Constraints on $SU(2)_L$ -preserving NSI from hadronic τ decays

Santiago Paz Castro - IFIC (CSIC/UV)

Authors: Alexander Friedland William McNulty Emilie Passemar Santiago Paz Castro

Outline

- 1. Motivation
 Neutrino oscillation
 Tensions and NSI
- 2. NSI and symmetries Formalism
- 3. τ decays Updates in CLFV bounds Preliminary results
- 4. Conclusions
 Limitations
 Summary

Motivation Neutrino oscillation

» Since the 2000's, standard(*ish*) neutrino oscillations are found to be mass-driven.

- Different mass (propagation) and flavour (production/detection) eigenstates.
- » Can be parametrized with the PMNS matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

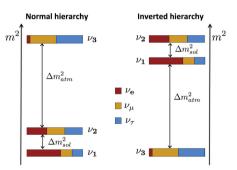
Motivation Neutrino oscillation

» Since the 2000's, standard(*ish*) neutrino oscillations are found to be mass-driven.

- Different mass (propagation) and flavour (production/detection) eigenstates.
- » Can be parametrized with the PMNS matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

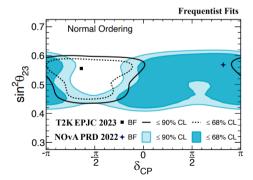
» Oscillation parameters depend on the mass ordering.



S. Adrián-Martínez et al. (KM3NeT) (2016)

Motivation Tensions and NSI

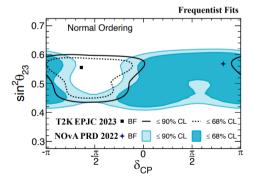
- » NSI went from being a possible oscillation origin to a subdominant effect.
- » There are some results that are still in tension in the mass-driven mixing.



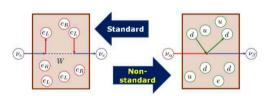
I. Esteban et al. (NuFit) (2024)

Motivation Tensions and NSI

- » NSI went from being a possible oscillation origin to a subdominant effect.
- There are some results that are still in tension in the mass-driven mixing.



I. Esteban et al. (NuFit) (2024)



T. Ohlsson (2013)

» They would introduce variations to the Standard matter effects (MSW).

Could be (and are) constrained with ocillation experiments

NSI and symmetries Formalism

» Introducing an effective lagrangian for NC NSI:

$$\mathcal{L}_{\text{NSI(NC)}} = -2\sqrt{2}G_F \sum_{f,X,\alpha,\beta} \underbrace{\epsilon_{\alpha\beta}^{fX}} (\overline{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\overline{f}\gamma_{\mu}P_Xf)$$

$$= -\sqrt{2}G_F \sum_{f,\alpha,\beta} (\overline{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) \left(\overline{f} \left[\underbrace{\epsilon_{\alpha\beta}^{fV}} \gamma_{\mu} + \underbrace{\epsilon_{\alpha\beta}^{fA}} \gamma_{\mu}\gamma_5 \right] f \right)$$

While CC modifies ν 's detection and production, the NC change the propagation.

NSI and symmetries Formalism

» Introducing an effective lagrangian for NC NSI:

$$\mathcal{L}_{\text{NSI(NC)}} = -2\sqrt{2}G_F \sum_{f,X,\alpha,\beta} \underbrace{\epsilon_{\alpha\beta}^{fX}}_{f,X,\alpha,\beta} (\overline{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\overline{f}\gamma_{\mu}P_Xf)$$

$$= -\sqrt{2}G_F \sum_{f,\alpha,\beta} (\overline{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) \left(\overline{f} \left[\underbrace{\epsilon_{\alpha\beta}^{fV}}_{f,\alpha}\gamma_{\mu} + \underbrace{\epsilon_{\alpha\beta}^{fA}}_{f,\alpha}\gamma_{\mu}\gamma_5\right] f\right)$$

- » While CC modifies ν 's detection and production, the NC change the propagation.
- >> We include only vector and axial-vector contributions to the four-fermion operators.

NSI and symmetries Formalism

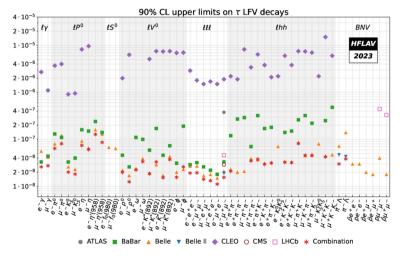
» Introducing an effective lagrangian for NC NSI:

$$\mathcal{L}_{\text{NSI(NC)}} = -2\sqrt{2}G_F \sum_{f,X,\alpha,\beta} \overbrace{\epsilon_{\alpha\beta}^{fX}} (\overline{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\overline{f}\gamma_{\mu}P_Xf)$$

$$= -\sqrt{2}G_F \sum_{f,\alpha,\beta} (\overline{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) \left(\overline{f} \left[\overbrace{\epsilon_{\alpha\beta}^{fV}}\gamma_{\mu} + \overbrace{\epsilon_{\alpha\beta}^{fA}}\gamma_{\mu}\gamma_5\right] f\right)$$

