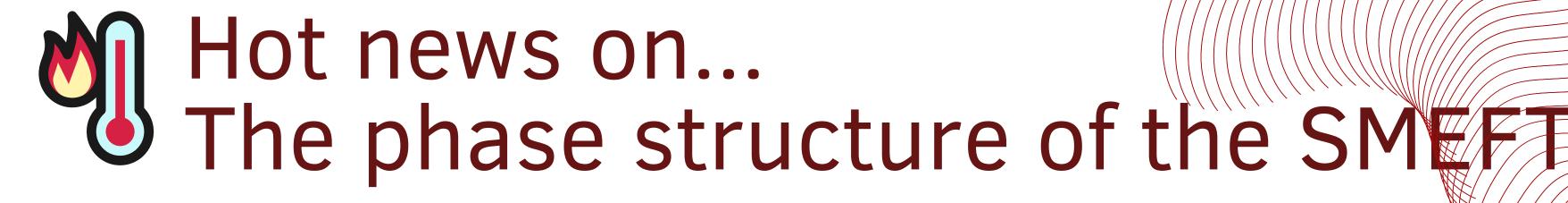


UNIVERSIDAD DE GRANADA



XVII CPAN 2025, Valencia

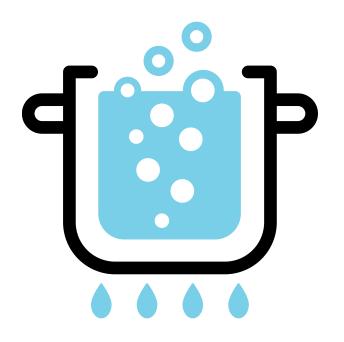
Maria Cristina Fiore-University of Granada

Based on: Mikael Chala, MCF and

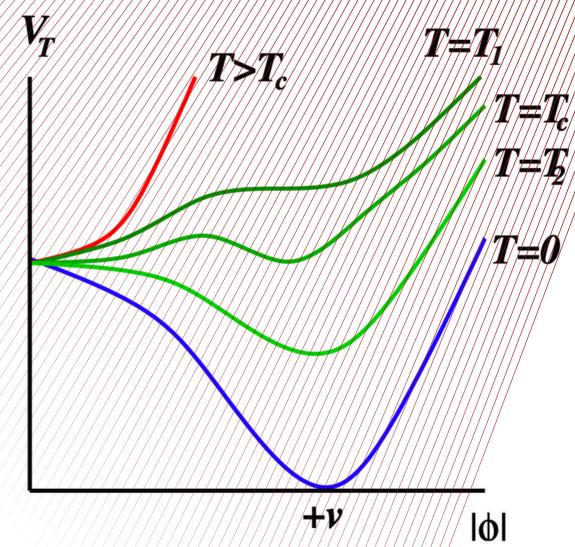
Luis Gil [2507.16905]

The Universe... was bubbling! (Let it cook)

What is a First-Order Phase Transition?

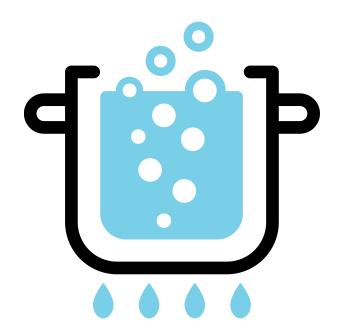


- Sudden change, not smooth
- Bubbles appear and grow
- Like boiling water in the early Universe

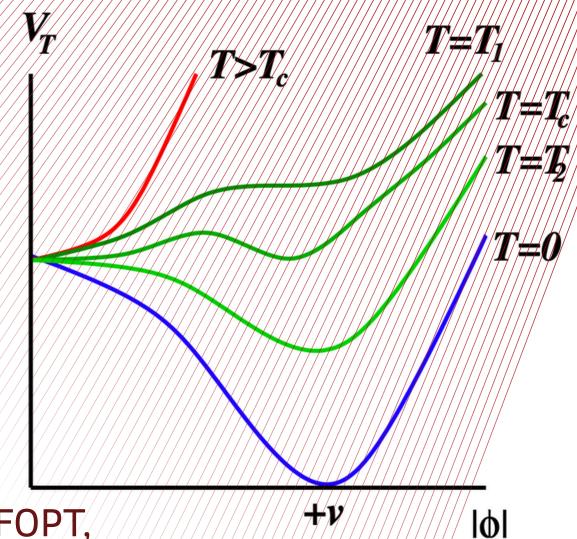


The Universe... was bubbling! (Let it cook)

What is a First-Order Phase Transition?



