Scotogenic mechanism from a 3221 symmetry JHEP 10 (2025) 129 [2507.21223]

Javier Perez-Soler (IFIC, CSIC-UV)

in collaboration with Avelino Vicente (IFIC, CSIC-UV)

Julio Leite (IFIC, CSIC-UV)

(<u>Javier.Perez.Soler@ific.uv.es</u>)

From ancient greek

Σκότος: Darkness

Γένος: Kin, generation

• Take the SM and add a Z_2 symmetry

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times Z_2$$

From ancient greek

Σκότος: Darkness

Γένος: Kin, generation

Take the SM and add a Z₂ symmetry

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times Z_2$$

• All SM fields are even under \mathbb{Z}_2 , new BSM fields will be odd

$$L, H, e_R \dots \sim +$$

From ancient greek

Σκότος: Darkness

Γένος: Kin, generation

• Take the SM and add a Z_2 symmetry

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times Z_2$$

• All SM fields are even under \mathbb{Z}_2 , new BSM fields will be odd

$$L, H, e_R \dots \sim +$$

 New scalar doublet and two to three generations of a neutral fermionic singlet

$$\eta \sim (2, 1/2, -) \quad N^{\sigma} \sim (1, 0, -)$$

From ancient greek

Σκότος: Darkness

Γένος: Kin, generation

Take the SM and add a Z₂ symmetry

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times Z_2$$

• All SM fields are even under \mathbb{Z}_2 , new BSM fields will be odd

$$L, H, e_R \dots \sim +$$

 New scalar doublet and two to three generations of a neutral fermionic singlet

$$\eta \sim (2, 1/2, -) \quad N^{\sigma} \sim (1, 0, -)$$

• The η_0 VEV is zero, so that Z_2 is exact

$$\langle \eta_0 \rangle = 0 \rightarrow Z_2$$
 does not break

 Very minimal model with interesting phenomenology

 Very minimal model with interesting phenomenology

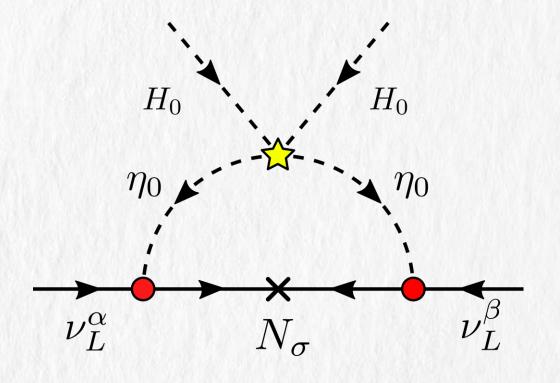
• **DM candidates** (bosonic or fermionic), stable thanks to an exact Z_2

Bosonic: Lightest $Re(\eta_0)$ or $Im(\eta_0)$

Fermionic: Lightest mass eigenstate of N^{σ}

 Very minimal model with interesting phenomenology

• **DM candidates** (bosonic or fermionic), **stable** thanks to an **exact** Z_2

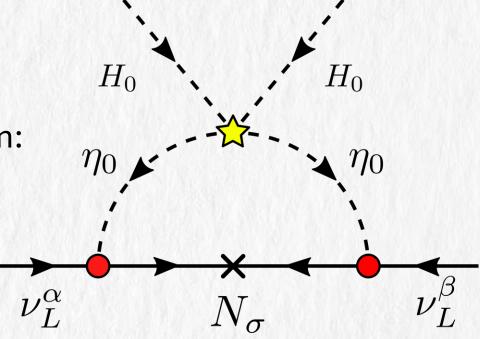


Bosonic: Lightest $Re(\eta_0)$ or $Im(\eta_0)$

Fermionic: Lightest mass eigenstate of N^{σ}

Radiative Majorana neutrino masses at 1-loop LO

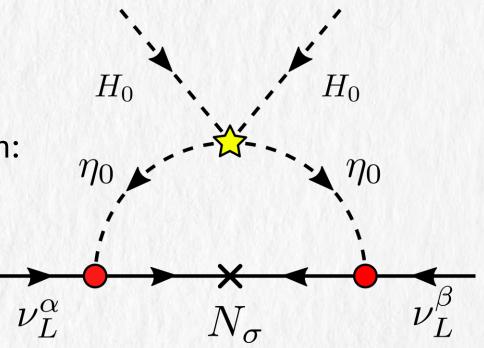
• The neutrino mass loop is generated from:



• The neutrino mass loop is generated from:

A Yukawa interaction:

$$Y^{\alpha\sigma}(\tilde{\eta}^{\dagger}L^{\alpha}\overline{N}^{\sigma}) + h.c.$$



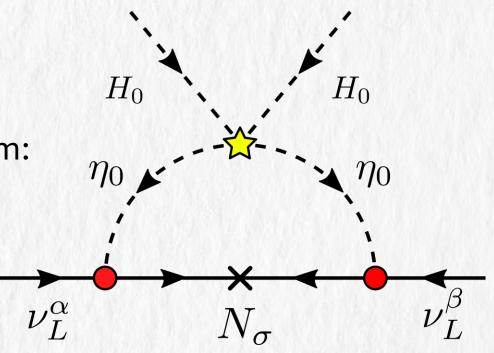
The neutrino mass loop is generated from:

A Yukawa interaction:

$$Y^{\alpha\sigma}(\tilde{\eta}^{\dagger}L^{\alpha}\bar{N}^{\sigma}) + h.c.$$

• A quartic scalar interaction:

$$\frac{1}{2}\lambda_5\left[\left(H^{\dagger}\eta\right)^2+h.c.\right]$$

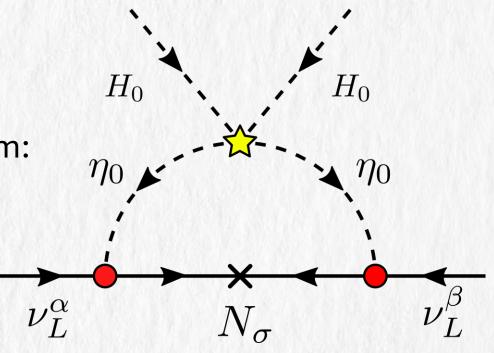


• The neutrino mass loop is generated from:

$$Y^{\alpha\sigma}(\tilde{\eta}^{\dagger}L^{\alpha}\overline{N}^{\sigma}) + h.c.$$

• A quartic scalar interaction:

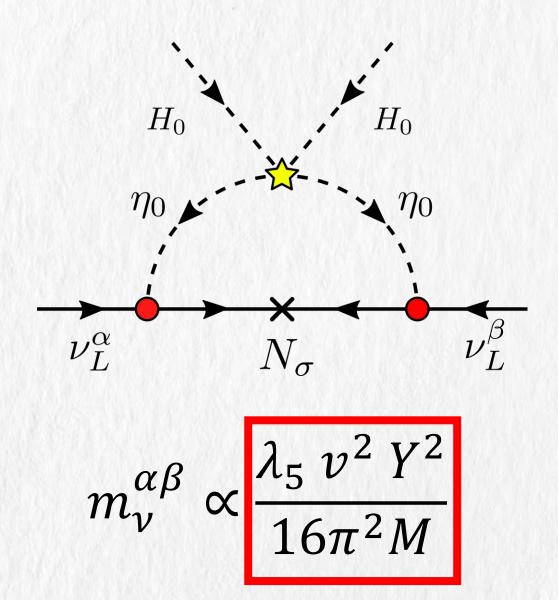
$$\frac{1}{2}\lambda_5\left[\left(H^{\dagger}\eta\right)^2+h.c.\right]$$



$$m_{\nu}^{\alpha\beta} \propto \frac{\lambda_5 \, v^2 \, Y^2}{16\pi^2 M}$$

• We can get **neutrino masses** \sim **eV** with **loop masses** $M \sim 1$ **TeV** if:

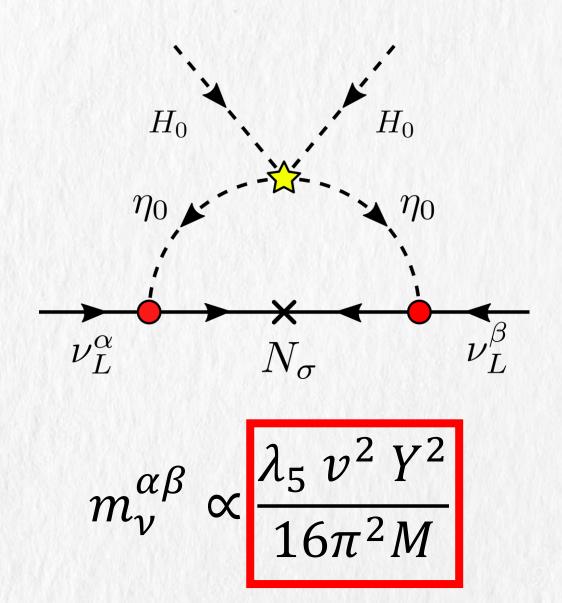
$$\lambda_5 Y^2 \sim 10^{-8}$$



• We can get **neutrino masses** \sim **eV** with **loop masses** $M \sim 1$ **TeV** if:

$$\lambda_5 Y^2 \sim 10^{-8}$$

• A sufficiently small λ_5 will get us there without the need to make Y too small...

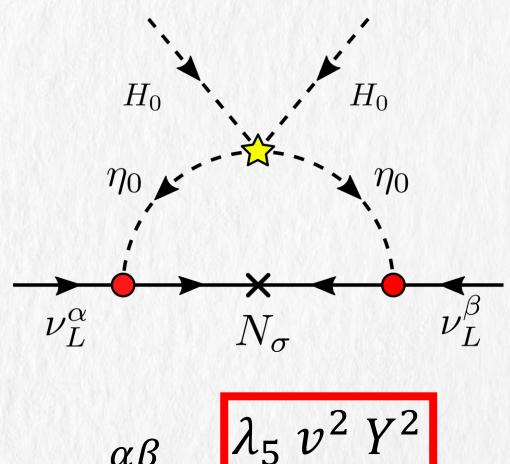


• We can get **neutrino masses** \sim **eV** with **loop masses** $M \sim 1$ **TeV** if:

$$\lambda_5 Y^2 \sim 10^{-8}$$

• A sufficiently small λ_5 will get us there without the need to make Y too small...

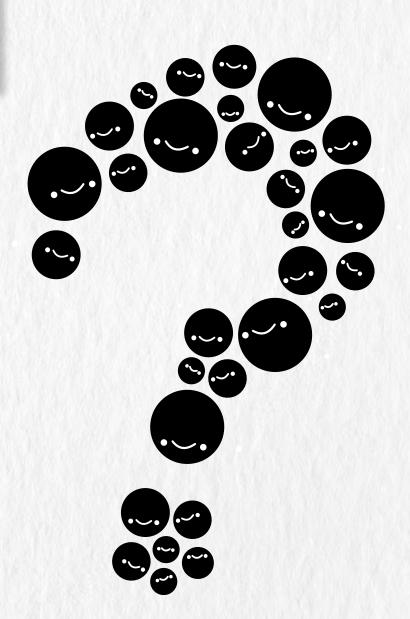
\triangle But why's λ_5 small?



$$m_{\nu}^{\alpha\beta} \propto \frac{\lambda_5 \, v^2 \, Y^2}{16\pi^2 M}$$

There is always a bigger fish

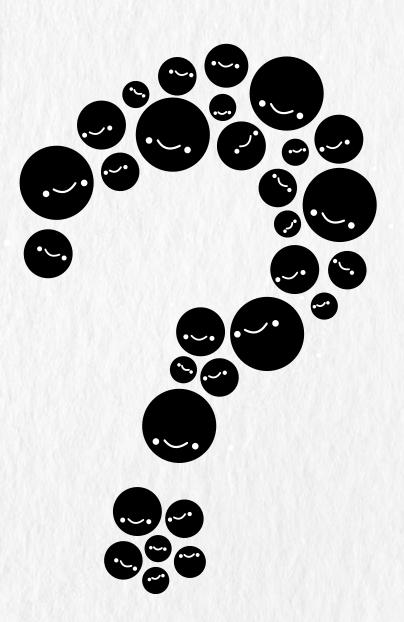
 We want to build a SM extension that includes the Scotogenic at low energies...



There is always a bigger fish

 We want to build a SM extension that includes the Scotogenic at low energies...

