UNIVERSIDAD Ð SEVILLA

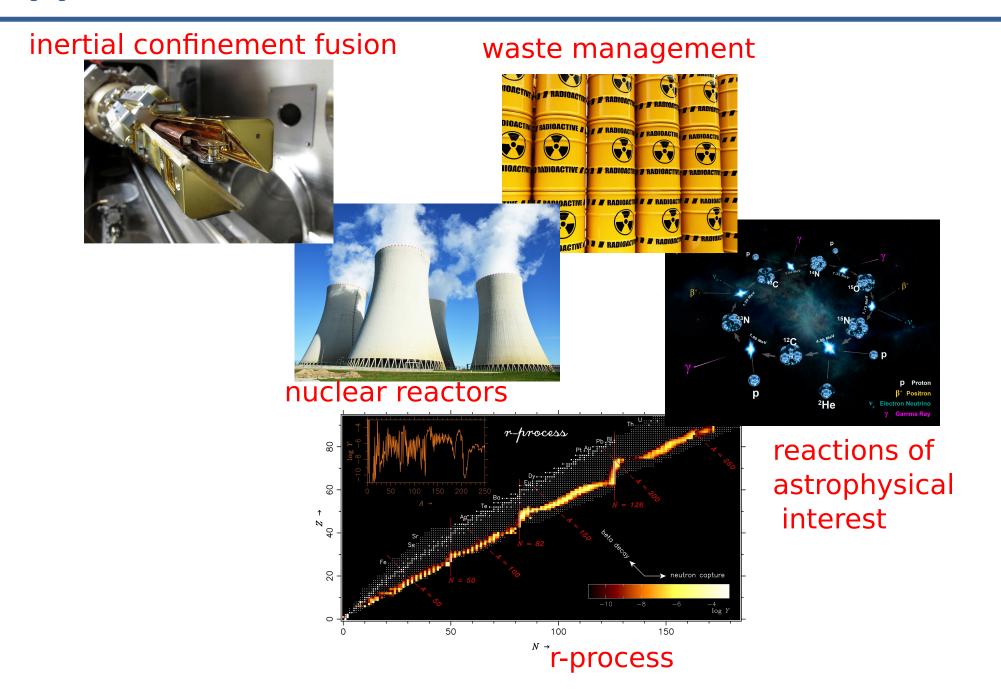
Low Energy Nuclear Reaction Theory for basic science and applications

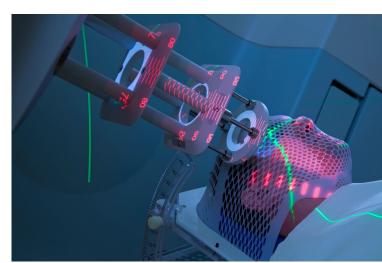
Gregory Potel Aguilar

XVII CPAN days, Valencia, November 20, 2025

Introduction and Motivation

Nuclear reactions: why do we care? Nuclear reactions for applications





nuclear medicine

Nuclear reactions: why do we care? Nuclear reactions as an experimental tool

 transfer reactions probe nuclear response to the addition of a nucleon

40

a variety of observables provide rich information about nuclear structure:

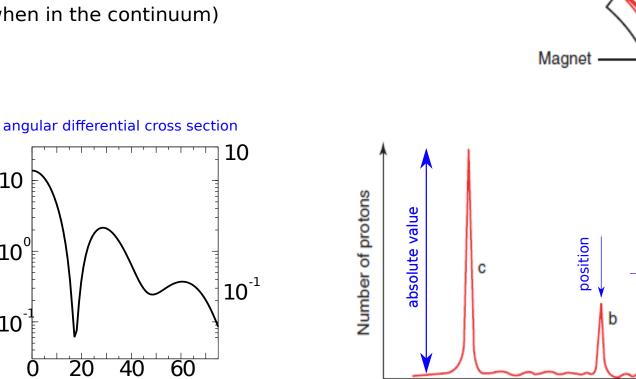
- angular differential cross section
- absolute value

10

Op/op

10

- position
- width (when in the continuum)