- Sudden change, not smooth
- Bubbles appear and grow
- Like boiling water in the early Universe



Why they matter (a lot)?

• SM: FOPT, that's direct evidence of BSM physics

Fulfillment of Sakharov conditions

The matter-antimatter asymmetry

They source GW we might detect soon

Caprini et al. [2406.09228]

How do we study BSM physics?

From specific BSM models

- →modify the Higgs potential
- → make the EW phase transition first-order

This type of approach is essential when light degrees of freedom exist beyond those included in the Standard Model

to

Agnosticity

Standard Model Effective Field Theory:

→Captures new physics via higher-dimensional operators suppressed by a cutoff scale

Particularly useful when all new physics degrees of freedom are significantly heavier than those of the Standard Model

Let's you study whole classes of UV completions at once

Exploring: from a Slice to the whole Pie

SMEFT

Exploring: from a Slice to the whole Pie

previous works

[e.g. Camargo-Molina et al. 2103.14022; Camargo-Molina et al. 2410.23210]

${\cal O}_{\phi}$	$(\phi^\dagger\phi)\Box(\phi^\dagger\phi)$
${\cal O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger \phi^\dagger D_\mu \phi$
${\cal O}_{\phi}$	$(\phi^\dagger\phi)^3$

Exploring: from a Slice to the whole Pie



previous works

[e.g. Camargo-Molina et al. 2103.14022; Camargo-Molina et al. 2410.23210]

${\cal O}_{\phi\Box}$	$(\phi^\dagger\phi)\Box(\phi^\dagger\phi)$
${\cal O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger \phi^\dagger D_\mu \phi$
${\cal O}_{\phi}$	$(\phi^\dagger\phi)^3$

so much more to explore

e.g. ${\cal O}_{t\phi}$

 ${\cal O}_{u\phi}$ $\overline{q}\widetilde{\phi}u(\phi^{\dagger}\phi)$

in our work we included all dimension-6 operators

Goal: Determine if a point in SMEFT space leads to a FOPT

Method: <u>Dimensional Reduction</u> (DR)

At finite temperature... time is a circle

ullet Time becomes compactified: Euclidean time $\sim S^1$ of length 1/T

• Fields acquire Matsubara modes

$$\omega_n = 2\pi nT$$
 (bosons) $\omega_n' = 2\pi \left(n + rac{1}{2}
ight)T$ (fermions)

$$\omega_n' = 2\pi \left(n + rac{1}{2}
ight)T$$
 (fermions)

- Heavy modes (with $n \neq 0$) have $M \sim \pi T \Rightarrow ext{ integrate them out}$
- What remains: a 3D EFT for bosonic zero modes (temperature dependence is encoded in the parameters of the EFT)

Matching SMEFT to the 3D EFT

After DR, we get a 3D SU(2) + Higgs model, but:

- In the SM: parameters depend on $g, m_H, T...$
- ullet In SMEFT: they also depend on Wilson coefficients c_i

 g_3 (thermal gauge coupling)

Key parameters: λ_3 (Higgs quartic coupling)

 m_3^2 (thermal Higgs mass)

Control curvature of the effective potential and the position in the phase diagram

Why they matter? • Determine whether the theory undergoes a FOPT or a crossover

From parameters to phases

How do we determine whether a FOPT actually occurs?

- ightarrow Use known lattice results for the 3D $\,SU(2) + Higgs\,\,$ theory
- → This combines perturbative SMEFT input with non-perturbative lattice data.