• ... with the added benefit of generating λ_5 's smallness naturally

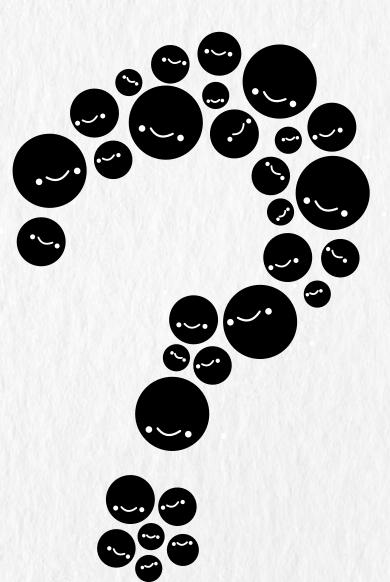


There is always a bigger fish

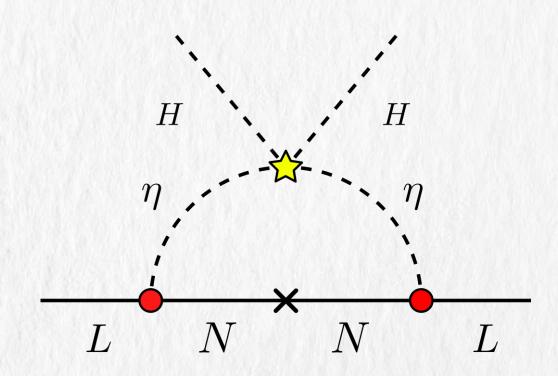
 We want to build a SM extension that includes the Scotogenic at low energies...

• ... with the added benefit of generating λ_5 's smallness naturally

We will also generate Z₂ as an accidental symmetry



$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$



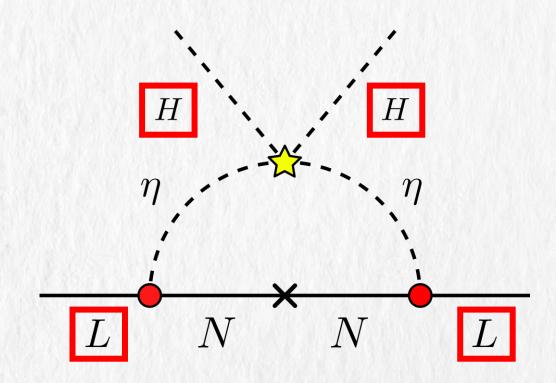
The usual SM representations

$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$

-1/2

H

1 +1/2



The scotogenic scalar doublet

$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$

L

1

2

1

-1/2

H

1

2

V.

+1/2

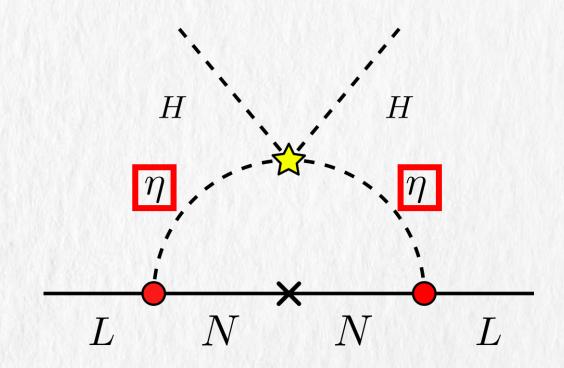
η

1

1

2

+1/2



This vertex is now messed up

$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$

L

2

1

-1/2

H

1

2

W

+1/2

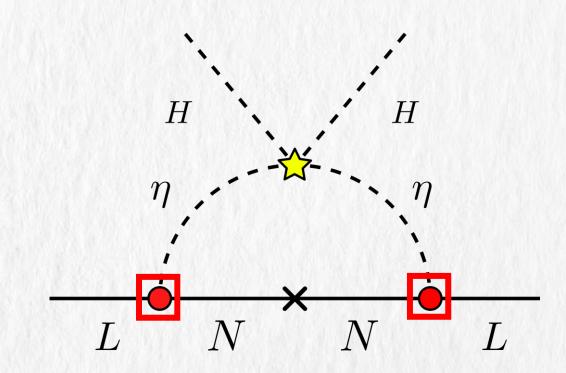
η

1

1

2

+1/2



$$(2,1) \times (1,2) \times (1,1) \not \supset (1,1)$$

Change the singlet for a bidoublet

$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$

L 1

2

1

-1/2

H :

2

1

+1/2

η

1

1

2

+1/2

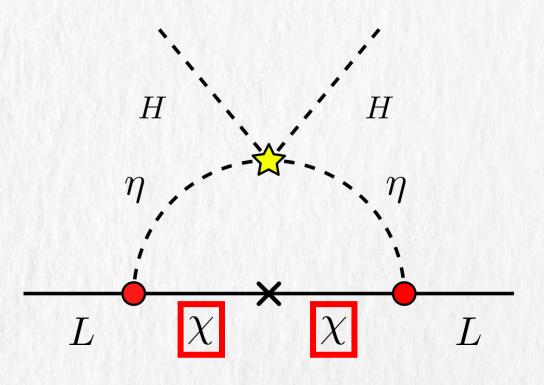
X

1

2

2

0



$$(2,1) \times (1,2) \times (2,2) \supset (1,1)$$

This vertex is messed up too

$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$

L 1

2

1

-1/2

H

2

1

+1/2

η

1

1

2

+1/2

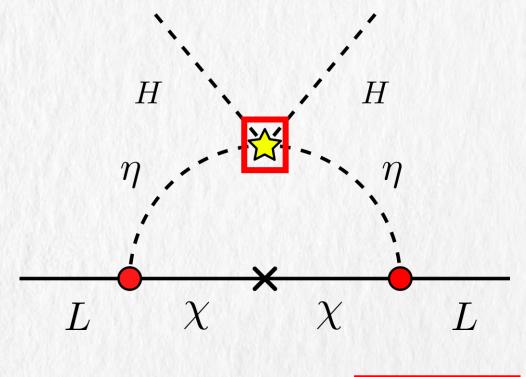
X

1

2

2

0



$$(2,1)^2 \times (1,2)^2 \not\supset (1,1)$$

$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$

L 1

2

1

-1/2

H

1

2

1

+1/2

η

1

1

2

+1/2

X

1

2

2

0

Δ

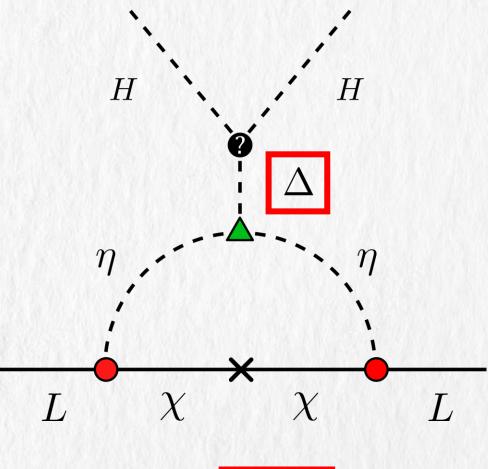
1

1

3

+1

Just add a scalar triplet, all good



$$(1,2)^2 \times (1,3) \supset (1,1)$$

$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$

L 1

2

1

-1/2

Н

1

2

1

+1/2

η

1

1

2

+1/2

X

1

2

7

0

Λ

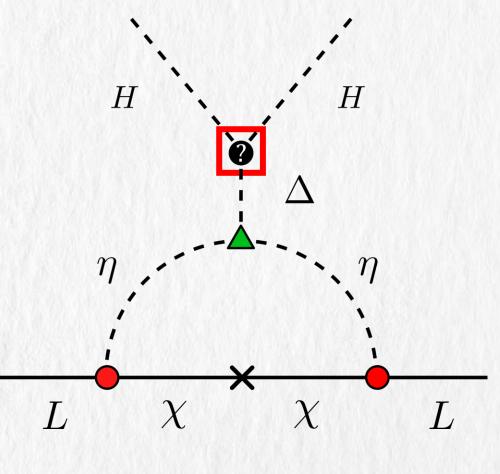
1

1

3

+1

And this last vertex...



