1 and β^q plane and (c) C_3 and β^q plane.

- Rare Event Searches Toolkit (https://rest-for-physics.github.io/)
 - A collaborative software effort that provides common tools for acquisition, simulation, and data analysis.
 - Initially developed for rare event searches with TPC → but not limited to this.
- Created in University of Zaragoza as an effort to unify experimental and analysis activities in a common environment.
 - First "established" version from ~2014-2015.
- Mainly written in C++ and it is fully integrated with ROOT I/O interface input information, via configuration (.rml) files.
- Composed by different modular libraries and packages.
- REST provides ready to use examples. This is especially useful for (undergraduate) students.

- Main project
 - Framework
- Libraries for montecarlo and detector data processing
 - Rawlib / Geant4lib
 - Detectorlib / Tracklib
 - Basic-readouts / Connectorslib
 - Axionlib / Wimplib
 - ...
- Packages that exploit REST libraries
 - restG4
 - restROOT
 - restSQL
 - ...



REST-for-Physics. Zenodo (2024) https://doi.org/10.5281/zenodo.11110607

- Muography using Micromegas detectors
- Several application fields
 - Special interest on nuclear domain
 - Reactor surveillance: In operation or dismantling phases
 - First 3D Muography of a Nuclear reactor
 - Different ML techniques for data analysis
 - PRX Energy 4 (2025) 013002
 - Waste container characterization
 - Data Augmentation, Bayesian Inference, MLEM ...
- Collaborative projects CAPA CEA/Irfu ongoing

• Prospects:

- Several CAPA groups / members considering to implement ML-based tools and other COMCHA related subjects:
 - Data correlation in Astroparticle experiments (IceCube, Km3NET)
 - Algorithms implementation in FPGAs (digital signal processing)
 - Rare events searches → Physics beyond SM
 - Pulse shape discrimination, tracking and topological analysis, event classification and background rejection
 - Different types of detectors: Scintillators, liquid and gaseous TPCs, quantum sensors, ...
 - Global fits and observable correlation studies in flavor physics experiments
 - Density and image reconstruction using muon tomography

From Rare Events to Cosmic Correlations: Computational Developments at CAPA

CAPA's COMCHA Group: Jorge Alda, Swadheen Bharat, José Manuel Carmona, Iván Coarasa, Theopisti Dafni, Javier Galindo, *Héctor Gómez*, María Martínez, Alejandro Mir, Siannah Peñaranda, María Luisa Sarsa. Carmen Seoane

Acknowledgments:

The Spanish *Agencia Estatal de Investigación (AEI)* under grant PID2019-108122GB-C31 funded by MCIN/AEI/10.13039/501100011033.