Deuteron

¹²⁰Sn

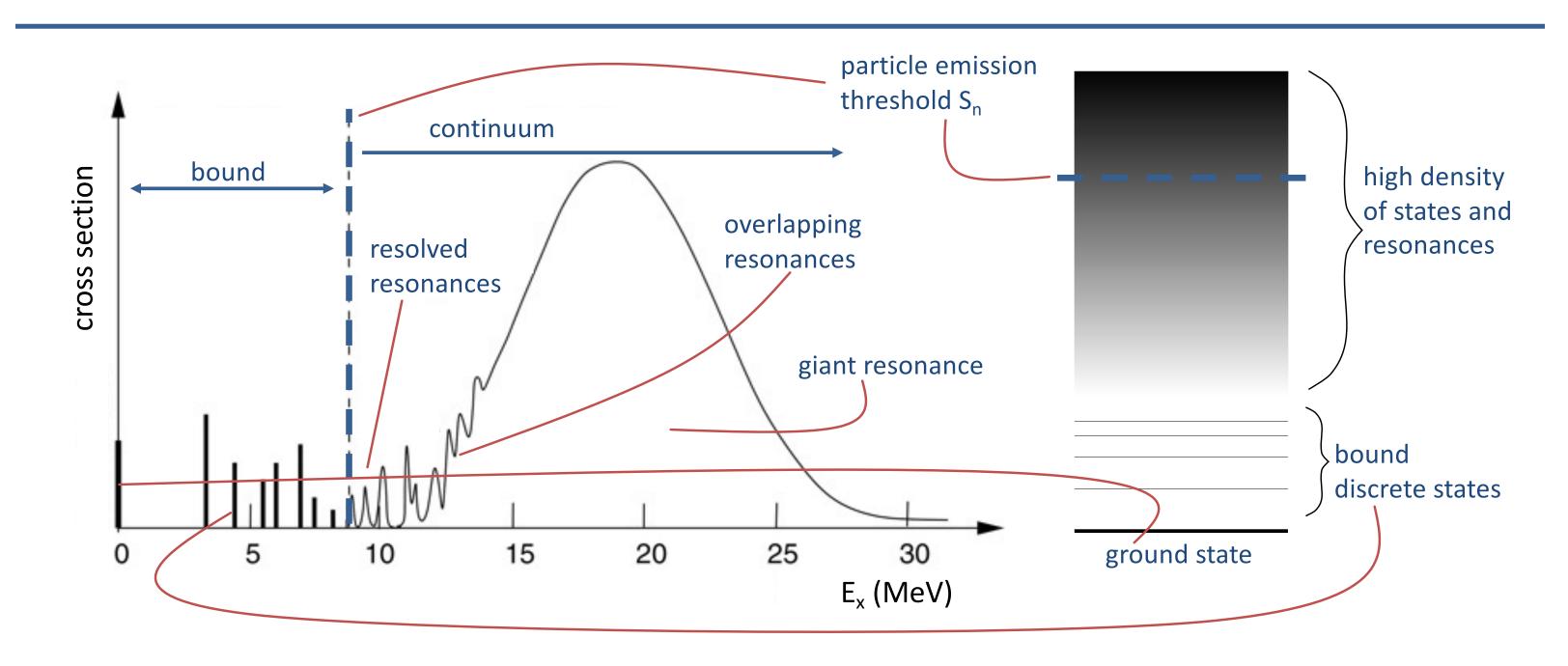
¹²¹Sn

width

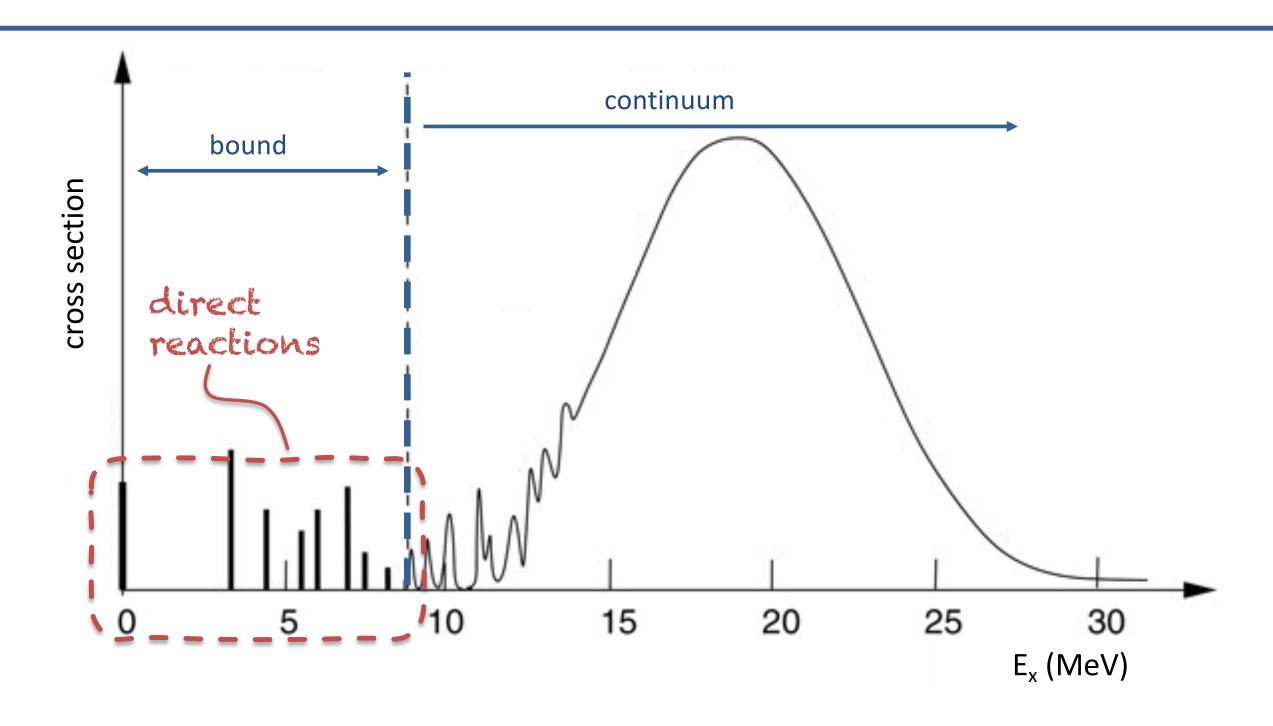
Proton energy

A theory challenge

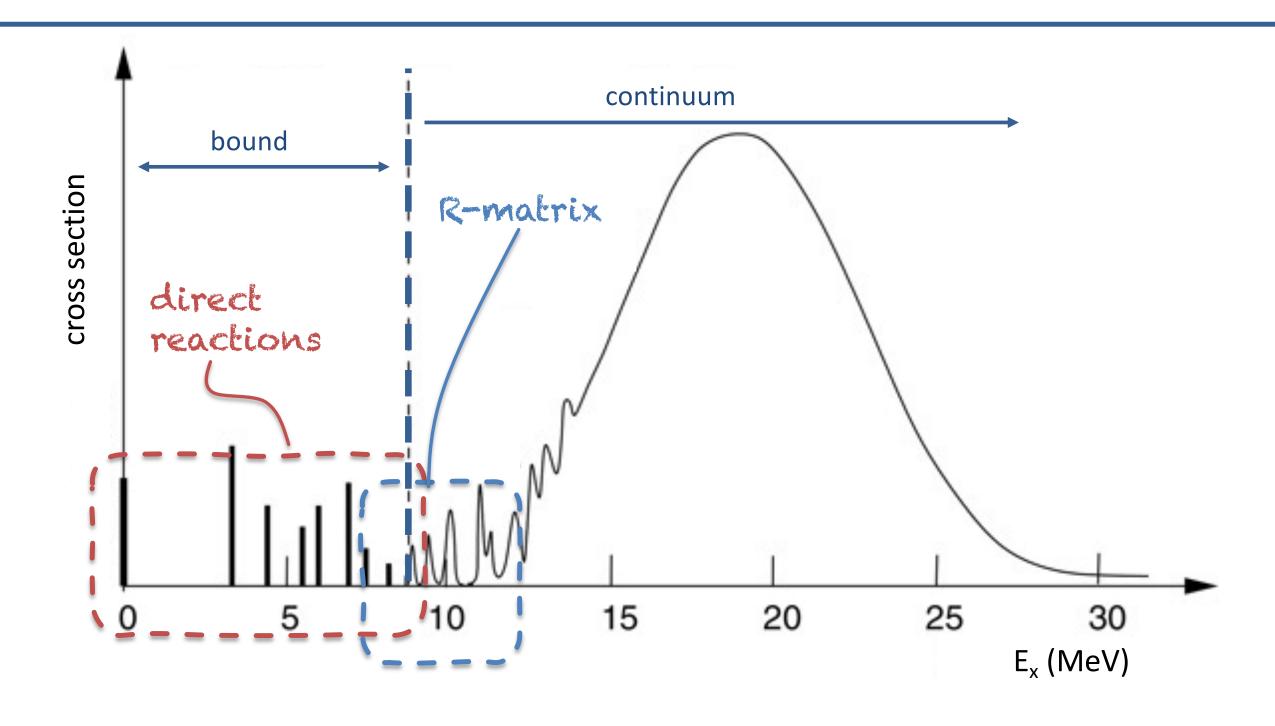
Features of nuclear spectra probed by nuclear reactions



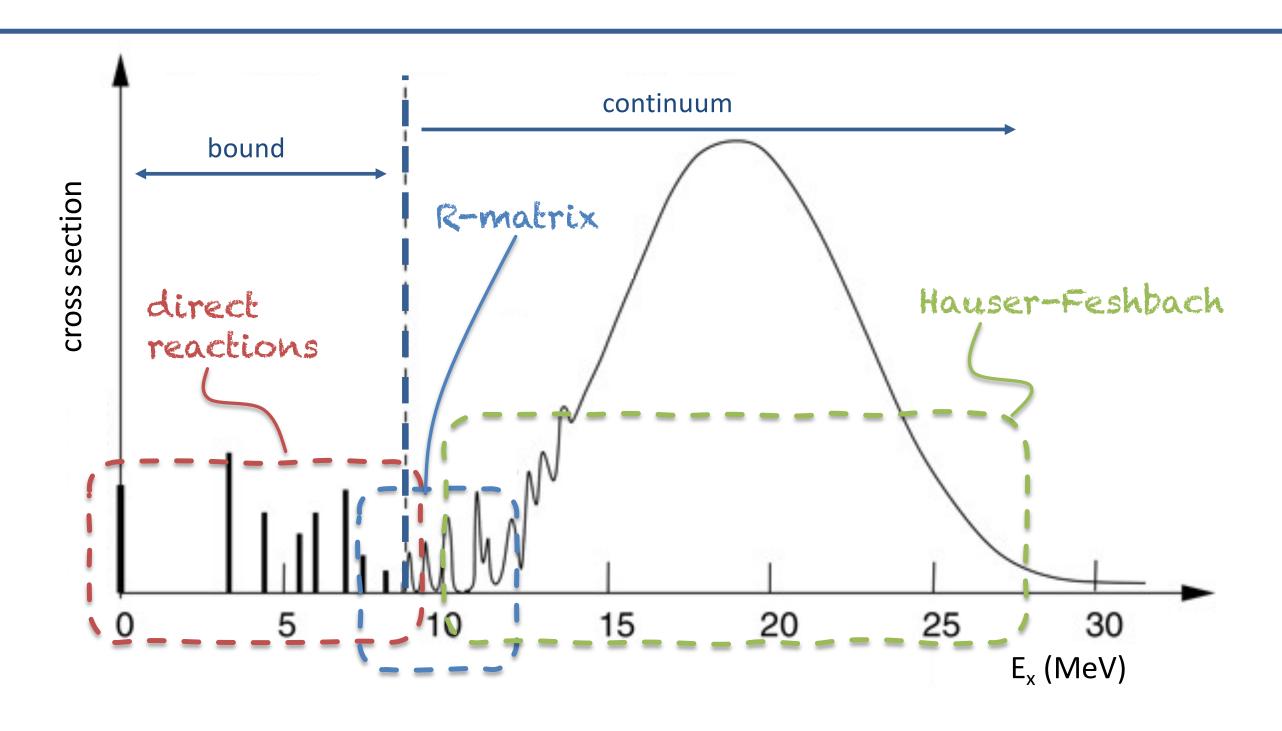
Which reaction theories, and where?



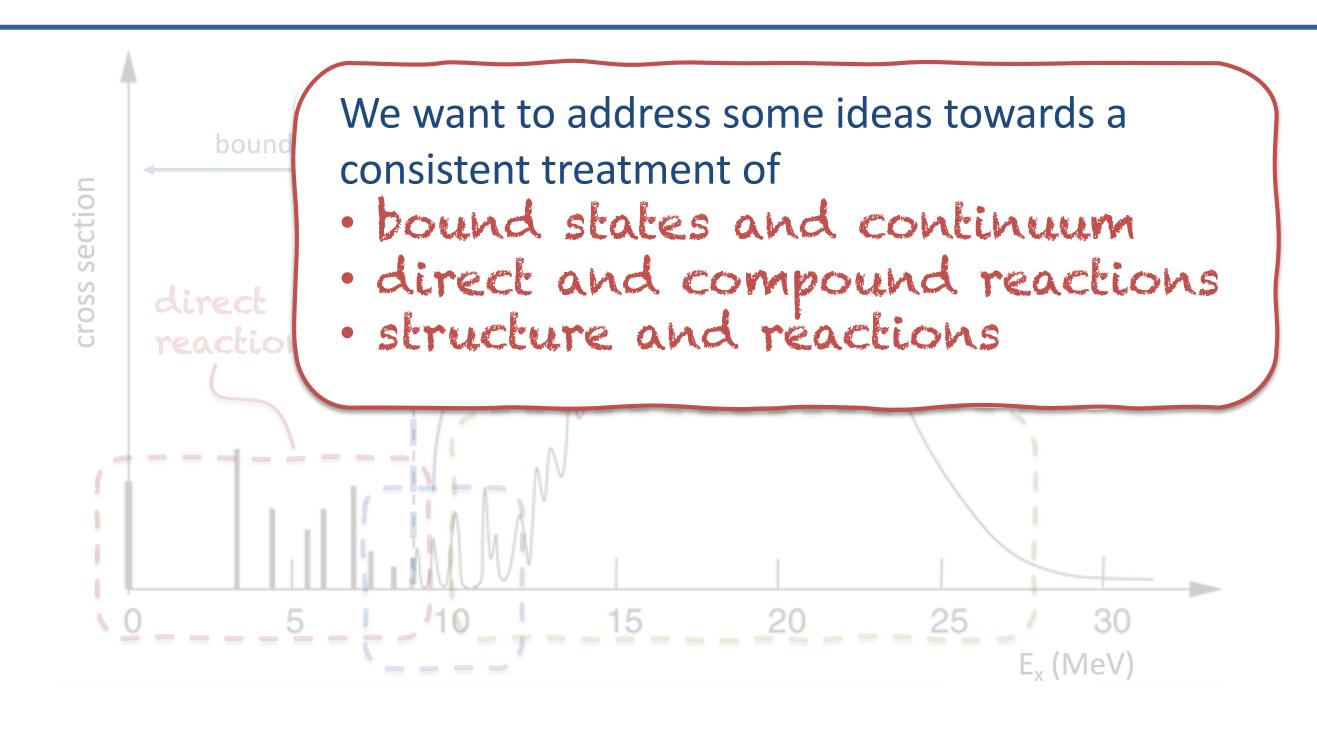
Which reaction theories, and where?