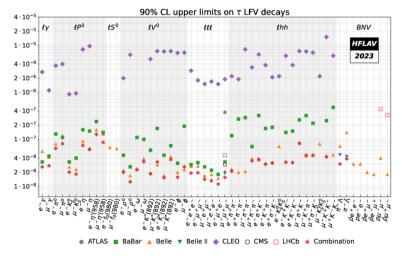
- While CC modifies ν 's detection and production, the NC change the propagation.
- » We include only vector and axial-vector contributions to the four-fermion operators.
- » Similar strengths are expected in V and A contributions for chiral mediators.

au decays Updates in CLFV bounds



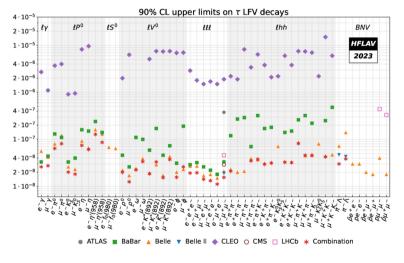
» Improvement of bounds on τ LFV.

au decays Updates in CLFV bounds



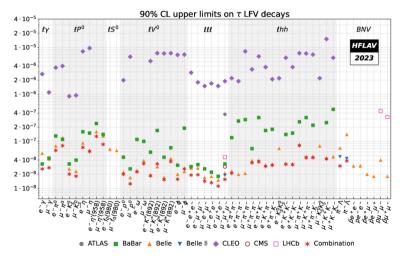
- \rightarrow Improvement of bounds on τ LFV.
- » Cleaner observables.

au decays Updates in CLFV bounds



- Improvement of bounds on τ LFV.
- » Cleaner observables.
- » Multiple hadronic channels available.

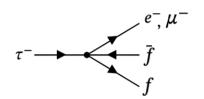
au decays Updates in CLFV bounds



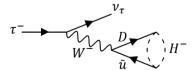
- \rightarrow Improvement of bounds on τ LFV.
- » Cleaner observables.
- » Multiple hadronic channels available.
- » Possible higher sensitivity to NP.

au decays Updates in CLFV bounds

- » We aim to update previous analyses and to include more channels:
 - S. Bergmann et al. (1999, 2000, 2000)
 - M. B. Gavela et al. (2009)
 - S. Davidson and M. Gorbahn (2020), among others.

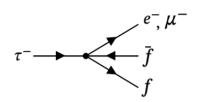


Normalized with (when possible)

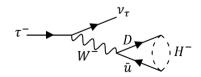


au decays Updates in CLFV bounds

- We aim to update previous analyses and to include more channels:
 - S. Bergmann et al. (1999, 2000, 2000)
 - M. B. Gavela et al. (2009)
 - S. Davidson and M. Gorbahn (2020), among others.
- $>\!\!>$ We consider HFLAV averages for the 95% CL in the following channels:
 - $\tau \to \ell P^0$ with $P^0 \in \{\pi^0, \eta, \eta'\} \longrightarrow I = 0, 1; \epsilon_{\ell\tau}^{fA}$
 - $\tau \to \ell P^+ P^-$ with $P \in \{\pi, K\} \longrightarrow I = 0, 1; \epsilon_{\ell \tau}^{fV}$
 - $\tau \to \ell V$ with $V \in \{\omega, \phi\} \longrightarrow I = 0; \epsilon_{\ell\tau}^{fV}$



Normalized with (when possible)



au decays Preliminary results

Process	Dirac Structure	$\operatorname{Isospin}$	μ_{I}		$ \epsilon^s_{\mu\tau} $ Constraint
$ au ightarrow \mu \pi^0$	Axial	1	$\leq 1.2 \times 10^{-3}$	$\leq 1.2 \times 10^{-3}$	N/A
$ au o \mu \eta$	Axial	0	$\leq 1.4 \times 10^{-3}$	$\leq 1.4 \times 10^{-3}$	$\leq 9.6 \times 10^{-4}$
$ au o \mu \eta'$	Axial	0	$\leq 2.6\times 10^{-3}$	$\leq 2.6 \times 10^{-3}$	$\leq 1.2 \times 10^{-3}$
$ au o \mu \pi^+ \pi^-$	Vector	1	$\leq 4.0 \times 10^{-4}$	$\leq 4.0 \times 10^{-4}$	N/A
$ au o \mu K^+ K^-$	Vector	0	$\leq 1.0 \times 10^{-2}$	N/A	$\leq 1.0 \times 10^{-2}$
$ au ightarrow \mu \omega$	Vector	0	$\leq 5.8 \times 10^{-4}$	$\leq 5.8 \times 10^{-4}$	N/A
$ au o \mu \phi$	Vector	0	N/A	N/A	$\leq 4.8 \times 10^{-4}$