$$(2,1)^2 \times (1,3) \not\supset (1,1)$$

$$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_Y$$

 L
 1
 2
 1
 -1/2

 H
 1
 2
 1
 +1/2

 η 1
 1
 2
 +1/2

 χ 1
 2
 $\overline{2}$ 0

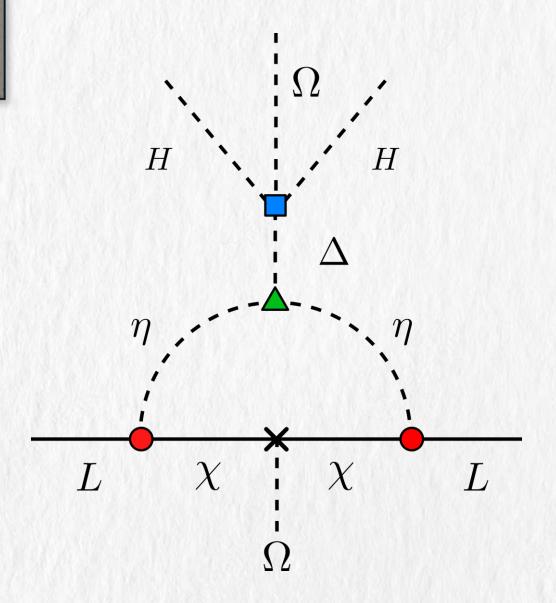
+1

 Ω 1 3 $\overline{3}$ 0

...is fixed by a scalar bitriplet $(2,1)^2 \times (1,3) \times (3,3) \supset (1,1)$

Going down the ladder

 How do we return to the scotogenic's diagram?



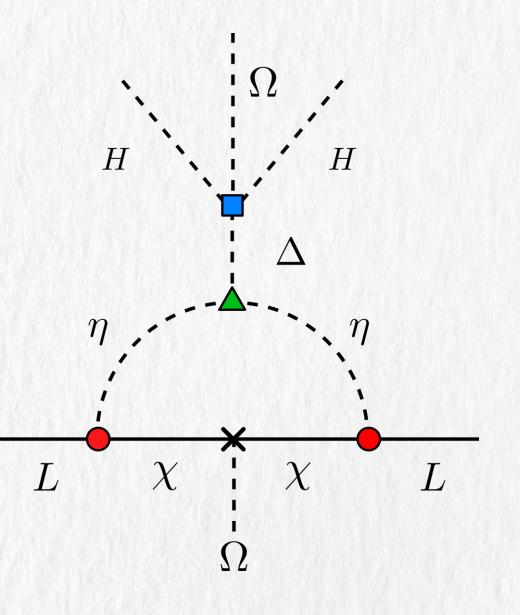
Going down the ladder

 How do we return to the scotogenic's diagram?

Consider the following VEVs and hierarchy

$$\langle \Omega \rangle \propto \begin{pmatrix} v_{\Omega} & 0 & 0 \\ 0 & v_{\xi} & 0 \\ 0 & 0 & v_{\Omega} \end{pmatrix} \qquad \langle \Delta \rangle \propto \begin{pmatrix} 0 \\ 0 \\ v_{\Delta} \end{pmatrix}$$

$$\langle H \rangle \propto \begin{pmatrix} 0 \\ v_H \end{pmatrix}$$
 $v_{\Omega}, v_{\xi} \gg v_H \gg v_{\Delta}$



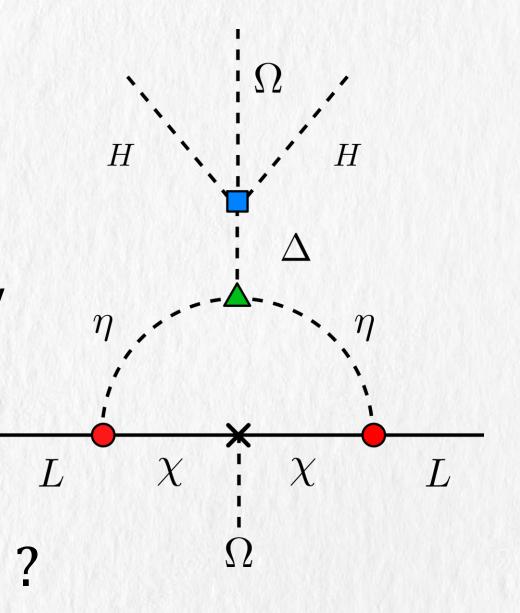
Going down the ladder

 How do we return to the scotogenic's diagram?

Consider the following VEVs and hierarchy

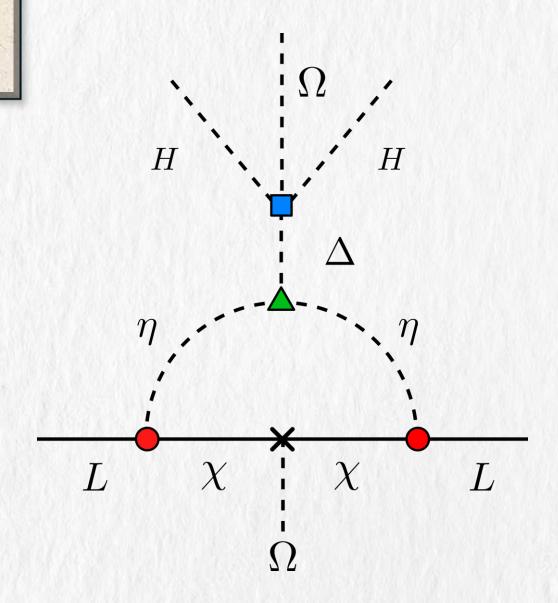
$$\langle \Omega \rangle \propto \begin{pmatrix} v_{\Omega} & 0 & 0 \\ 0 & v_{\xi} & 0 \\ 0 & 0 & v_{\Omega} \end{pmatrix} \qquad \langle \Delta \rangle \propto \begin{pmatrix} 0 \\ 0 \\ v_{\Delta} \end{pmatrix}$$

$$\langle H \rangle \propto \begin{pmatrix} 0 \\ v_H \end{pmatrix} \qquad v_{\Omega}, v_{\xi} \gg v_H \gg v_{\Delta}$$
?