Which reaction theories, and where?



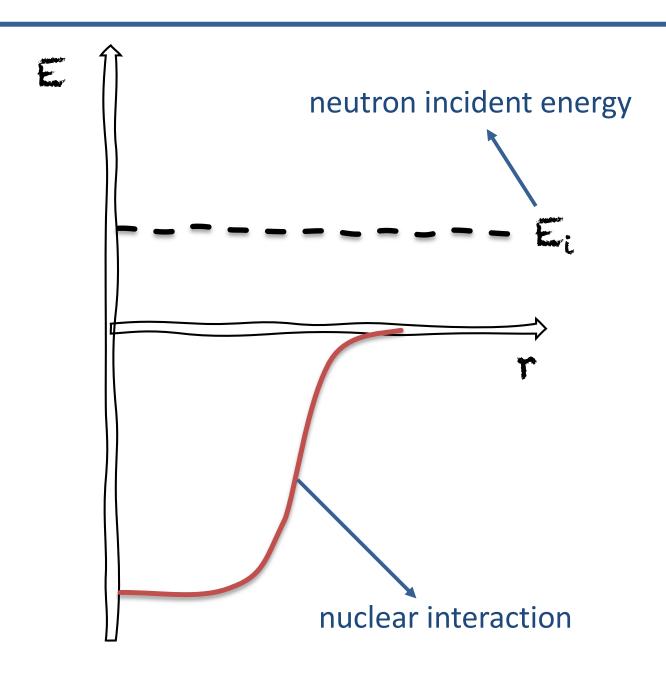
Challenge: Can we treat everything on the same footing?



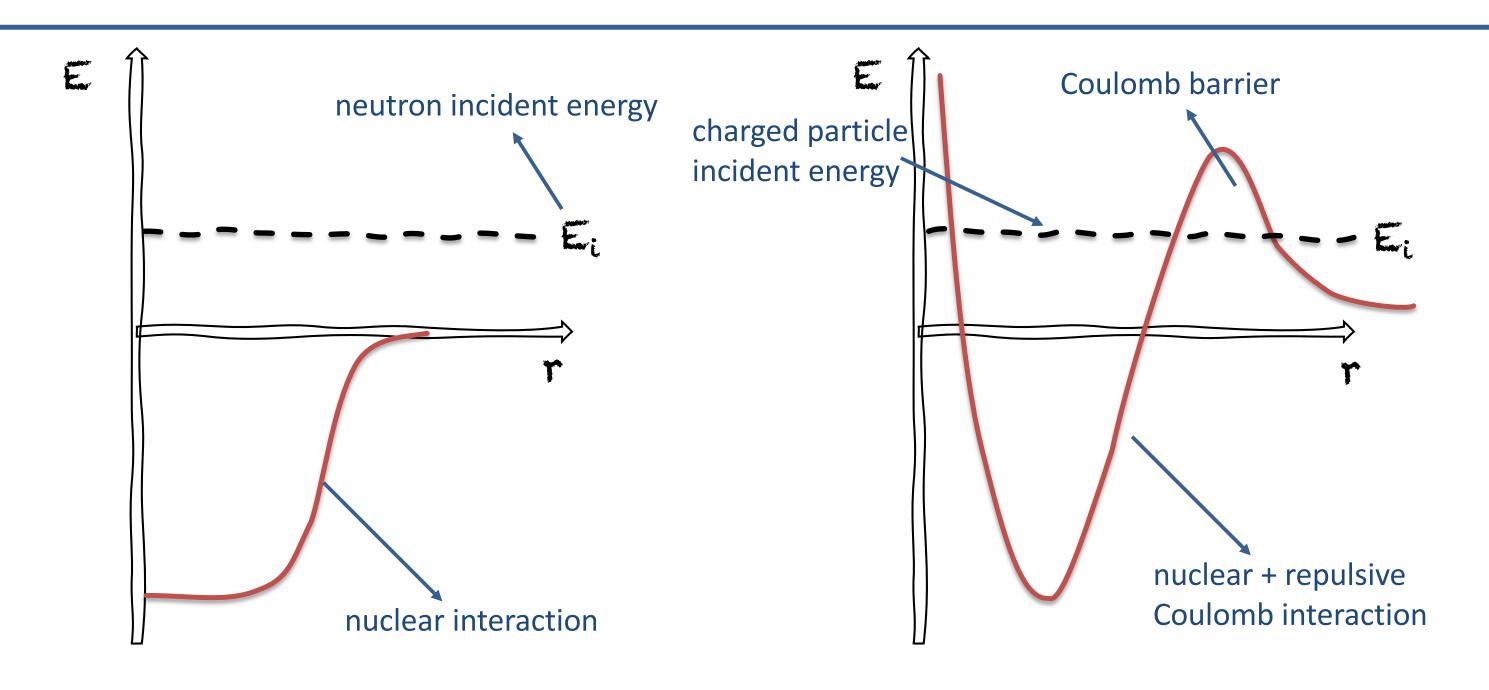
Challenge: Can we treat everything on the same footing?

An experimental challenge

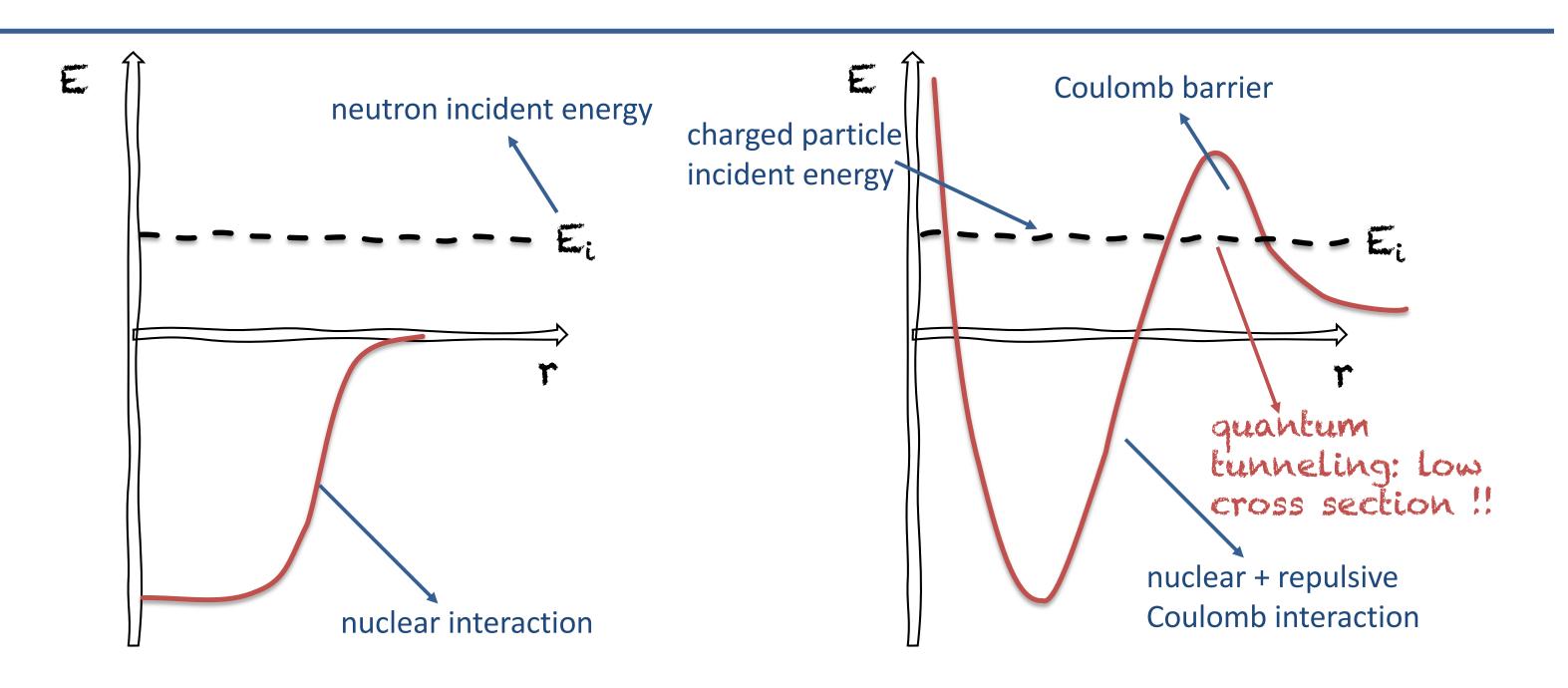
Measuring cross sections and rates: problems (charged particles)