Proces	SS	Dirac Structure	Isospin	$ \epsilon_{e\tau}^u $ Constaint	$ \epsilon_{e\tau}^d $ Constraint	$ \epsilon_{e\tau}^s $ Constraint
au o e au	τ^0	Axial	1	$\leq 1.1 \times 10^{-3}$	$\leq 1.1 \times 10^{-3}$	N/A
au o e	η	Axial	0	$\leq 1.5 \times 10^{-3}$	$\leq 1.5 \times 10^{-3}$	$\leq 1.0 \times 10^{-3}$
au o e au	η'	Axial	0	$\leq 3.2 imes 10^{-3}$	$\leq 3.2 imes 10^{-3}$	$\leq 1.4 \times 10^{-3}$
$ au o e \pi^+$	$^-\pi^-$	Vector	1	$\leq 4.0 imes 10^{-4}$	$\leq 4.0 \times 10^{-4}$	N/A
$ au o eK^+$	K^-	Vector	0	$\leq 9.0 \times 10^{-3}$	N/A	$\leq 9.0 \times 10^{-3}$
au o ec	ω	Vector	0	$\leq 4.7 imes 10^{-4}$	$\leq 4.7 \times 10^{-4}$	N/A
au o e	ϕ	Vector	0	N/A	N/A	$\leq 3.7 \times 10^{-4}$

Conclusions Limitations

We can build D > 6 $SU(2)_L$ -preserving operators for ν_ℓ that don't translate to CLFV:

NSI Effective operator example without CLFV

$$\bar{l}_R \left(H^{\dagger} \sigma^a \ell_L \right) \left(\bar{\ell}_L \sigma^a H \right) l_R \longrightarrow -\frac{1}{2} \langle H \rangle^2 \left(\bar{l} \gamma^{\mu} P_R l \right) \left(\bar{\nu}_l \gamma_{\mu} P_L \nu_l \right)$$

Conclusions Limitations

» We can build D > 6 $SU(2)_L$ -preserving operators for ν_ℓ that don't translate to CLFV:

$$\bar{l}_R \left(H^\dagger \sigma^a \ell_L \right) \left(\bar{\ell}_L \sigma^a H \right) l_R \longrightarrow - \frac{1}{2} \langle H \rangle^2 \left(\bar{l} \gamma^\mu P_R l \right) \left(\bar{\nu}_l \gamma_\mu P_L \nu_l \right)$$

» For non-singlet mediators the constraint is up to the ratio of the masses (Estimated factor $< \gamma$).

8

Conclusions Limitations

We can build D > 6 $SU(2)_L$ -preserving operators for ν_ℓ that don't translate to CLFV:

NSI Effective operator example without CLFV

$$\bar{l}_R \left(H^\dagger \sigma^a \ell_L \right) \left(\bar{\ell}_L \sigma^a H \right) l_R \longrightarrow - \tfrac{1}{2} \langle H \rangle^2 \left(\bar{l} \gamma^\mu P_R l \right) \left(\overline{\nu}_l \gamma_\mu P_L \nu_l \right)$$

- » For non-singlet mediators the constraint is up to the ratio of the masses (Estimated factor $< \gamma$).
- >> EFT approach is no longer valid for light mediators!

8

Conclusions Limitations

» We can build D > 6 $SU(2)_L$ -preserving operators for ν_ℓ that don't translate to CLFV:

NSI Effective operator example without CLFV

$$\bar{l}_R \left(H^{\dagger} \sigma^a \ell_L \right) \left(\bar{\ell}_L \sigma^a H \right) l_R \longrightarrow -\frac{1}{2} \langle H \rangle^2 \left(\bar{l} \gamma^{\mu} P_R l \right) \left(\bar{\nu}_l \gamma_{\mu} P_L \nu_l \right)$$

- » For non-singlet mediators the constraint is up to the ratio of the masses (Estimated factor $< \gamma$).
- » EFT approach is no longer valid for light mediators!
- >> We are constraining one coupling at a time
 - \hookrightarrow Maybe there is an interference enhancement.

Conclusions Summary

- Flavour changing NC NSI can be *(strongly)* constrained using CLFV experimental bounds.
 - \hookrightarrow We obtained $\epsilon_{\alpha\beta}^f \sim \mathcal{O}(10^{-3})$ in most channels.
- τ semileptonic and leptonic decays are particularly useful to search for these flavour-violating channels.
- Our bounds can still allow for NSI with different UV theories or in dense atmospheres. (Effects in supernovae?)

Thanks for your attention!