Phase diagram from lattice

[Gürtler et al.-hep-lat/9704013]

Scan over (x,y) to find FOPT region

Result: clear phase boundary between crossover and FOPT

This diagram is universal: it applies to any theory that reduces to SU(2)+Higgs in 3D

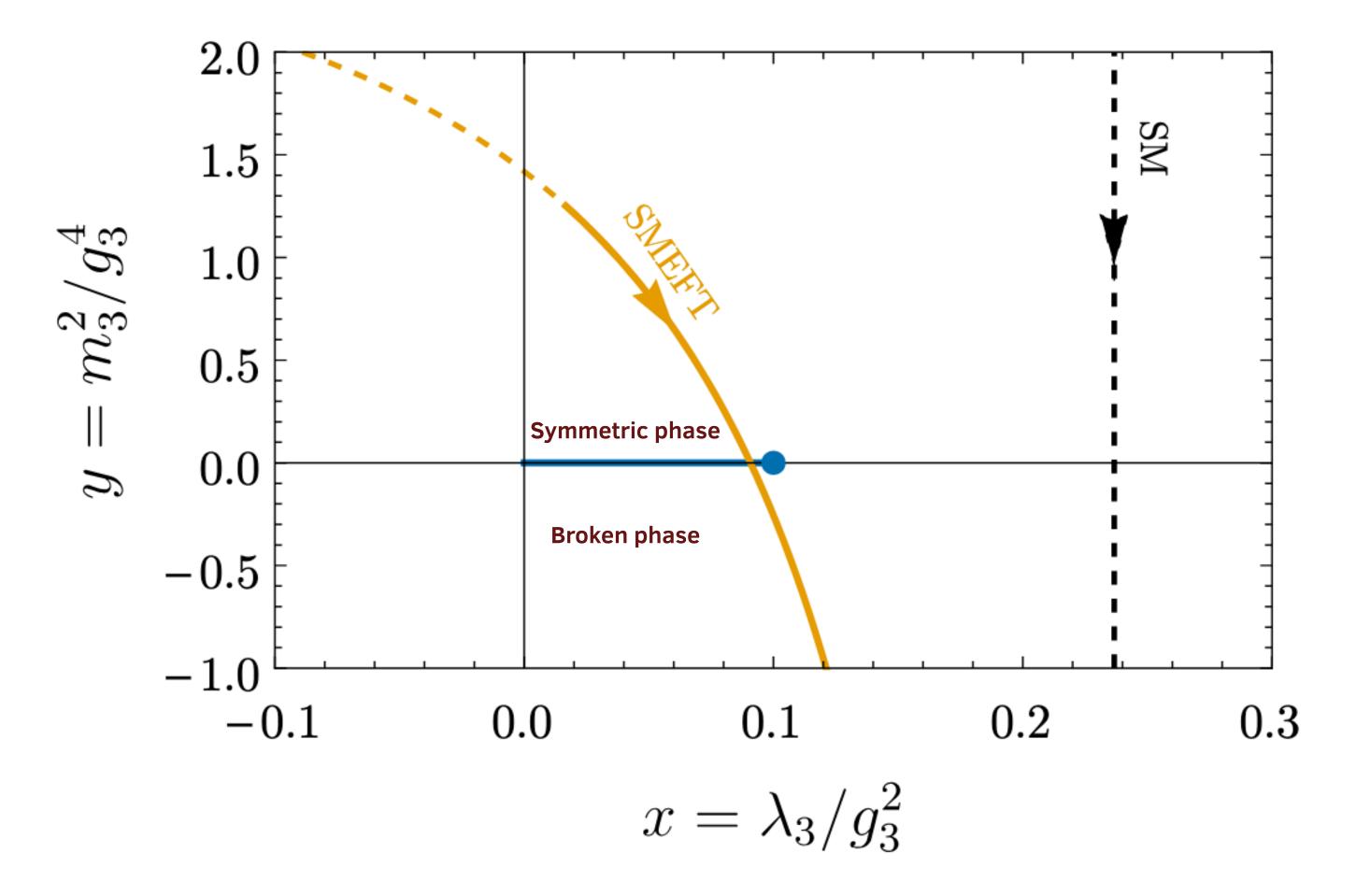


FIG1. Phase diagram of the high temperature limit of the SM and the SMEFT

Which SMEFT operators matter most?

Starting with $O_{t\phi}$:

• Positive $c_{t\phi}$ shifts the thermal trajectory **toward** the FOPT region But: not enough by itself

Adding $O_{\phi\square}$:

• A moderate c_{ϕ} (within bounds) pushes the trajectory into the FOPT region

Result: $c_{t\phi} + c_{\phi\square} \Rightarrow ext{Successful FOPT}$

Which SMEFT operators matter most?