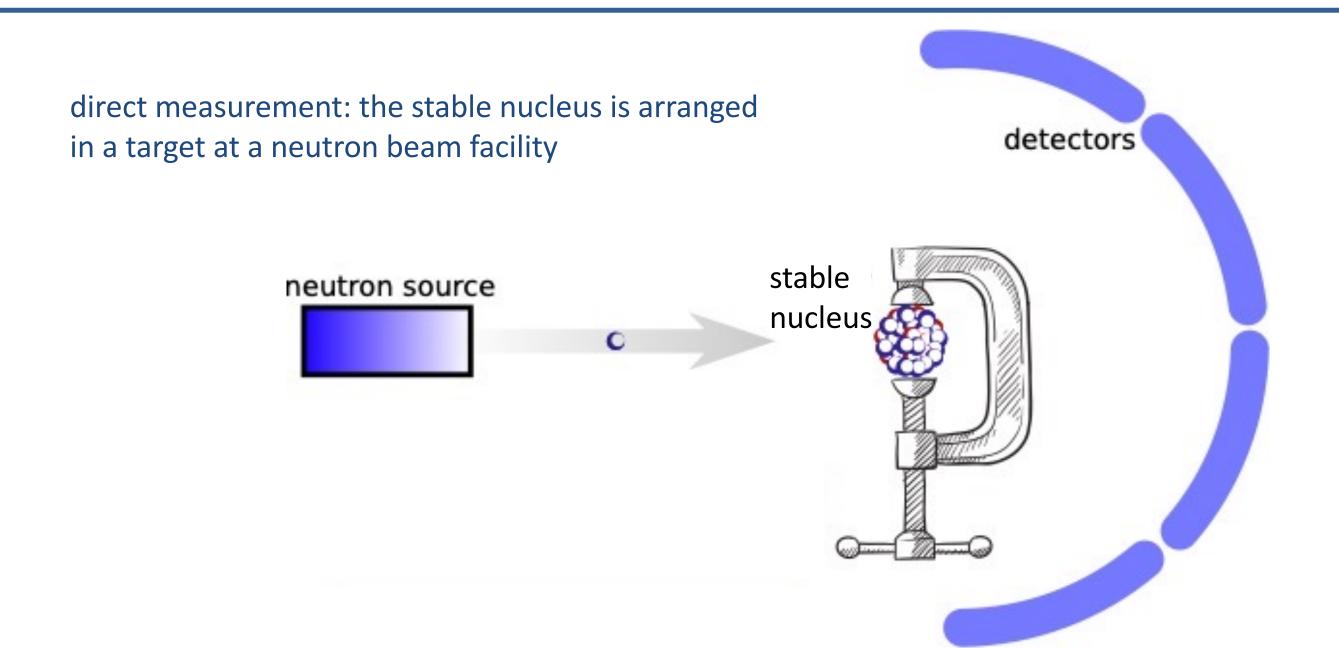


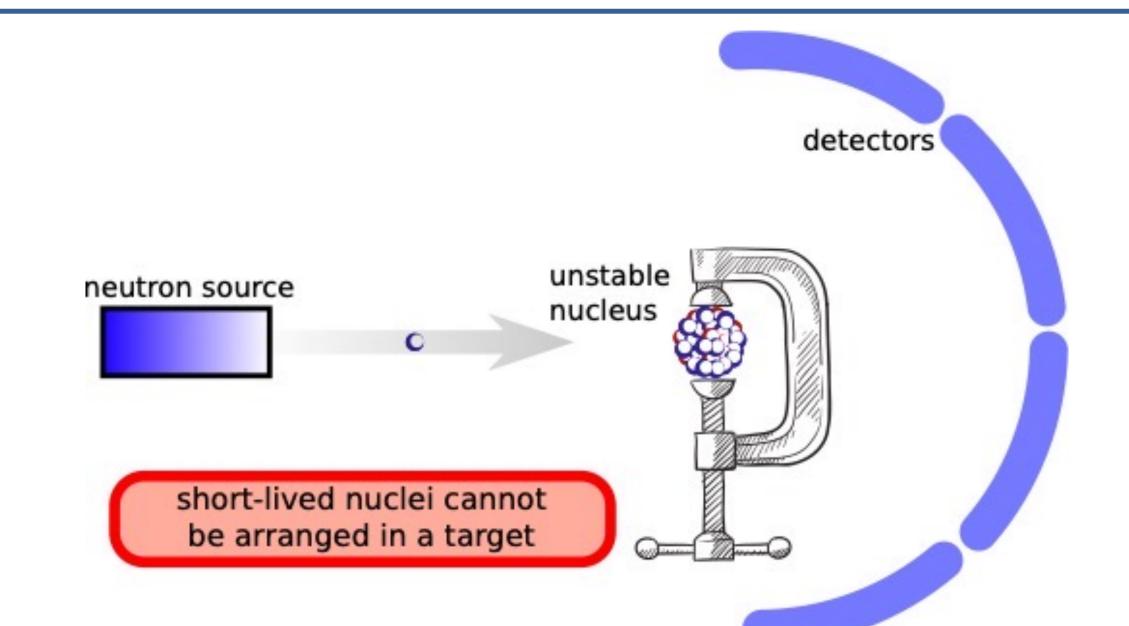
Measuring cross sections and rates: problems (charged particles)

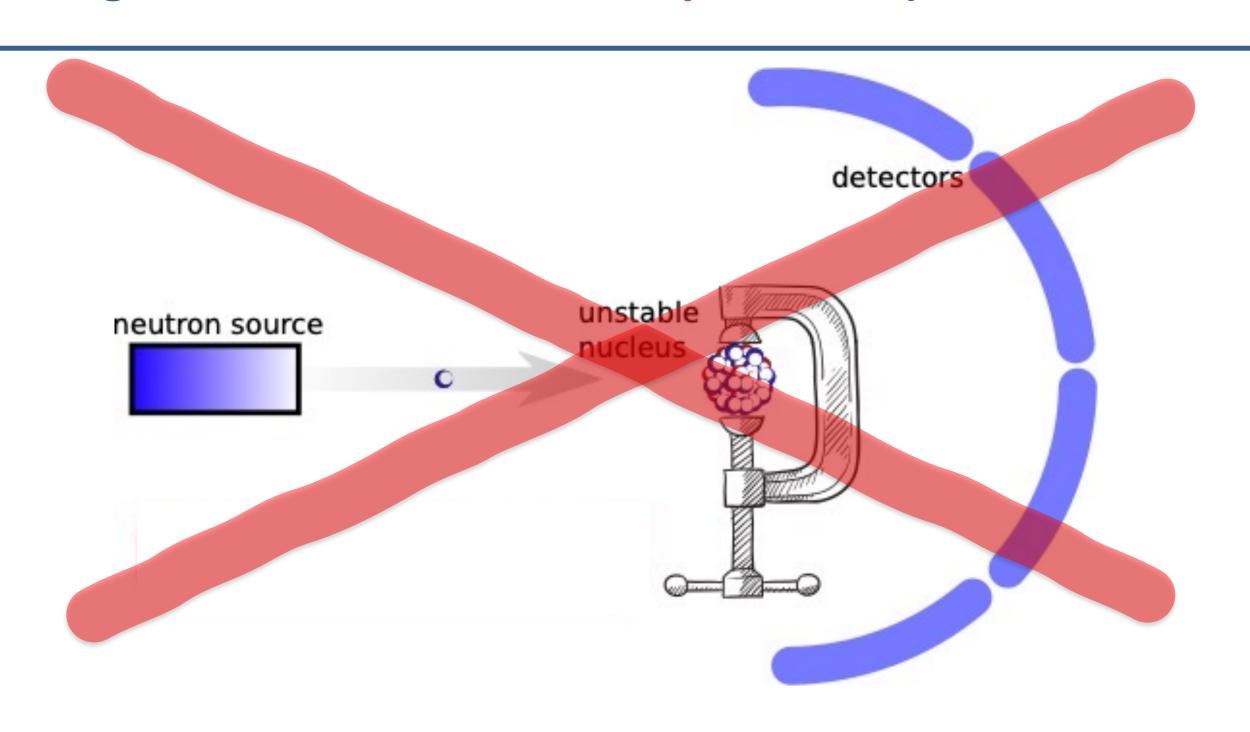


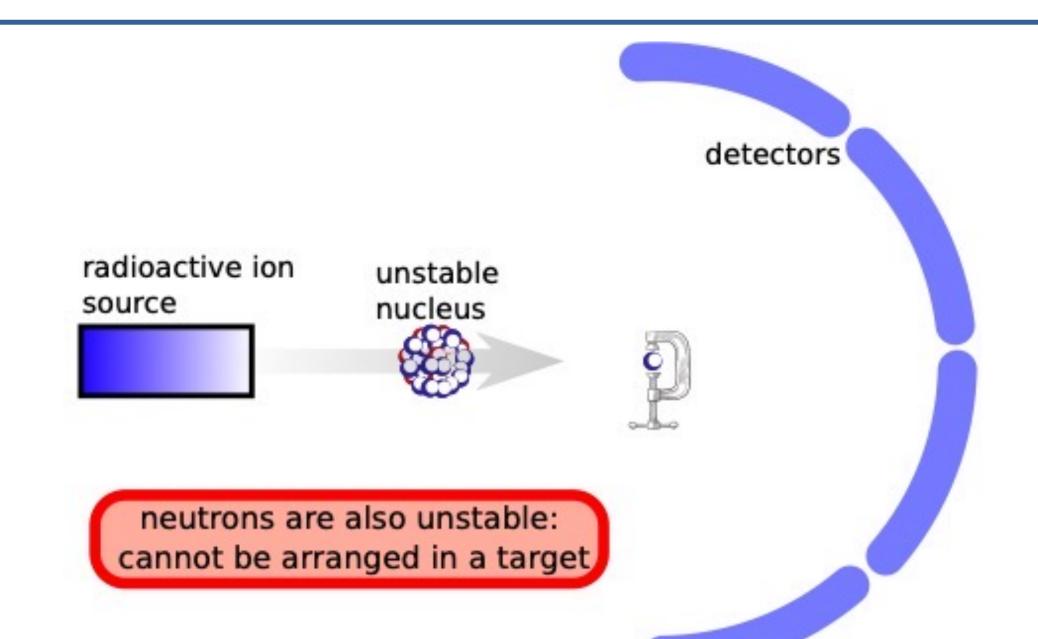
Measuring cross sections and rates: problems (charged particles)

