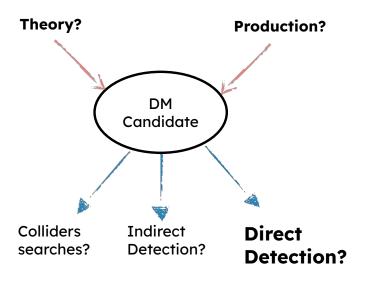
Review of DIRECT SEARCHES for LIGHT DARK MATTER (+DAMIC-M results)

XVII CPAN DAYS


Valencia, 21st November 2025

NúRIA CASTELLÓ MOR, INSTITUTO DE FISICA DE CANTABRIA (CSIC-UC)

Review of direct searches for light dark matter (+DAMIC-M results)

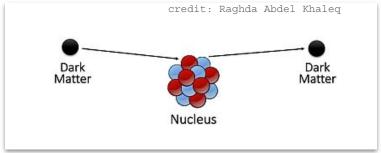
O(100) papers in the past 5 years

Different detection technologies

Active and growing community with various R&D programs and small-scale projects

This is not an exhaustive review of all experiments, I focus on sub-GeV dark matter (so no ALPs)!

Dark Matter Particle Direct Detection

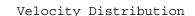

Dark Matter is **cold**, meaning it **moves slowly** compare with the speed of light, about a few ~100 km/s, which means is **non-relativistic**, so its **kinetic energy** is **tiny**.

$$E_\chi = rac{1}{2} M_\chi v^2 = rac{1}{2} M_\chi c^2 eta^2 pprox \left(rac{M_\chi c^2}{ ext{MeV}}
ight) ext{keV}$$

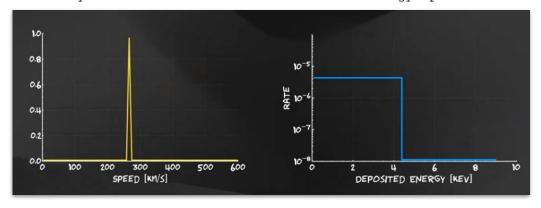
non relativistic DM: A 1 GeV (proton mass) particle has 1 keV of kinetic energy (very little) ⇒ It's set the the scale of the signals we look for

Local density is $\sim 0.3 \text{ GeV/c}^2/\text{cm}^3$, but we do not know the particle mass (M \square)

The most natural interactions is elastic scattering off an atom in the detector


Dark Matter Particle Direct Detection

Dark Matter is **cold**, meaning it **moves slowly** compare with the speed of light, about a few ~100 km/s, which means is **non-relativistic**, so its **kinetic energy** is **tiny**.

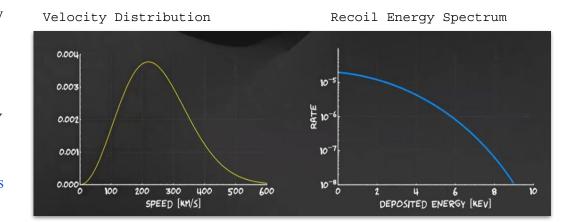

$$E_\chi = rac{1}{2} M_\chi v^2 = rac{1}{2} M_\chi c^2 eta^2 pprox \left(rac{M_\chi c^2}{
m MeV}
ight) {
m keV}$$

non relativistic DM: A 1 GeV (proton mass) particle has 1 keV of kinetic energy (very little) ⇒ It's set the the scale of the signals we look for

Local density is $\sim 0.3 \text{ GeV/c}^2/\text{cm}^3$, but we do not know the particle mass (M \square)

Recoil Energy Spectrum

If all particles had the same had the same speed, the recoil energy would range up to a maximum set by the DM mass and velocity.

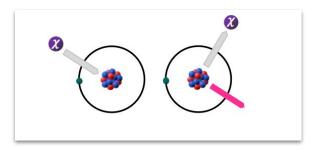

Dark Matter Particle Direct Detection

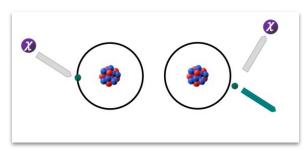
Dark Matter is **cold**, meaning it **moves slowly** compare with the speed of light, about a few ~100 km/s, which means is **non-relativistic**, so its **kinetic energy** is **tiny**.

$$E_\chi = rac{1}{2} M_\chi v^2 = rac{1}{2} M_\chi c^2 eta^2 pprox \left(rac{M_\chi c^2}{
m MeV}
ight) {
m keV}$$