Why is v_{Δ} the smallest?

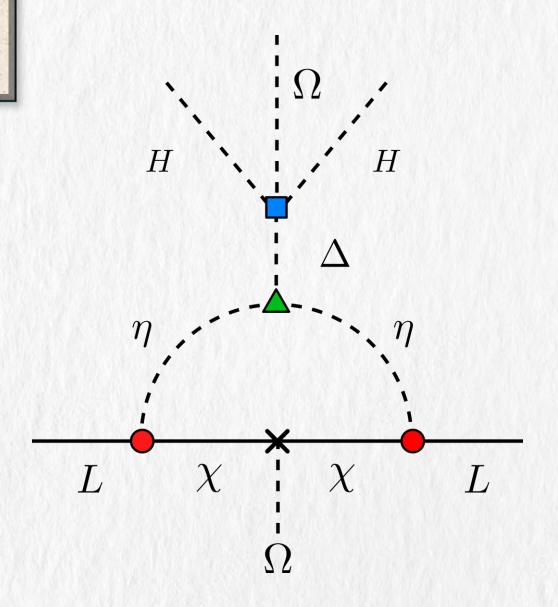
• The smallness of λ_5 comes from it being an effective operator after Δ is integrated out.



Why is v_{Δ} the smallest?

• The smallness of λ_5 comes from it being an effective operator after Δ is integrated out.

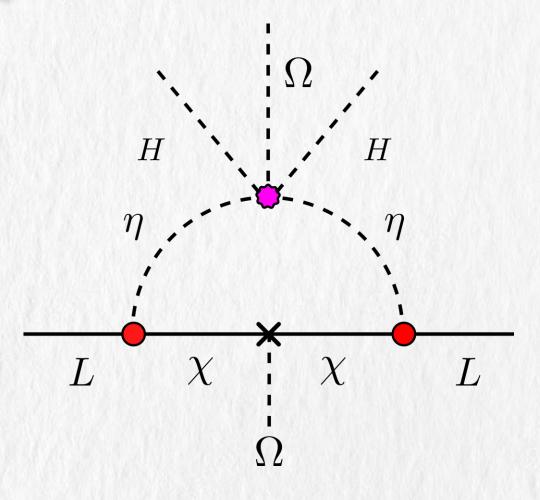
• Therefore we need $m_{\it \Delta} \gg$ any other mass scale



Why is v_{Δ} the smallest?

- The smallness of λ_5 comes from it being an effective operator after Δ is integrated out.
- Therefore we need $m_{\it \Delta} \gg$ any other mass scale
- From the tadpole equations, this forces small v_A

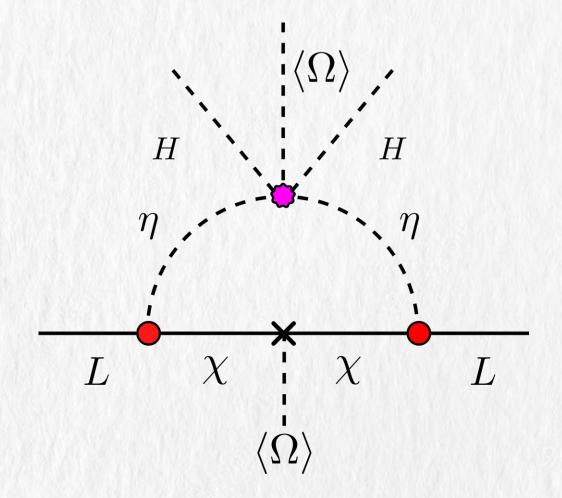
Effective theory!



Symmetry breaking

• The first symmetry breaking step comes from v_Ω and v_ξ

$$v_\Omega, v_\xi \gg v_H \gg v_\Delta$$

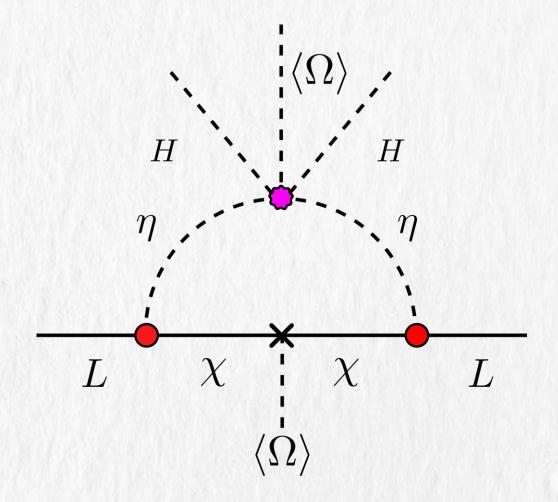


Symmetry breaking

• The first symmetry breaking step comes from v_Ω and v_ξ

$$v_\Omega$$
 , $v_\xi\gg v_H\gg v_\Delta$

$$SU(2)_1 \times SU(2)_2 \xrightarrow{v_{\Omega}, v_{\xi}} SU(2)_L$$



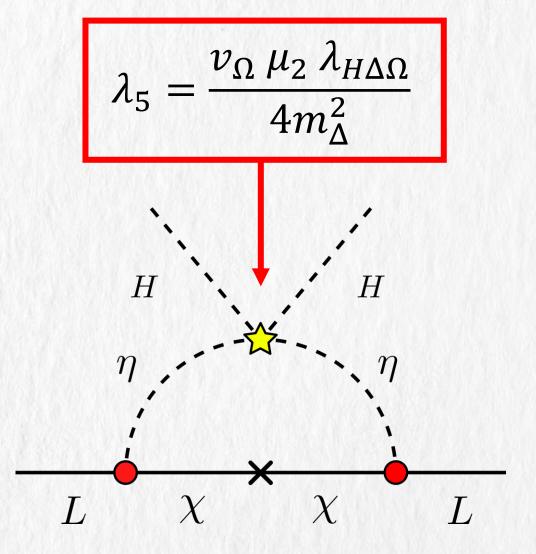
Symmetry breaking

• The first symmetry breaking step comes from v_Ω and v_ξ

$$v_{\Omega}, v_{\xi} \gg v_{H} \gg v_{\Delta}$$

$$SU(2)_1 \times SU(2)_2 \xrightarrow{v_{\Omega}, v_{\xi}} SU(2)_L$$

 We return to the SM symmetry and recover the scotogenic's diagram



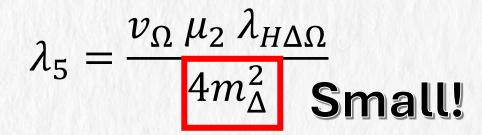
Symmetry breaking

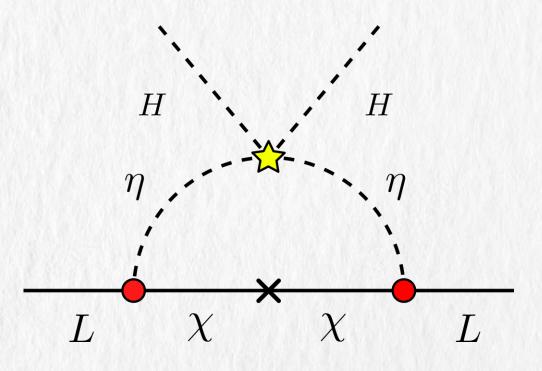
• The first symmetry breaking step comes from v_Ω and v_ξ