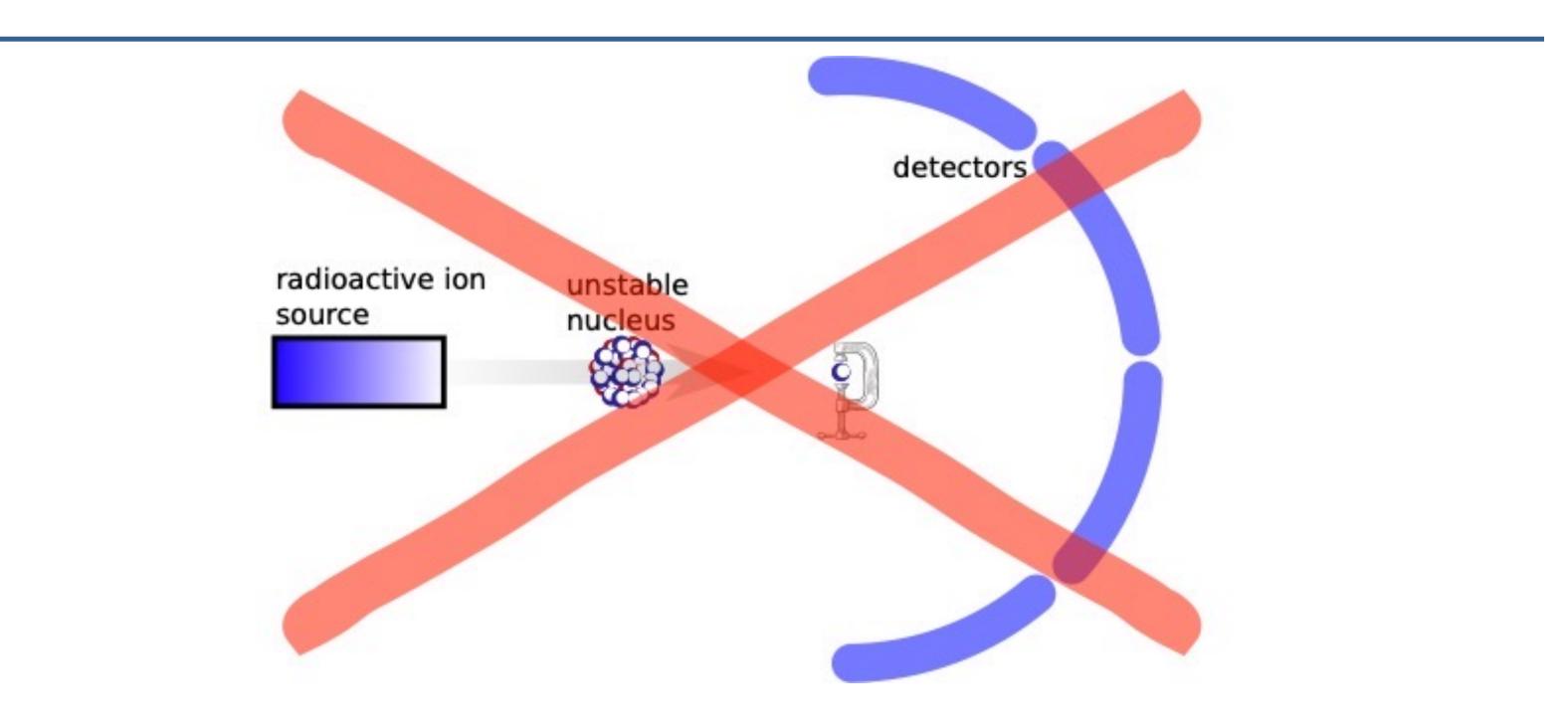






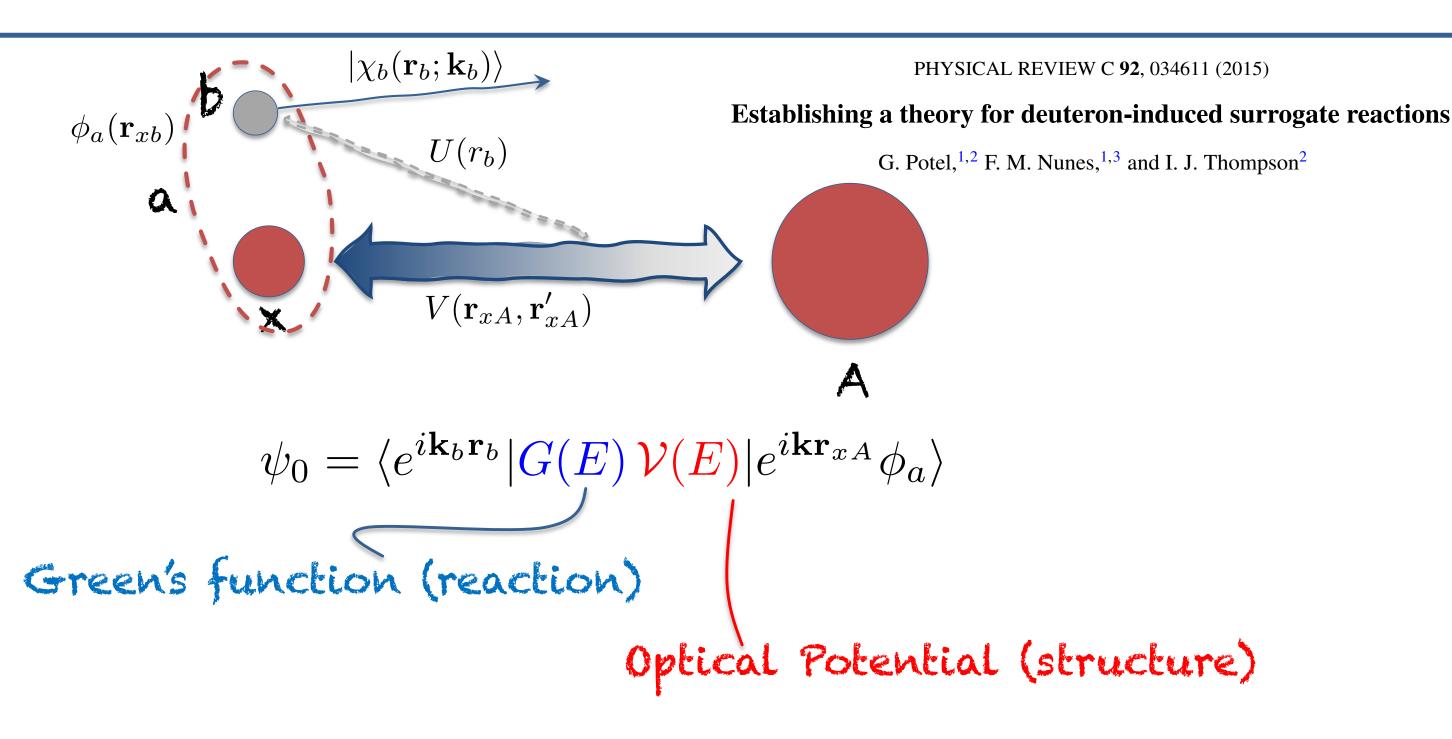




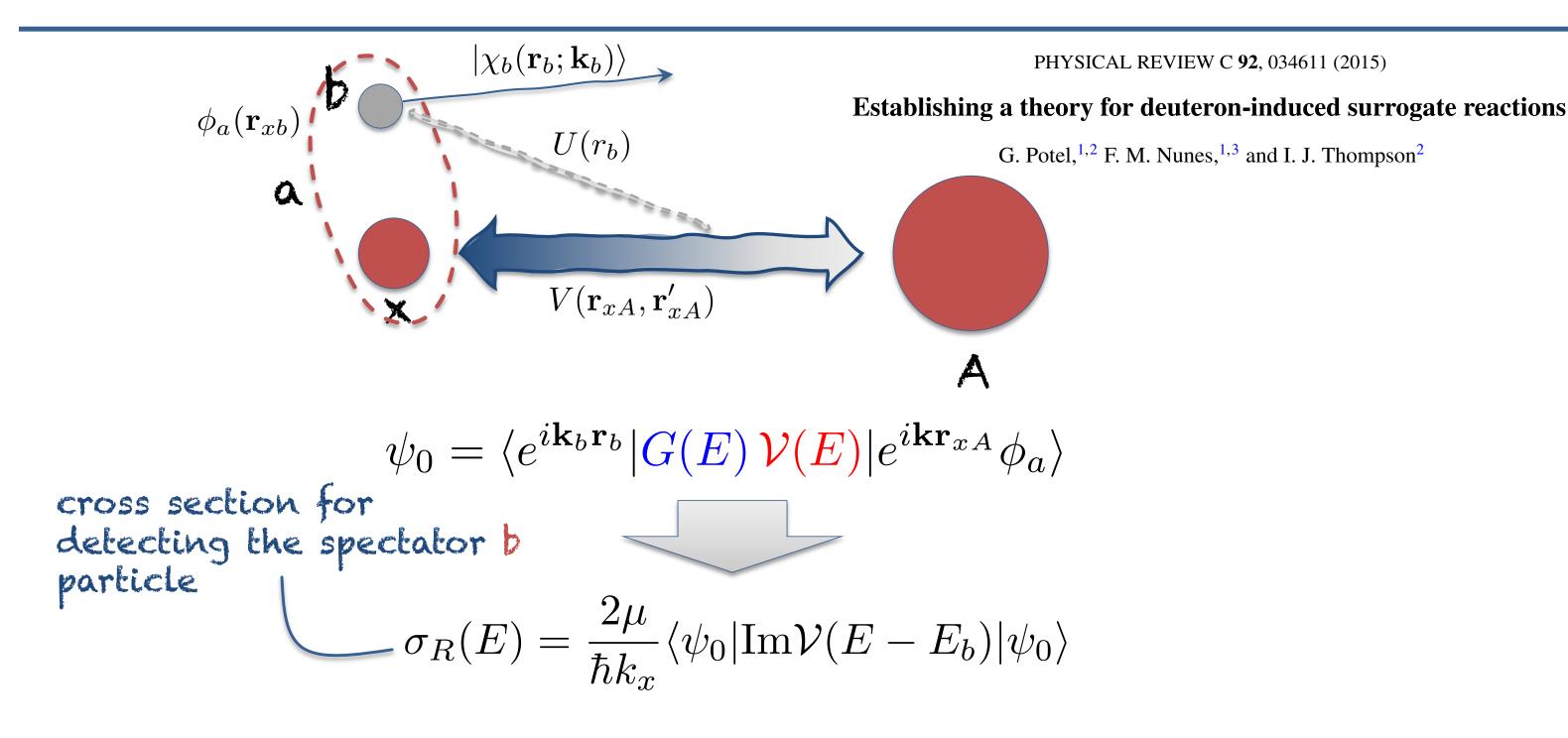


Green's Function Transfer (GFT)