Starting with $O_{t\phi}$:

ullet Positive $c_{t\phi}$ shifts the thermal trajectory toward the FOPT region

But: not enough by itself

Adding $O_{\phi\square}$:

• A moderate $C_{\phi}\square$ (within bounds) pushes the trajectory into the FOPT region

What about O_{ϕ} ?

NOT NECESSARY!!

- Small negative c_{ϕ} can compensate a smaller c_{ϕ}
- Allows for both coefficients to stay small and still trigger a FOPT

Result: $c_{t\phi} + c_{\phi\square} \Rightarrow ext{Successful FOPT}$

Which SMEFT operators matter most?

Starting with $O_{t\phi}$:

ullet Positive $c_{t\phi}$ shifts the thermal trajectory toward the FOPT region

But: not enough by itself

Adding $O_{\phi\square}$:

ullet A moderate c_{ϕ} (within bounds) pushes the trajectory into the FOPT region What about O_{ϕ} ?

NOT NECESSARY!!

- Small negative Co can compensate a smaller c_{ϕ}
- Allows for both coefficients to stay small and still trigger a **FOPT**

Result: $c_{t\phi} + c_{\phi\square} \Rightarrow ext{Successful FOPT}$

Why this is exciting? $\stackrel{}{\swarrow}$ FOPT without explicit ϕ^6 term!

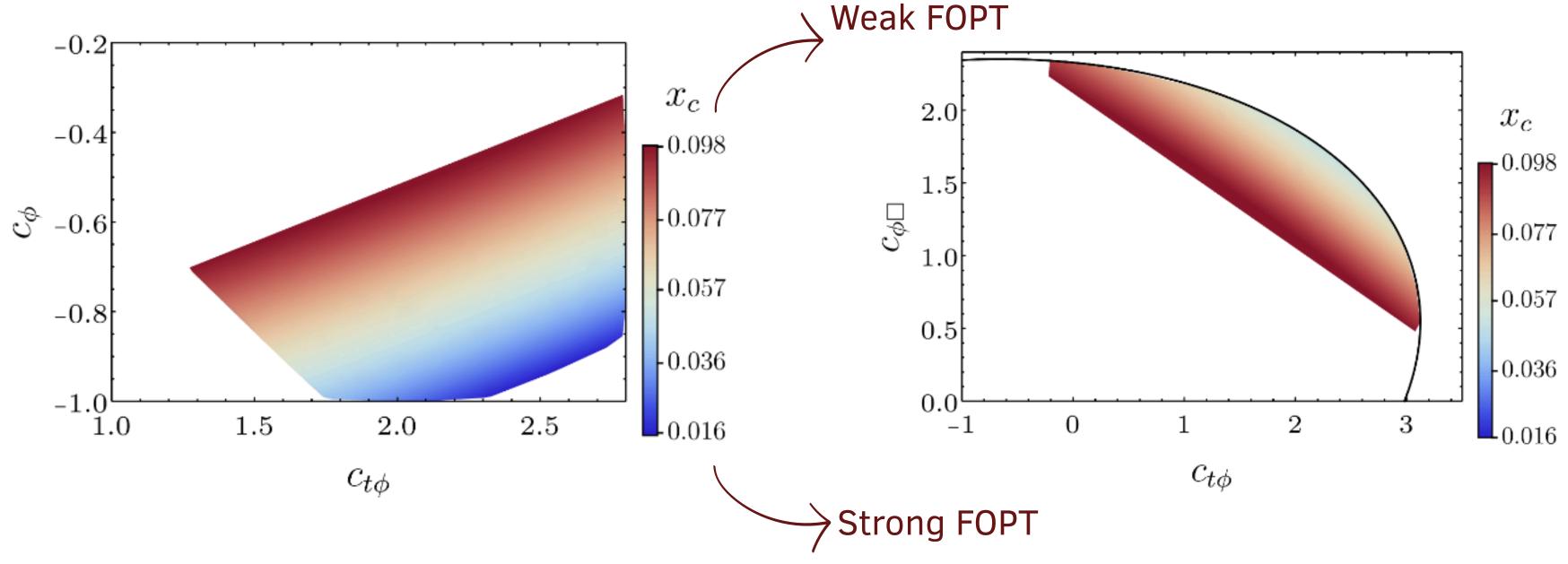


FIG 2.- FIG 3. Region of the parameter space allowed by data that gives rise to FOPT in units of TeV^-2