Supplementary Material

» Interaction hamiltonian with general NSI
» Non-singlets mediators treatment

M. B. Gavela et al. (2009)

S. Bergmann et al. (2000)

Supplementary Material

Class	Operator	Mediator
	$(\overline{L^c_lpha}i au^2L_eta)(\overline{L^c_\epsilon}i au^2L_\delta)^\dagger$	S(1,1,1)
$1_{LXLX}^{s,t}$	$(\overline{L^c_lpha}i au^2ec{ au}L_eta)(\overline{L^c_\epsilon}i au^2ec{ au}L_\delta)^\dagger$	S(1,3,1)
¹ LXLX	$(\overline{L^c_lpha}i au^2Q_eta)(\overline{L^c_\epsilon}i au^2Q_\delta)^\dagger$	$S(\overline{\bf 3},{\bf 1},1/3)$
	$(\overline{L^c_lpha}i au^2ec{ au}Q_eta)(\overline{L^c_\epsilon}i au^2ec{ au}Q_\delta)^\dagger$	$S(\overline{\bf 3},{\bf 3},1/3)$
	$(\overline{L_{lpha}}(l_R)_{eta})(\overline{L_{\epsilon}}(l_R)_{\delta})^{\dagger}$	S(1 , 2 , 1/2)
2_{LFLF}	$(\overline{L_{lpha}}(u_R)_{eta})(\overline{L_{\epsilon}}(u_R)_{\delta})^{\dagger}$	$\left S(\overline{3},2,-7/6)\right $
	$(\overline{L_{lpha}}(d_R)_{eta})(\overline{L_{\epsilon}}(d_R)_{\delta})^{\dagger}$	$\left S(\overline{3},2,-1/6)\right $
	$(\overline{L_{lpha}}\gamma^{\mu}L_{eta})_{s}(\overline{L_{\epsilon}}\gamma_{\mu}L_{\delta})_{s}^{\dagger}$	$V({f 1},{f 1},0)$
	$(\overline{L_{lpha}}\gamma^{\mu}ec{ au}L_{eta})(\overline{L_{\epsilon}}\gamma_{\mu}ec{ au}L_{\delta})^{\dagger}$	V(1, 3, 0)
$2^{s,t}$	$(\overline{L_{lpha}}\gamma^{\mu}L_{eta})(\overline{Q_{\epsilon}}\gamma_{\mu}Q_{\delta})^{\dagger}$	$V({f 1},{f 1},0)$
$3_{LXYZ}^{s,t}$	$(\overline{L_{lpha}}\gamma^{\mu}ec{ au}L_{eta})(\overline{Q_{\epsilon}}\gamma_{\mu}ec{ au}Q_{\delta})^{\dagger}$	V(1, 3, 0)
	$(\overline{L_{lpha}}\gamma^{\mu}Q_{eta})(\overline{L_{\epsilon}}\gamma_{\mu}Q_{\delta})^{\dagger}$	$V(\overline{3}, 1, -2/3)$
	$(\overline{L_{lpha}}\gamma^{\mu}\vec{ au}Q_{eta})(\overline{L_{\epsilon}}\gamma_{\mu}\vec{ au}Q_{\delta})^{\dagger}$	$V(\overline{\bf 3},{\bf 3},-2/3)$

Classification of constrained operators with its mediator

	$(\overline{L_{lpha}}\gamma^{\mu}L_{eta})(\overline{(l_R)_{\epsilon}}\gamma_{\mu}(l_R)_{\delta})^{\dagger}$	$V({f 1},{f 1},0)$
4_{LLF}	$=(\overline{L_{lpha}}\gamma^{\mu}L_{eta})(\overline{(u_R)_{\epsilon}}\gamma_{\mu}(u_R)_{\delta})^{\dagger}$	$V({f 1},{f 1},0)$
	$(\overline{L_{lpha}}\gamma^{\mu}L_{eta})(\overline{(d_R)_{\epsilon}}\gamma_{\mu}(d_R)_{\delta})^{\dagger}$	$V({f 1},{f 1},0)$
	$(\overline{L_{lpha}^c}\gamma^{\mu}(l_R)_{eta})(\overline{L_{\epsilon}^c}\gamma_{\mu}(l_R)_{\delta})^{\dagger}$	V(1 , 2 , 3/2)
5_{LFL}	$= (\overline{L^c_lpha} \gamma^\mu (u_R)_eta) (\overline{L^c_\epsilon} \gamma_\mu (u_R)_\delta)^\dagger$	$V(\overline{3}, 2, -1/6)$
	$(\overline{L_{lpha}^c}\gamma^{\mu}(d_R)_{eta})(\overline{L_{\epsilon}^c}\gamma_{\mu}(d_R)_{\delta})^{\dagger}$	$V(\overline{\bf 3},{f 2},5/6)$