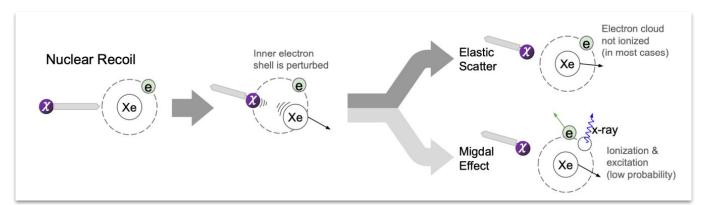
non relativistic DM: A 1 GeV (proton mass) particle has 1 keV of kinetic energy (very little) ⇒ It's set the the scale of the signals we look for

Local density is $\sim 0.3 \text{ GeV/c}^2/\text{cm}^3$, but we do not know the particle mass (M \square)


But in reality, DM follows a velocity distribution, typically modelled by a Maxwell-Boltzman distribution, so most recoils are at the very low energies, in the keV range.


Dark Matter Scattering with SM

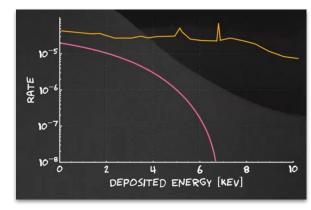
Detection Mechanism


Elastic DM-nucleus scattering (mass GeV-TeV)

DM-nucleus scattering with Midgal (promising avenue)

Dark Matter Interactions and Signals

How do we turn "an interaction" into an experimental prediction?


Given a particular theory for DM interactions with quarks/nuclei, some astrohphysical input, and a detectore response, we can calculate

$$rac{dR}{dE}(E,t) = rac{oldsymbol{
ho_0}}{m_\chi\,m_A} \cdot \int oldsymbol{v} \, oldsymbol{f}(\mathbf{v},t) \cdot \sigma_0 \, F_{
m DM}^2(q) \cdot F^2(E) \, d^3\mathbf{v}$$

But here is the reality: the **expected signal** is **tiny compared** to **backgrounds**: Low energy (\sim keV scattering), Rare events $< 10^{-5}$ evt/kg/day

Experimental challenges:

- Reduce backgrounds (undergrond, shieldings, ultra-clean materials)
- Achieve low energy thresholds
- Maximize exposure

..wait for an extremely rare interaction to happen

Dark Matter Interactions and SIGNALS

Even underground, backgrounds remain a major challenge

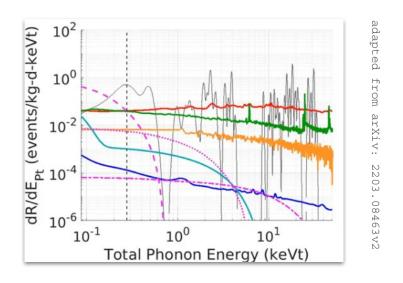
Expected background spectra of single scatter interactions for **SuperCDMs** experiment

DM Candidates

---1.6 GeV

.... 5.0 GeV

-·- 16 GeV


Compton scatters from gamma-rays

Surface betas

Surface 206Pb recoils

neutrons (rock, and muon induced)

coherent elastic neutrino-nucleus scattering

These experiments are so complex, they are not just about building a sensitive detector, but also about creating an environment where the signal can emerge from the noise.

Dark Matter Interactions and SIGNALS

control PCs

Even underground, backgrounds remain a major challenge

total exprected background ~5 d.r.u. \rightarrow 15 d.r.u. (not fully closed, 5-cm open shielding \Rightarrow muon-induced neutron background ⇒ 1 event in 1.3 kg-year exposure time) C

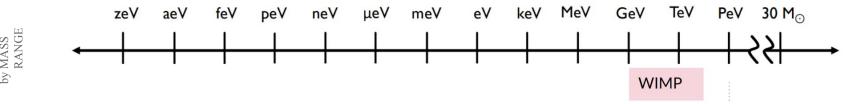
LBC (Low-Background Chamber) the DAMIC-M prototype

Temperature controller Cryostat DAQ and slow External lead shielding **HDPE** shielding