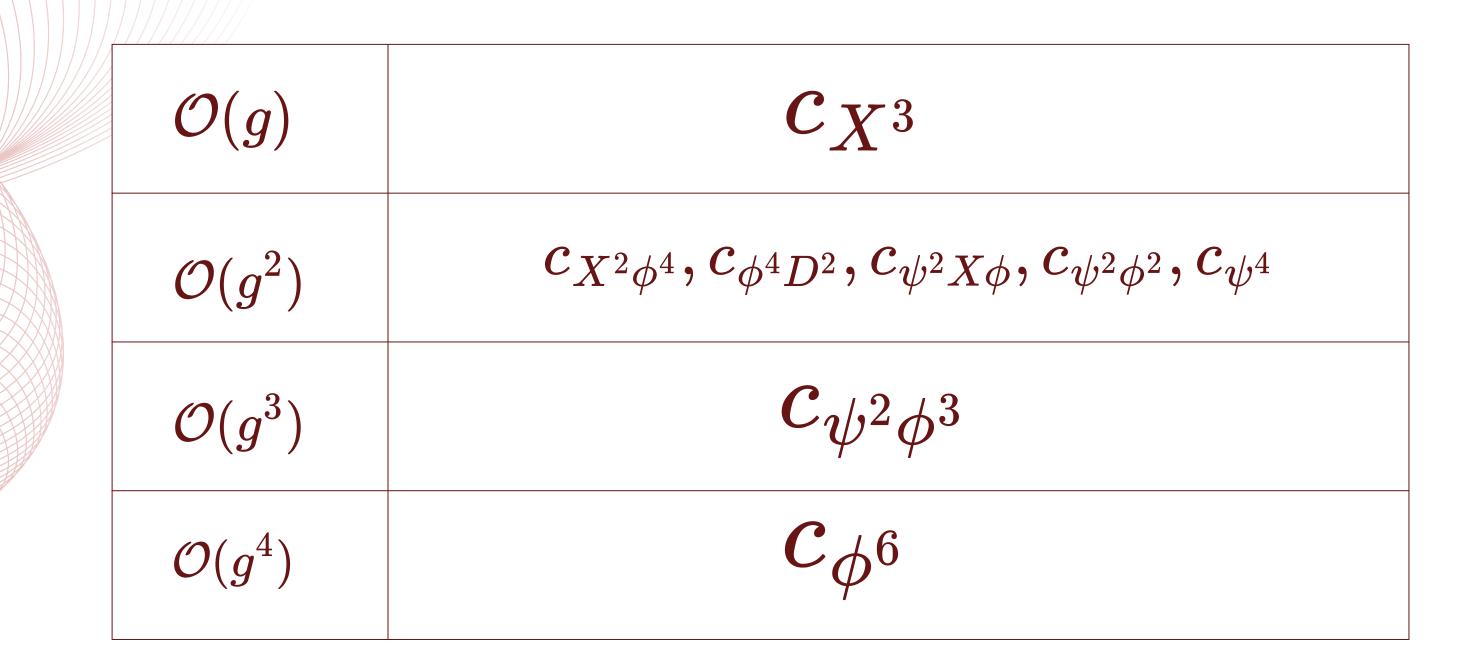
To conclude:

- We've performed full $\mathcal{O}(g^4)$ dimensional reduction of SMEFT electroweak sector.
- First-order EWPT possible without any T=0 Higgs potential modifications (one- and two-loop matching corrections are essential).
- Expands viable weakly-coupled BSM scenarios; motivates completely new model building and collider searches.