$$v_{\Omega}, v_{\xi} \gg v_{H} \gg v_{\Delta}$$

$$SU(2)_1 \times SU(2)_2 \xrightarrow{v_{\Omega}, v_{\xi}} SU(2)_L$$

 We return to the SM symmetry and recover the scotogenic's diagram





Is Z_2 two SU(2) in a trenchcoat?

• Our model also induces an accidental Z_2 symmetry

Is Z_2 two SU(2) in a trenchcoat?

- Our model also induces an accidental Z_2 symmetry
- The scotogenic fields always appear in pairs within the lagrangian

$$\eta \sim (\mathbf{1}, \mathbf{2}) \longrightarrow \mathbf{2}$$

$$\chi \sim (\mathbf{2}, \overline{\mathbf{2}}) \longrightarrow \mathbf{3} \oplus \mathbf{1}$$

$$N!$$

Is Z_2 two SU(2) in a trenchcoat?

- Our model also induces an accidental Z_2 symmetry
- The scotogenic fields always appear in pairs within the lagrangian

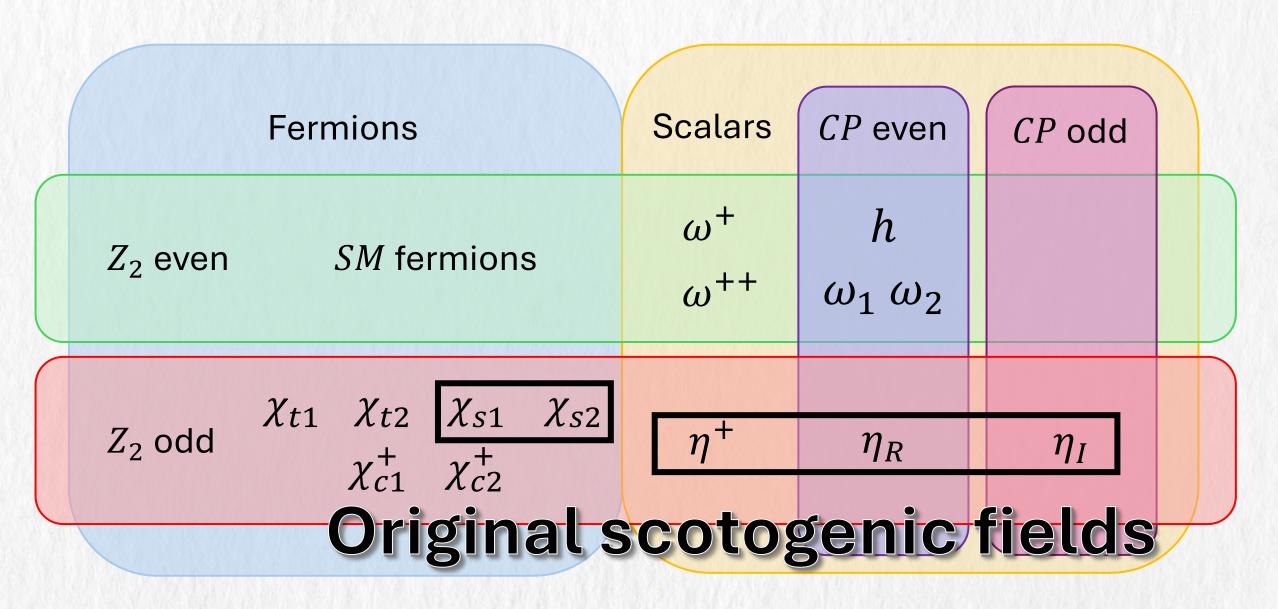
$$\eta \sim (\mathbf{1}, \mathbf{2}) \longrightarrow \mathbf{2}$$

$$\chi \sim (\mathbf{2}, \overline{\mathbf{2}}) \longrightarrow \mathbf{3} \oplus \mathbf{1}$$

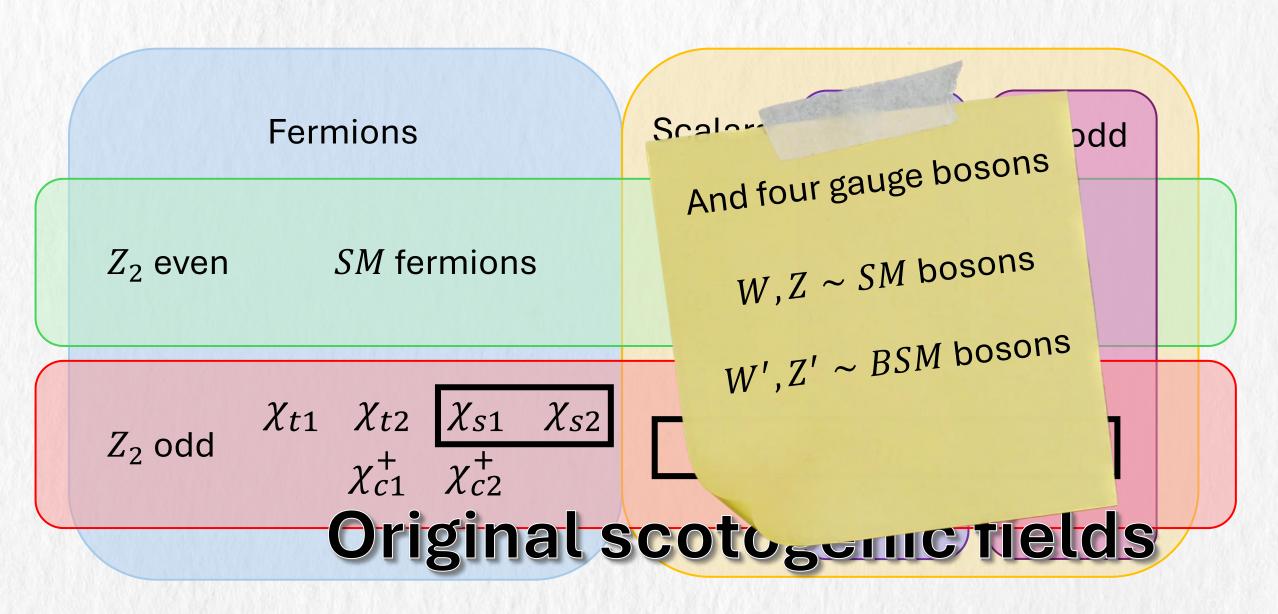
$$N!$$

Fermions		Scalars	CP even	(CP odd	
Z_2 even	SM fermions	ω^+ ω^{++}	h $\omega_1 \omega_2$		
Z_2 odd	χ_{t1} χ_{t2} χ_{s1} χ_{s2} χ_{c1}^+ χ_{c2}^+	η^+	η_R	η_I	