CCD controllers and power supplies

Support structure

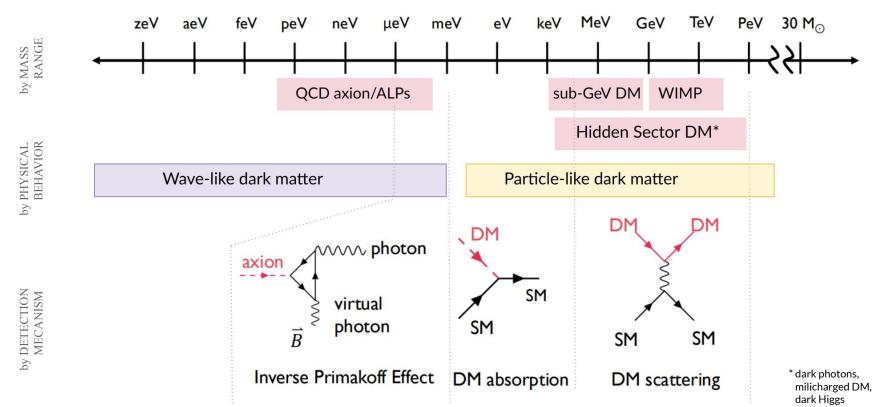
Vacuum pump and pressure gauges


What exactly are we looking for?

A matter of perspective: plausible mass range

by PHYSICAL BEHAVIOR

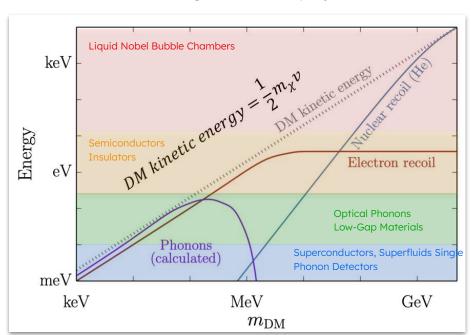
by DETECTION MECANISM

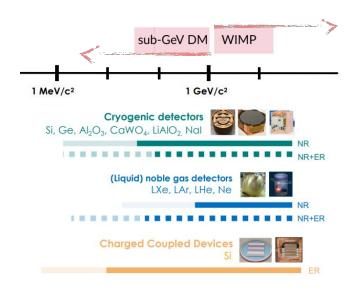


mass ~10-100 GeV and weak interaction, makes them a **perfect** thermal relic candidates

If WIMPs exists, they should scatter elastically off nuclei, producing nuclear recoils in the keV range, that is whay mostly experiments were deign to look for

What exactly are we looking for?

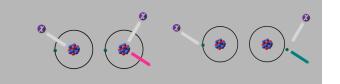

The landscape is broader

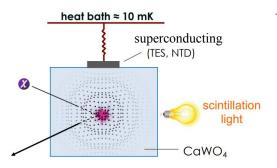


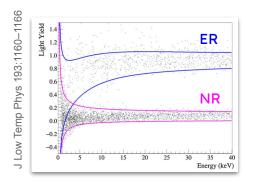
Detection Techniques and Targets

Energy Thresholds

From WIMPs to light DM, the physics forces us to rethink detection from the gourd up





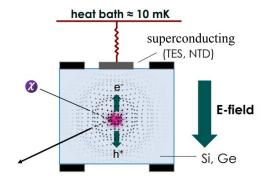

Adapted from: arXiv:1904.07915

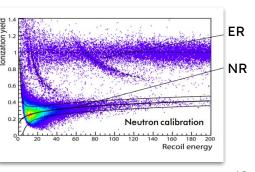
Cryogenic Detectors

CRESST-III, SuperCDMs @SNOLAB , EDELWEISS

ANATOMY OF AN INTERACTION

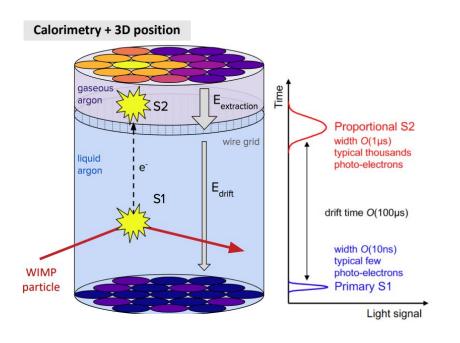
Primary signal: DM creates phonons/heat


- → temperature increase measured by thermometer
- ightarrow precise measurement of (almost) full deposited energy


Secondary signal: scintillating target

- → separate cryogenic detector for light signal
- ightarrow particle identification via ratio of light to primary phonon