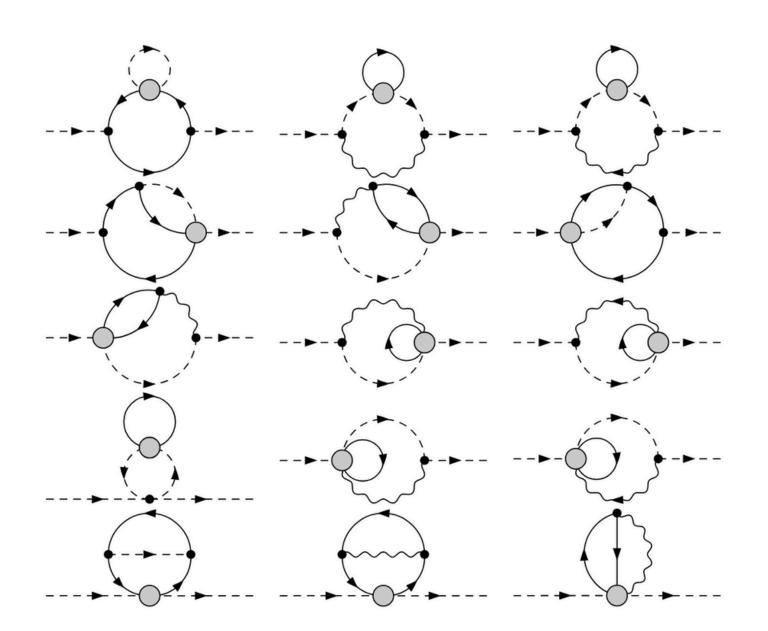
THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS?

Power counting of dimension-six SMEFT operators relevant for thermal matching



Two-loops diagrams from SMEFT operators

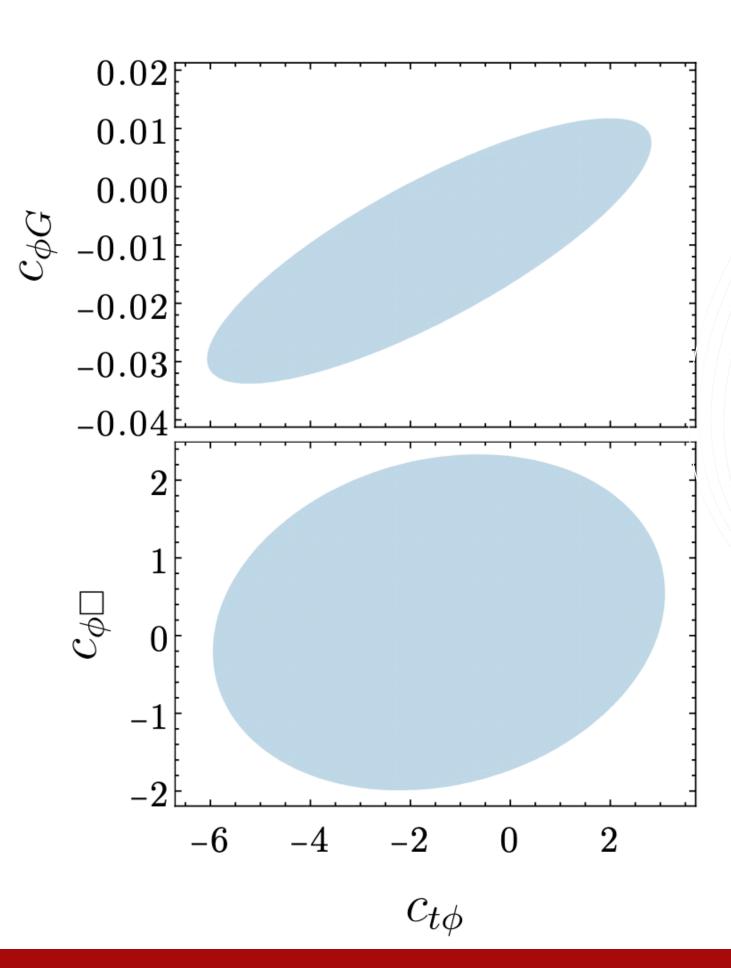


Example of a two-loop matching including all dimension-6 operators

$$egin{aligned} m_{\phi}^2 &= iggl[-rac{1}{4}c_{\phi} + rac{47}{3}g_S^2c_{\phi G} + rac{1}{576}|Y_u|^2iggl(30c_{\phi\square} - 15c_{\phi D} \ &+ 6c_{\phi u} - 6c_{\phi q}^{(1)} + 18c_{\phi q}^{(3)} + 24c_{qu}^{(1)} + 32c_{qu}^{(8)} iggr) \ &+ rac{3}{64}iggl(16g_Sc_{uG}Y_u^* - 3c_{u\phi}Y_u^* + ext{h. c.} iggr) iggr] T^4 \end{aligned}$$