All BSM masses have contributions from v_Ω



All BSM masses have contributions from v_Ω



All BSM masses have contributions from v_Ω

Very important!

Scotogenic mechanism from an extended \$SU(2)_1 \times SU(2)_2 \times U(1)_Y\$ electroweak symmetry

 \equiv

We propose an extension of the electroweak sector of the Standard Model in which the gauge group \$SU(2)_L\$ is promoted to \$SU(2)_1 \times SU(2)_2\$. This framework naturally includes a viable dark matter candidate and generates neutrino masses radiatively à la Scotogenic. Our scenario can be viewed as an ultravioles expension et the Scotogenic.

(it says phenomenology somewhere in here)

Presentador Javier Perez-Soler

- Very important!
- Assuming $g_1 = g_2$ for simplicity, the **EW** precision parameter...

$$\rho = 1.00031 \pm 0.00019$$

Scotogenic mechanism from an extended \$SU(2)_1 \times SU(2)_2 \times U(1)_Y\$ electroweak symmetry

Ħ

We propose an extension of the electroweak sector of the Standard Model in which the gauge group \$SU(2)_L\$ is promoted to \$SU(2)_1 \times SU(2)_2\$. This framework naturally includes a viable dark matter candidate and generates neutrino masses radiatively à la Scotogenic. Our scenario can be viewed as an ultraviolet extension of the Scotogenic.

(it says phenomenology somewhere in here)

9:00 - 9:15

Presentador Javier Perez-Soler

- Very important!
- Assuming $g_1 = g_2$ for simplicity, the **EW** precision parameter...

$$\rho = 1.00031 \pm 0.00019$$

• ... is respected if (very conservative)

$$v_{\Omega} \gtrsim 20 \, \text{TeV}$$
 $v_{\Omega} - v_{\xi} \lesssim 5 \, \text{GeV}$

Scotogenic mechanism from an extended \$SU(2)_1 \times SU(2)_2 \times U(1)_Y\$ electroweak symmetry

We propose an extension of the electroweak sector of the Standard Model in which the gauge group \$SU(2)_L\$ is promoted to \$SU(2)_1 \times SU(2)_2\$. This framework naturally includes a viable dark matter candidate and generates neutrino masses radiatively à la Scotogenic. Our scenario can be viewed as an interviolet avecancion of the Scotogenic.

(it says phenomenology somewhere in here)

9:00 - 9:15

Presentador Javier Perez-Soler

- Very important!
- Assuming $g_1=g_2$ for simplicity, the **EW** precision parameter...

$$\rho = 1.00031 \pm 0.00019$$

• ... is respected if (very conservative)

$$v_{\Omega} \gtrsim 20 \, \text{TeV}$$
 $v_{\Omega} - v_{\xi} \lesssim 5 \, \text{GeV}$

Scotogenic mechanism from an extend \$SU(2)

These limits also suppress gauge boson mixing

gauge

 $\theta_c, \theta_n \le 10^{-3}$

New physics scales are multi-TeV...
 cannot see anything

New physics scales are multi-TeV...
 cannot see anything

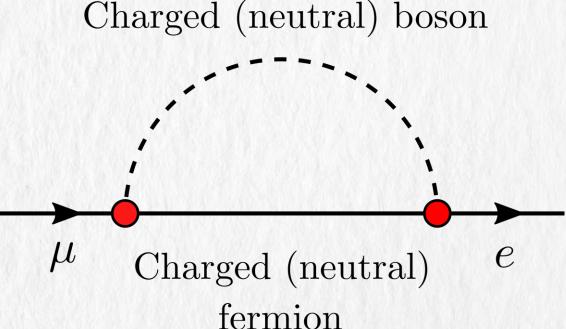
 We have Majorana neutrino masses... LFV decays?

New physics scales are multi-TeV...
 cannot see anything

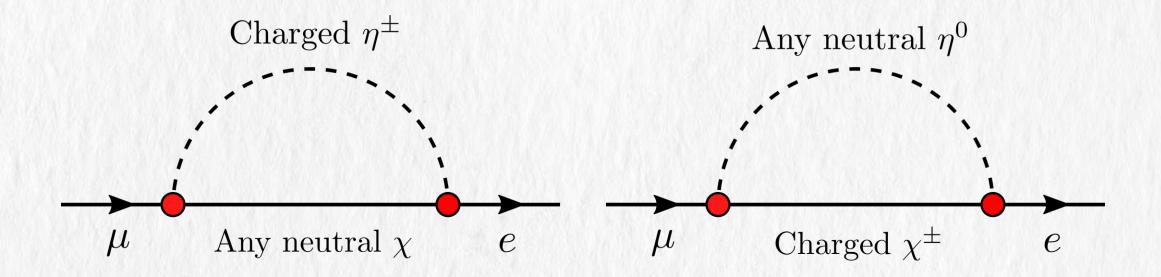
 We have Majorana neutrino masses... LFV decays?