Secondary signal: semiconducting target

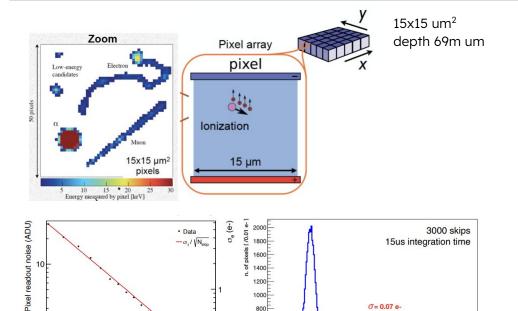

- \rightarrow phonon and charge sensors on target
- ightarrow particle identification via ratio of ionization to primary phonon
- → surface event rejection via ID electrodes

Liquid Noble Gas TPCs for Xe, Ar

LZ, XENONnT, DarkSide-50

ANATOMY OF AN INTERACTION

Dual-phase time projection chambers


- → primary scintillation signal S1
- → ionisation electrons via secondary scintillation S2 in the gas
- → particle identification via ratio \$2/\$1
- → position reconstruction
- \rightarrow multi-scatter rejection
- + in Ar: pulse shape discrimination (PSD)

Light production less efficient than ionization **S2 only-mode [light DM]:**

- ightarrow sensitive to single extracted electrons
- \rightarrow lower energy thresholds e.g. XENON1T: ~5 keVnr versus ~1.5 keVnr

Charge Coupled Devices

DAMIC, Sensei, DAMIC-M

400

ANATOMY OF AN INTERACTION

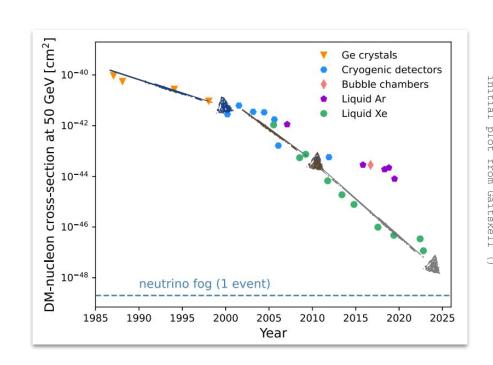
- →DM-electron scattering in silicon CCDs
- →Charge is drifted to pixel gates (readout)
- →Position reconstruction form diffusion
- →Spatial resolution allows particle ID

Excellent spatial resolution
Particle identification
Surface background rejection
Extremly low dark current: ~10-4 e-/pixel/day
Single electron resolution w/ skipper (0.16 e-)

PRD **106**, 092001 (2022)

Searching for "the" WIMP

Historical perspective (last 50 years)



World-wid **effort** with enormous **technological progress** in the last decades

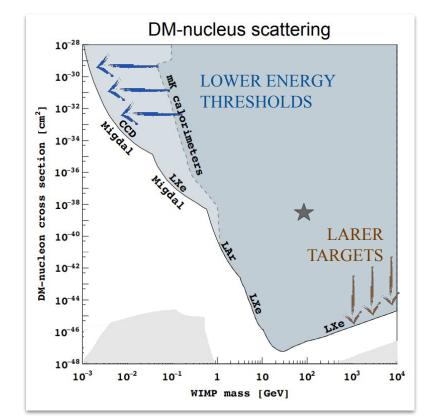
Continuos optimization of design drivers detector categories:

- clean materials
- ER/NR rejection
- Scalability

A factor 10 every ~3.3 years

Searching for "the" WIMP but NO DISCOVERY*!

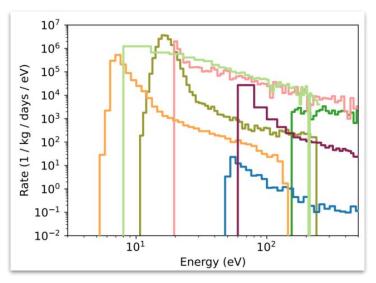
(* evervone who isn't DAMA or CoGENT)



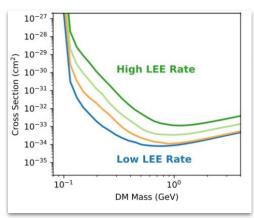
Migdal strongly pushes sensitivity of liquid noble gas detector

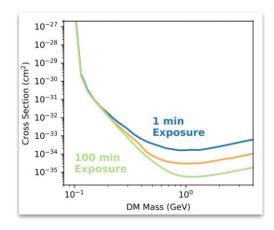
For "particle" DM, the search currently spans from ~1MeV to the Planck mass

In the next decade, experiments will reach the neutrino floor!