SMEFT vertices are represented as a gray circle

Experimentally allowed values for $c_{t\phi}, c_{\phi G}, c_{t\phi}, c_{\phi \Box} \left(TeV^{-2} \right)$ as derived using **SMEFiT** upon marginalizing over other operators



2. One-loop results

At one loop, the non-vanishing SMEFT contributions the 3D EFT read:

$$\begin{split} k_{\phi} &= \frac{1}{12} (c_{\phi D} - 2c_{\phi \Box}) T^2 \\ k_{B_0} &= -\frac{2}{3} c_{\phi B} T^2 \\ k_{W_0} &= -\frac{2}{3} (c_{\phi W} + 3g c_{3W}) T^2 \\ k_B &= -\frac{2}{3} c_{\phi B} T^2 \\ k_W &= -\frac{2}{3} (c_{\phi W} + 3g c_{3W}) T^2 \\ m_{\phi}^2 &= \frac{1}{12} \mu^2 \left(c_{\phi D} - 2c_{\phi \Box} \right) T^2 \\ \lambda_{\phi^4} &= \left[-c_{\phi} + \frac{1}{4} \left(g'^2 c_{\phi B} + g' g c_{\phi W B} + 3g^2 c_{\phi W} \right) \right. \\ &+ \lambda c_{\phi \Box} + \frac{1}{48} \left(3(g'^2 + g^2) - 16\lambda \right) c_{\phi D} \\ &\left. - \frac{1}{12} \left(c_{e\phi} Y_e^* + 3 \left(c_{d\phi} Y_d^* + c_{u\phi} Y_u^* \right) + \text{h.c.} \right) \right] T^3 \end{split}$$

$$\lambda_{\phi^2 B_0^2} = \frac{1}{48} g'^2 \left(6c_{\phi\Box} + 9c_{\phi D} - 8c_{\phi e} - 8c_{\phi l}^{(1)} + 16c_{\phi u} - 8c_{\phi d} + 8c_{\phi q}^{(1)} \right) T^3$$

$$\lambda_{\phi^2 W_0^2} = \frac{1}{48} g^2 \left(6c_{\phi\Box} + c_{\phi D} + 8c_{\phi l}^{(3)} + 24c_{\phi q}^{(3)} \right) T^3$$

$$\lambda_{\phi^{2}B_{0}W_{0}} = \frac{1}{24}g'g\Big(6c_{\phi\Box} + 5c_{\phi D} - 4c_{\phi e} - 4c_{\phi l}^{(1)} + 4c_{\phi l}^{(3)} + 8c_{\phi u} - 4c_{\phi d} + 4c_{\phi q}^{(1)} + 12c_{\phi q}^{(3)}\Big)T^{3}$$

For the sake of clarity, we compute the contribution of $c_{\phi e}$ to m_{ϕ}^2 in the limit of vanishing g', g and λ and with only one family of fermions. To this aim, we consider the Green's function $\mathcal{G}_{\phi\phi}$ at zero momentum.

$$\begin{split} \mathscr{G}_{\phi\phi} &\sim 4 \sum_{\{QR\}}^{f} \left[\frac{1}{Q^2 (Q+R)^2} + \frac{Q \cdot R}{Q^2 R^2 (Q+R)^2} \right] \\ &= 2 \sum_{\{QR\}}^{f} \left[\frac{1}{Q^2 (Q+R)^2} + \frac{1}{Q^2 R^2} - \frac{1}{R^2 (Q+R)^2} \right] \\ &= 2 \left[\sum_{\{Q\}R}^{f} \frac{1}{Q^2 R^2} + \sum_{\{QR\}}^{f} \frac{1}{Q^2 R^2} - \sum_{Q\{R\}}^{f} \frac{1}{R^2 Q^2} \right]; \end{split}$$

where \sim indicates that we are ignoring the factor $c_{\phi e}|Y_e|^2$. Substituting the sum-integrals and taking into account that, in the 3D EFT, $\mathscr{G}_{\phi\phi} = m_{\phi}^2$, we therefore have:

$$m_{\phi}^{2} = -2c_{\phi e}|Y_{e}|^{2} \left[I_{100}^{b} I_{100}^{f} + (I_{100}^{f})^{2} - I_{100}^{f} I_{100}^{b} \right]$$
$$= -\frac{1}{288} c_{\phi e}|Y_{e}|^{2} T^{4},$$