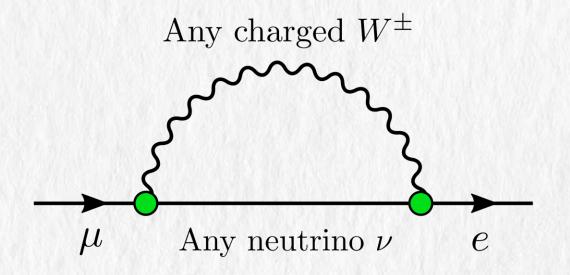
• $\mu \rightarrow e + \gamma$ is a classic choice

• BR(
$$\mu \to e + \gamma$$
) < 1.5 · 10⁻¹³ (90% CL, MEG II 2021-2022)

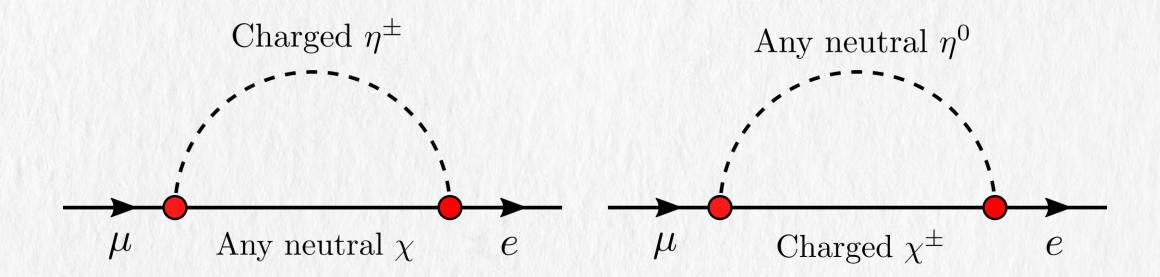


(All particles mass eigenstates)



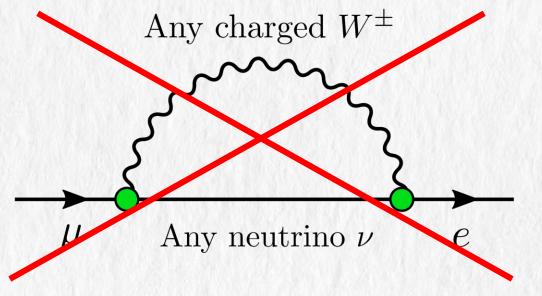


(All particles mass eigenstates)

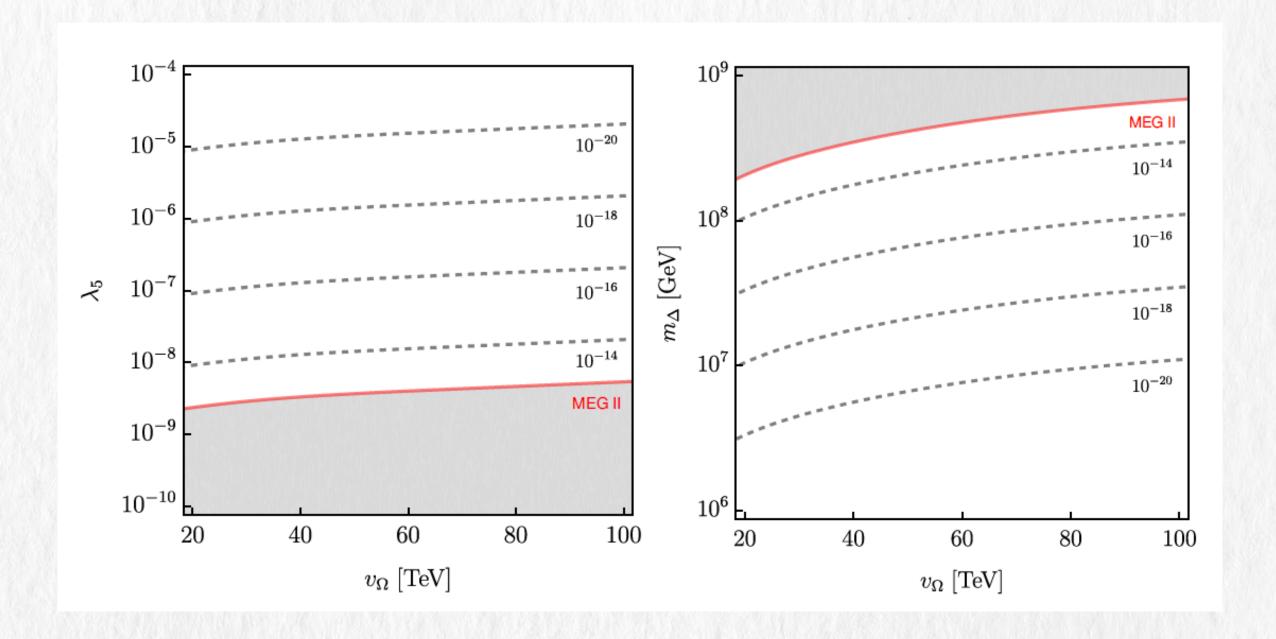


Mega suppressed

$$\sim \left(\frac{m_{\nu}}{m_W}\right)^4$$

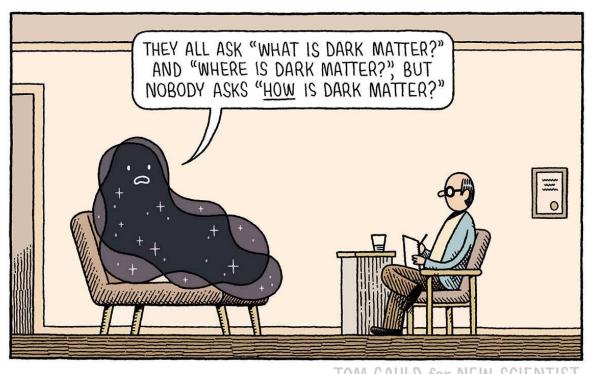


(All particles mass eigenstates)



Final point: Dark matter

 We have a bunch of stable DM candidates thanks to Z_2



TOM GAULD for NEW SCIENTIST

Actual picture displayed on the door to my office

Final point: Dark matter

- We have a bunch of stable DM candidates thanks to \mathbb{Z}_2
- For scalars, it's the scotogenic guys η_R and η_I

TOM GAULD for NEW SCIENTIS

Actual picture displayed on the door to my office

Final point: Dark matter

- We have a bunch of stable DM candidates thanks to Z_2
- For scalars, it's the scotogenic guys η_R and η_I
- For fermions, we have two, χ_{t1} and χ_{s1} ; coming from the neutral components of

TOM GAULD for NEW SCIENTIS

Actual picture displayed on the door to my office

Summary of the summary

• The scotogenic model has a Z_2 symmetry and a small quartic coupling λ_5 , but does not explain their origin

Summary of the summary

• The scotogenic model has a Z_2 symmetry and a small quartic coupling λ_5 , but does not explain their origin

• We can get both things extending the SM from $SU(2)_L$ to a double $SU(2)_1 \times SU(2)_2$, and adding some new representations

Summary of the summary

• The scotogenic model has a Z_2 symmetry and a small quartic coupling λ_5 , but does not explain their origin

• We can get both things extending the SM from $SU(2)_L$ to a double $SU(2)_1 \times SU(2)_2$, and adding some new representations

Can get BSM phenomenology at the TeV scale

What to do if i have theories?

Question

I contacted a college and they ignored me

Share