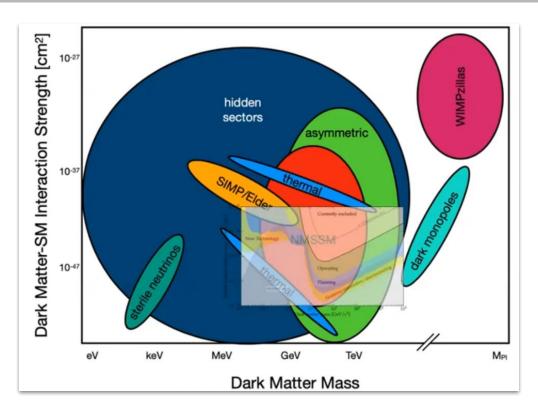


Main challenge: Low-Energy Excedss (LEE)


Observed in ALL solid-state cryogenic detectors below ~100eV



Impact on the DM sensitivity: in the LEE presence the DM sensitivity is worsened by orders of magnitude!


And exposure increase does not help in the sub-GeV DM regime

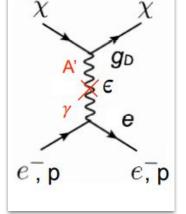
The Big "big picture": a matter of prespective

Why not explore other regions?

Theory? Production?

Change of paradigm: what and why

WIMP Miracle: If dark matter interacts with weak-like strength, relic density is naturally correct.

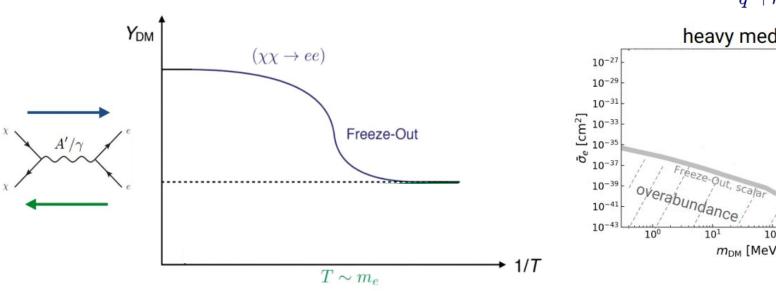

WIMPless Miracle: Hidden sectors allow many different masses and couplings ⇒ same relic density without requiring SM-like weak interactions.

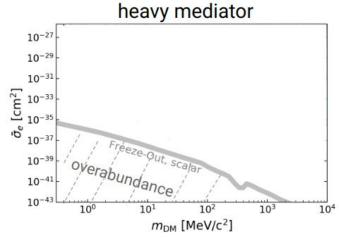
Dark QED Framework: Add a dark photon (A') that mixes with the ordinary photon. This acts as a portal between the hidden sector and the SM.

$${\cal L}_{int} \sim A_{\mu}^{'}(g_D J_D^{\mu} + \epsilon e J_{EM}^{\mu})$$

How to? Practically accessible via DM-electron scattering with very low thresholds detectors

Also absorption, migadal effect, ...