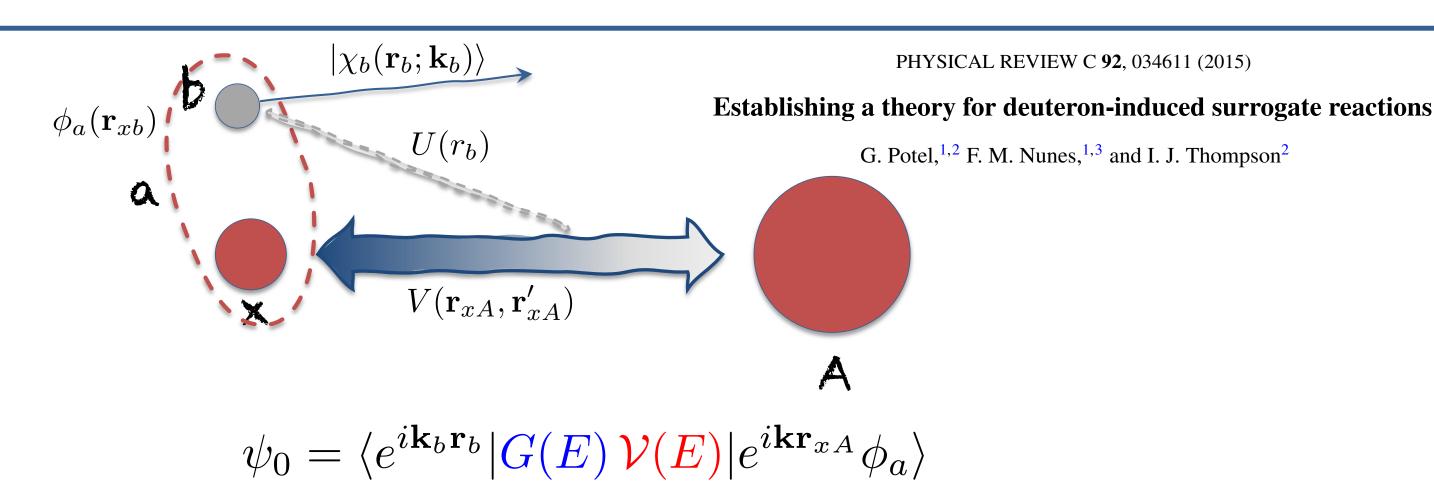
The Green's Function Transfer (GFT) formalism



The Green's Function Transfer (GFT) formalism



The Green's Function Transfer (GFT) formalism



A proposed scheme to enforce structure-reactions consistency

$$G(E) = (E - T - \mathcal{V}(E))^{-1}$$

Applying the GFT to (d,p) reactions

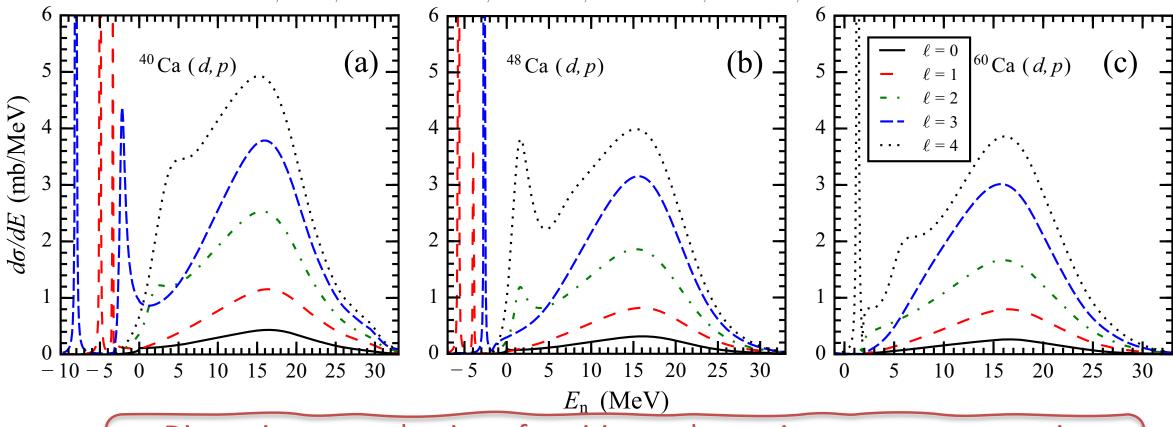
GFT with the Dispersive Optical Model (DOM); Ca(d,p)

Eur. Phys. J. A (2017) **53**: 178

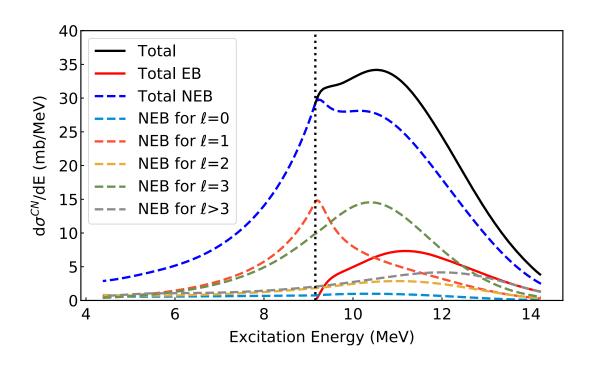
THE EUROPEAN

Toward a complete theory for predicting inclusive deuteron PHYSICAL JOURNAL A breakup away from stability

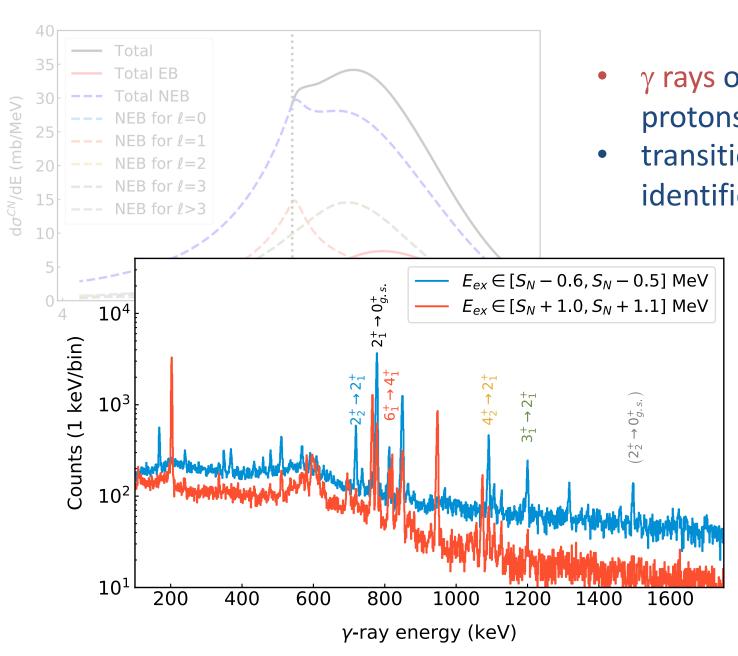
G. Potel^{1,a}, G. Perdikakis^{1,2,3,b}, B.V. Carlson^{4,c}, M.C. Atkinson⁵, W.H. Dickhoff⁵, J.E. Escher⁶, M.S. Hussein^{4,7,8}, J. Lei^{9,d}, W. Li¹, A.O. Macchiavelli¹⁰, A.M. Moro⁹, F.M. Nunes^{1,11}, S.D. Pain¹², and J. Rotureau¹