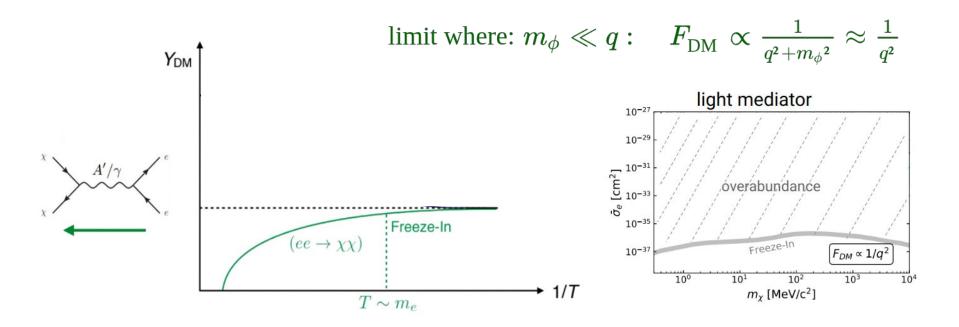



Benchmark Models: heavy mediator

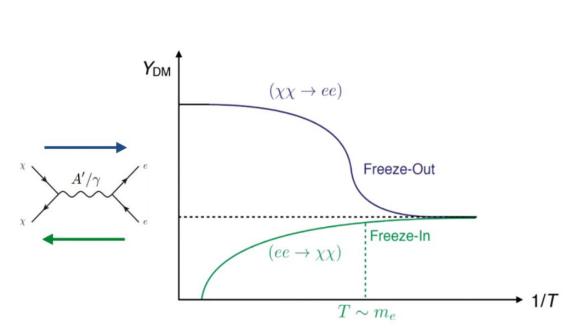
Production? Theory? sub-GeV DM

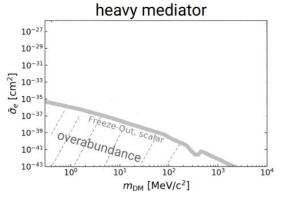
limit where: $m_\phi\gg q$:

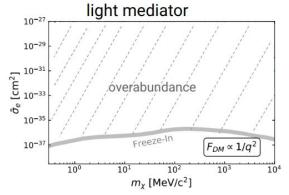
$$F_{
m DM} \propto rac{1}{q^2 + m_\phi{}^2} pprox rac{1}{m_\phi{}^2}$$



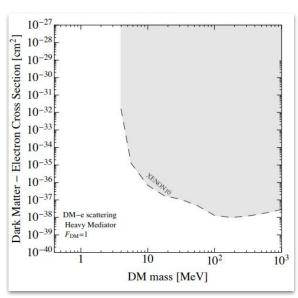
Theory? **Production?**


Benchmark Models: ultra-light mediator

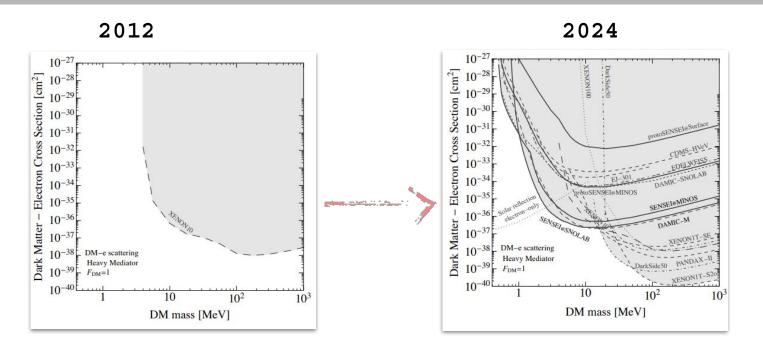

sub-GeV DM



Benchmark Models



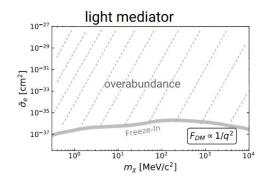
Exciting experimental progress in past years


DM-electron scattering, heavy mediator case

2012

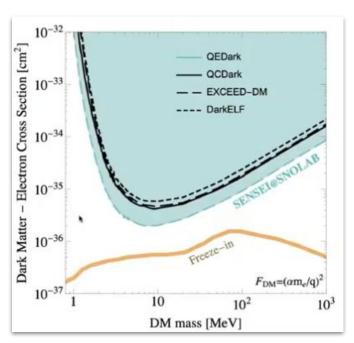
Exciting experimental progress in past years

DM-electron scattering, heavy mediator case



Several ultrasensitive detectors can measure the procedure charge (2-phase TPCs, Skipper-CCDs, TES, ...)

Exciting experimental progress in past years

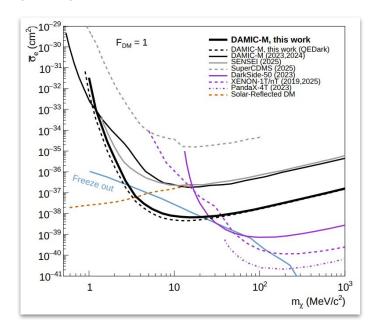

DM-electron scattering, light mediator case

freeze-in DM is a future* target

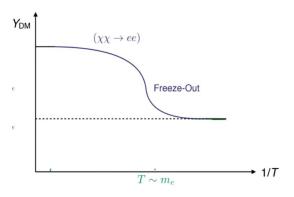
*as of 17/03/2025

2024

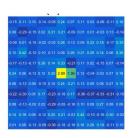


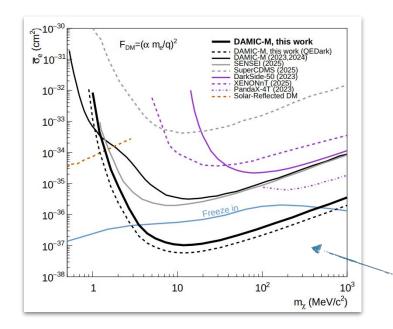

Current status: DM-electron scattering

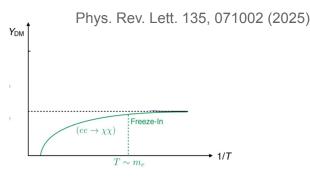
DAMIC-M: world-leading exclusion limits for sub-GeV hidden-sector DM!


DAMIC-M probes benchmark hidden-sector dark matter models: freeze-out rolued out, reaching freeze-in for the first time

	Pattern p		
	{11}	{21}	{111}
D_p	144	0	0
B_p^{rc}	141.4	0.111	0.042
$B_p^{\rm rad}$	0.039	0.039	0.016
	{31}	{22}	{211}
D_p	1	0	0
B_p^{rc}	0.019	$2.5 \cdot 10^{-5}$	$5.8 \cdot 10^{-5}$
$B_p^{\rm rad}$	0.052	0.011	0.035

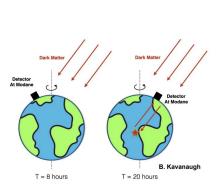


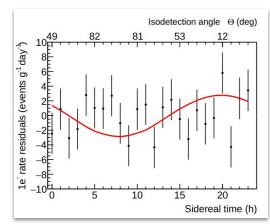

Current status: DM-electron scattering

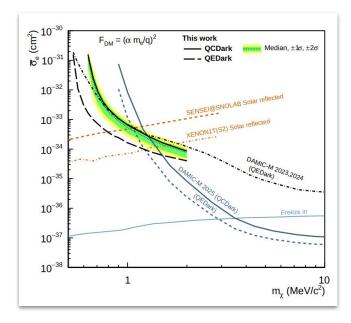

DAMIC-M: world-leading exclusion limits for sub-GeV hidden-sector DM!

DAMIC-M **probes benchmark hidden-sector dark matter models**: freeze-out rolued out, **reaching** freeze-in for the first time

	Pattern p		
	{11}	{21}	{111}
D_p	144	0	0
B_p^{rc}	141.4	0.111	0.042
$B_p^{\rm rad}$	0.039	0.039	0.016
	{31}	{22}	{211}
D_p	1	0	0
B_p^{rc}	0.019	$2.5 \cdot 10^{-5}$	$5.8 \cdot 10^{-5}$
$B_p^{\rm rad}$	0.052	0.011	0.035

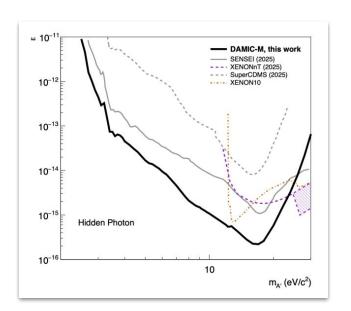



When you are going here you are de facto decoupling why we are looking for DM there from the one thing we know about it is abundance

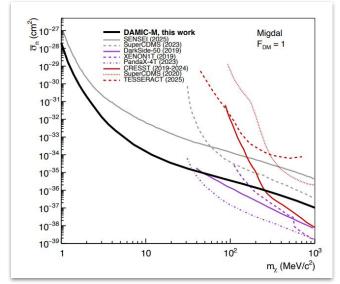

Current status: DM-electron scattering

DAMIC-M: world-leading exclusion limits for sub-GeV hidden-sector DM!

DAMIC-M probes benchmark hidden-sector dark matter models: freeze-out rolued out, reaching freeze-in for the first time ... AND **PUSHING TO LOWER ENERGIES WITH DAILY MODULATION**

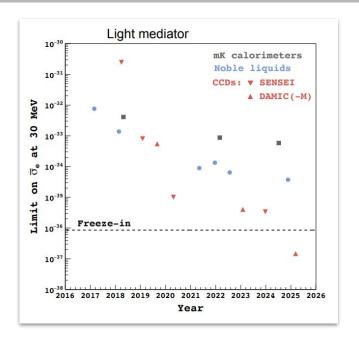


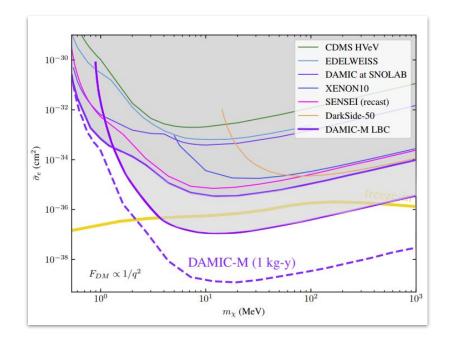
arXiv: 2511.13962 (published this week)