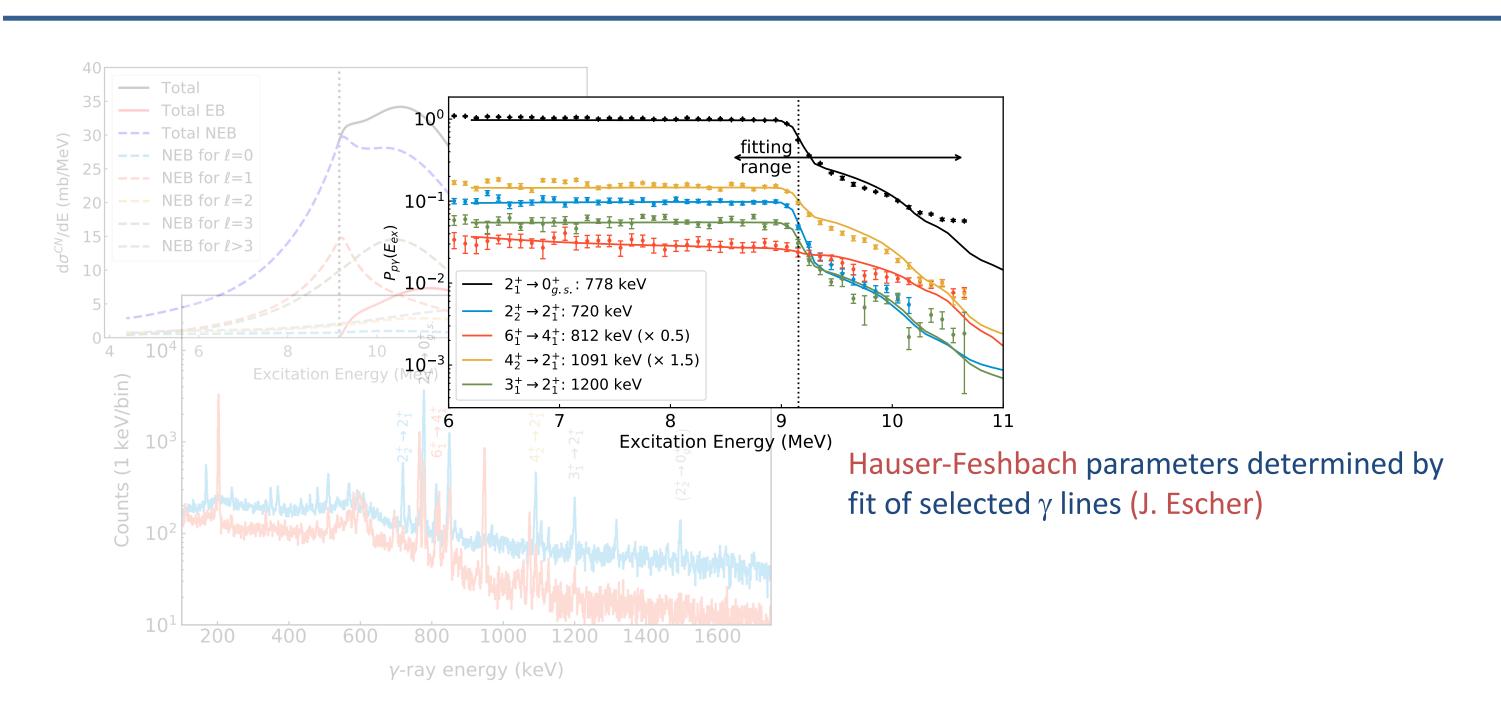
- Dispersive: reproduction of positive and negative energy cross section
- Controlled extrapolation to exotic nuclei



- Absorption of the neutron as a function of excitation energy and spin computed with GFT formalism
- We used the phenomenological Koning-Delaroche OP



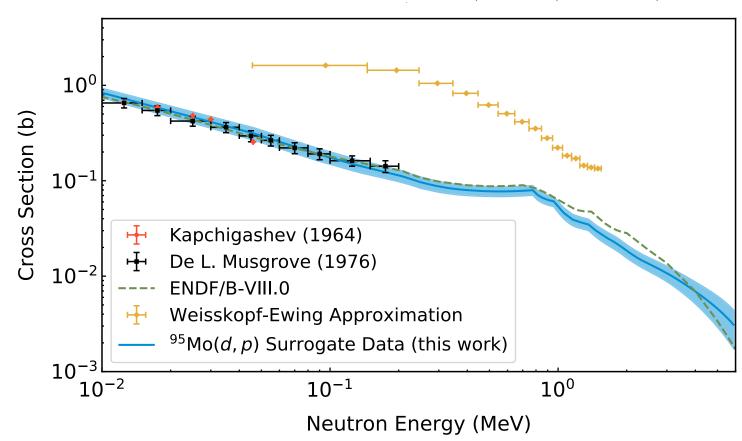
- γ rays observed in coincidence with protons
- transitions from both ⁹⁵Mo and ⁹⁶Mo are identified



PHYSICAL REVIEW LETTERS 122, 052502 (2019)

Towards Neutron Capture on Exotic Nuclei: Demonstrating $(d,p\gamma)$ as a Surrogate Reaction for (n,γ)

A. Ratkiewicz, ^{1,2,*} J. A. Cizewski, ² J. E. Escher, ¹ G. Potel, ^{3,4} J. T. Burke, ¹ R. J. Casperson, ¹ M. McCleskey, ⁵ R. A. E. Austin, ⁶ S. Burcher, ² R. O. Hughes, ^{1,7} B. Manning, ² S. D. Pain, ⁸ W. A. Peters, ⁹ S. Rice, ² T. J. Ross, ⁷ N. D. Scielzo, ¹ C. Shand, ^{2,10} and K. Smith ¹¹

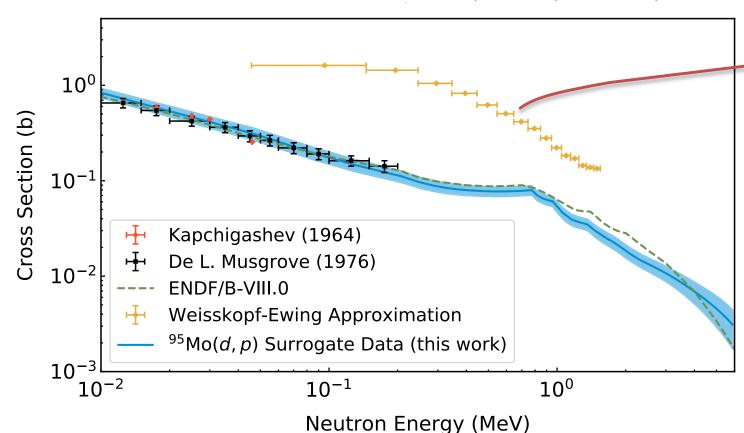


- The obtained Hauser-Feshbach parameters are used to calculate (n,γ)
- We found an excellent agreement with the direct measurement.

PHYSICAL REVIEW LETTERS 122, 052502 (2019)

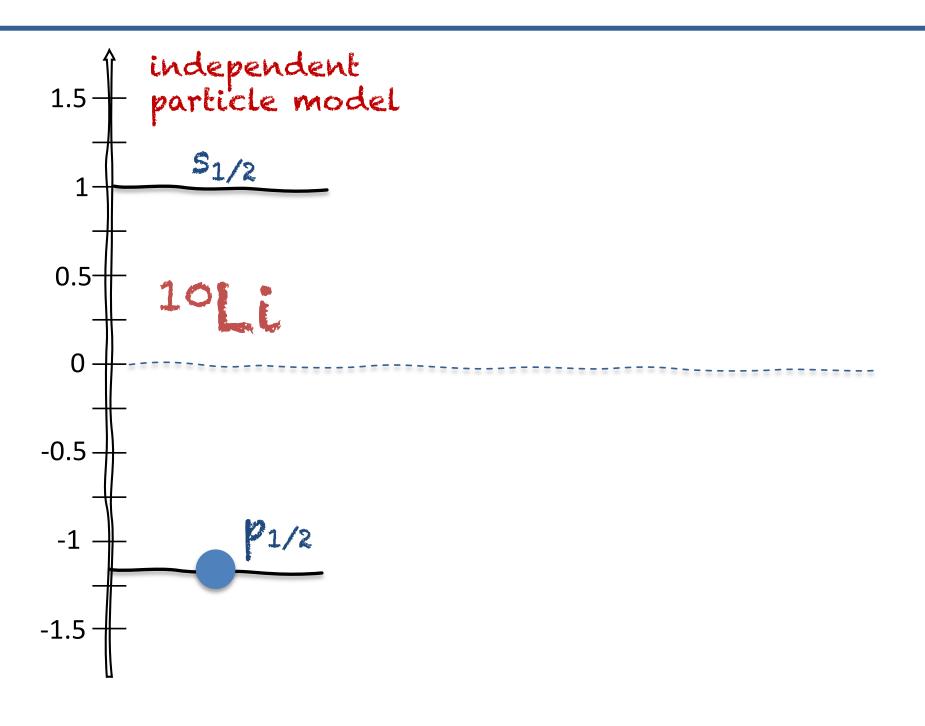
Towards Neutron Capture on Exotic Nuclei: Demonstrating $(d,p\gamma)$ as a Surrogate Reaction for (n,γ)

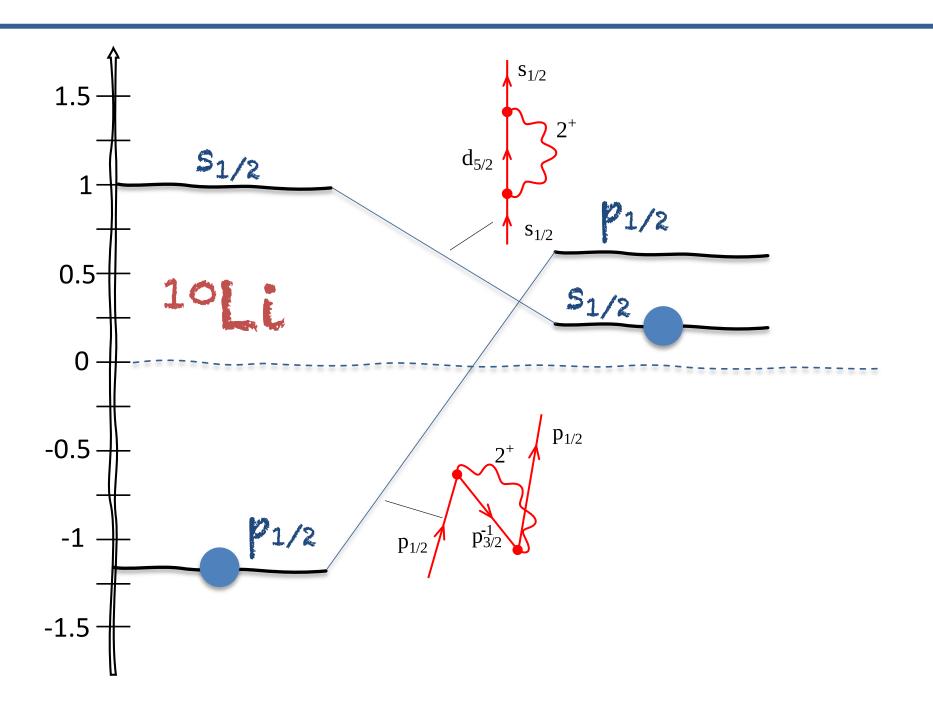
A. Ratkiewicz,^{1,2,*} J. A. Cizewski,² J. E. Escher,¹ G. Potel,^{3,4} J. T. Burke,¹ R. J. Casperson,¹ M. McCleskey,⁵ R. A. E. Austin,⁶ S. Burcher,² R. O. Hughes,^{1,7} B. Manning,² S. D. Pain,⁸ W. A. Peters,⁹ S. Rice,² T. J. Ross,⁷ N. D. Scielzo,¹ C. Shand,^{2,10} and K. Smith¹¹