Current status: Absorption and Migdal

DAMIC-M: other exclusion limits

DAMIC-M also sets stringent constraints **on absorption of relic hidden photon by atomic electron on silicon** and **DM-nuclear scattering via Migdal effect** (see End Matterial arXiv:2503.14617). All limits available as text on linked github.




Phys. Rev. Lett. 135, 071002 (2025)

Light Dark Matter: DM-e scattering

CCD time line and Forecast

SUMMARY

Given the null results after decades of efforts, starting to focus on light dark matter.

New technical challenges due to lower interaction energies.

- for NR, conventional detector ~ O(100 MeV), then microcalorimeter seems to be the most popular choice.
- for ER, TPC (10MeV), CCD/semiconductor (1MeV), superconductor (sub-MeV)

New cryogenic detector evolving fast: in the next few years, they will be scaled up and moving underground for real science runs.

Broad detector development programs for pusing to lower mass: new detector designs, new sensors, new materials, new interactions, but also Investigation of the detector response in the eV-range

Challenge on the theory side

WHAT WE SHOULD DO...

Short Term

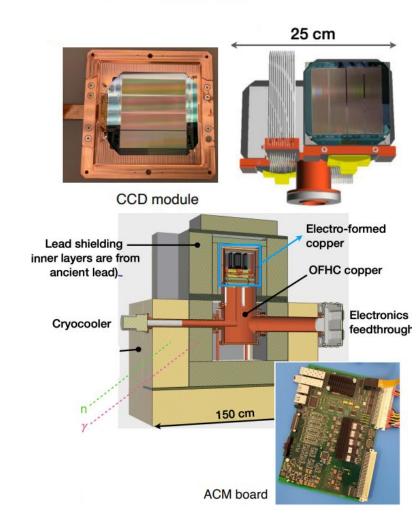
Construct DM **models** which still predict signals

Find new use cases for these incredible experiments

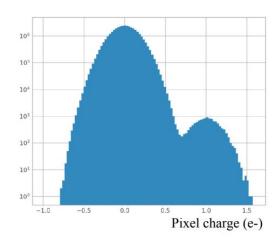
Agree on benchmarks as a community

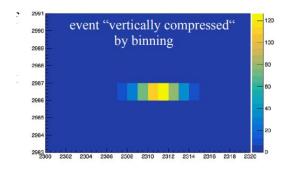
Reach the **rest** of the WIMPs

Discover **new** DM and experimental **paradigms**



Status of DAMIC-M online by 2026!


- 208 skipper CCDs, kg-scale design finalized
- low background assays, cosmogenic mitigation procedures for transport/production
- CCD modues send to LSM, and being tested
- low-noise electronics designed, tested, and being produced for full-scale experiment
- Detector response calibrations:
 - Si atomic shells Compton spectrum: PRD 106, 092001 (2022)
 - silicon nuclear ionization efficiency in prep
 - NR/ER discrimination: PRD 110, 043008 (2024)
- Installation and operation of prototype Low Background Chamber (LBC): JINST 19 T11010 (2024)
- Several science results within DM-e space with LBC


PRL 130, 171003 (2023) PRL 132, 101006 (2024) PRL 135, 101103 (2025)

Search For Hidden-Sector DM with LBC

- 1. Two CCD Modules (DAMIC-M will have 50!) each with 4 skipper CCDs, total 26.4 g
- 2. Notable improvements thanks to low-noise electronics and better box light tightness:
 - 0.16 e- charge resolution (~0.2e-)
 - ~1.3x10⁻⁴ e-/pix/day (400 e-/g/day) dark current (x50 lower than SR1)
- 3. Collected data October 2024-January 2025: total exposure after selection 1.3 kg day (0.086 kg day SR1)
- 4. Blind analysis: pixel selection and DM search criteria defined with 7 days of unblinded data (~10% of total)
- 5. Continuous readout with 100 vertical binning, which compresses the 1.5kx6k CCD into images of 16 rows x 6300 columns. 28 min to read one image, allowing for daily modulation analysis.