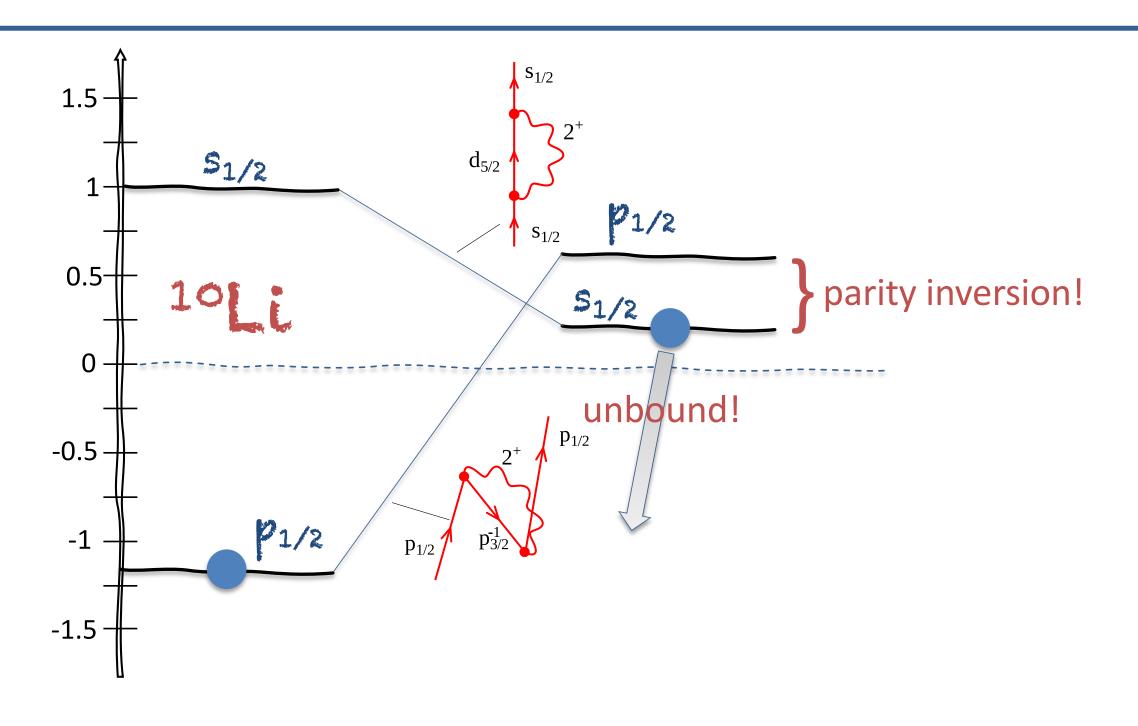


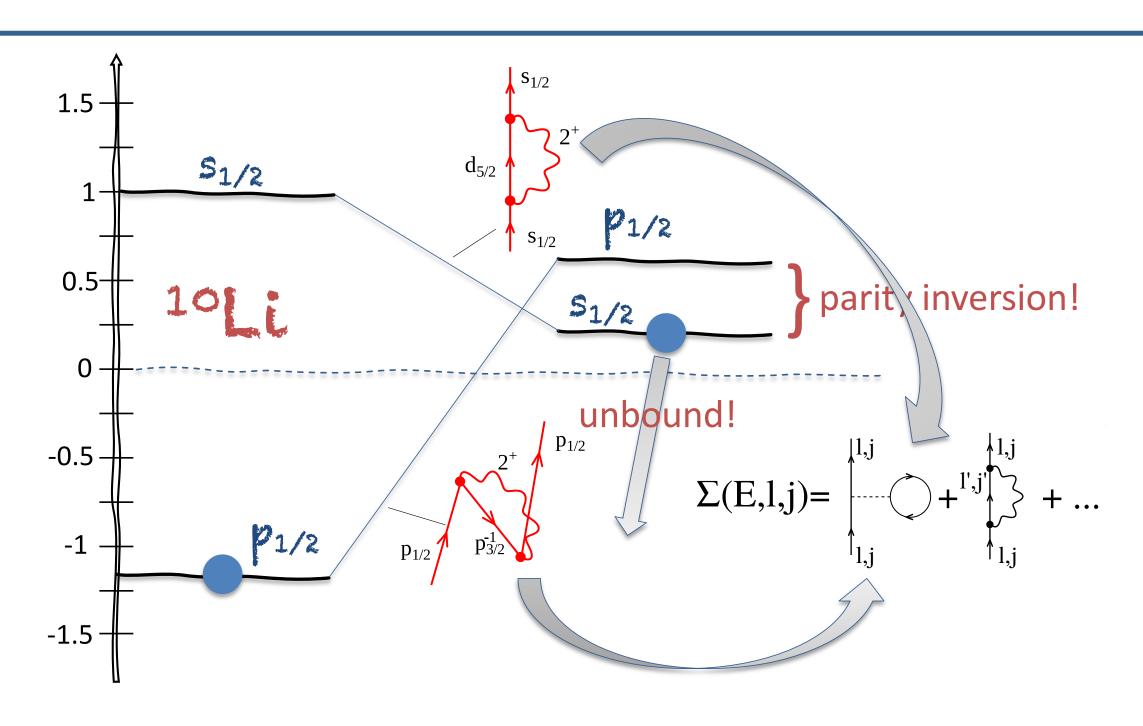
a failure to account for the initial spin distribution (Weisskopf-Ewing approximation) leads to poor results!

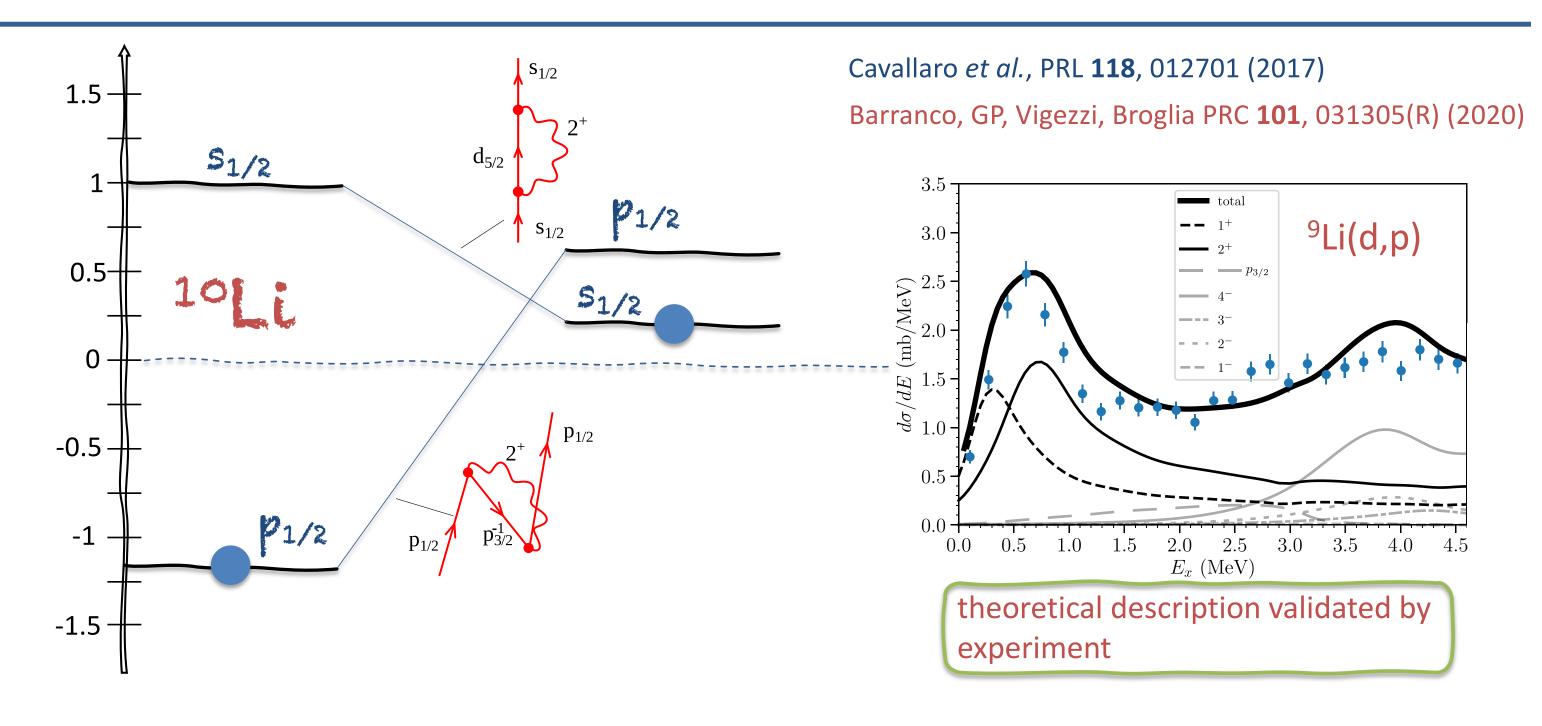
- The obtained Hauser-Feshbach parameters are used to calculate (n,γ)
- We found an excellent agreement with the direct measurement.





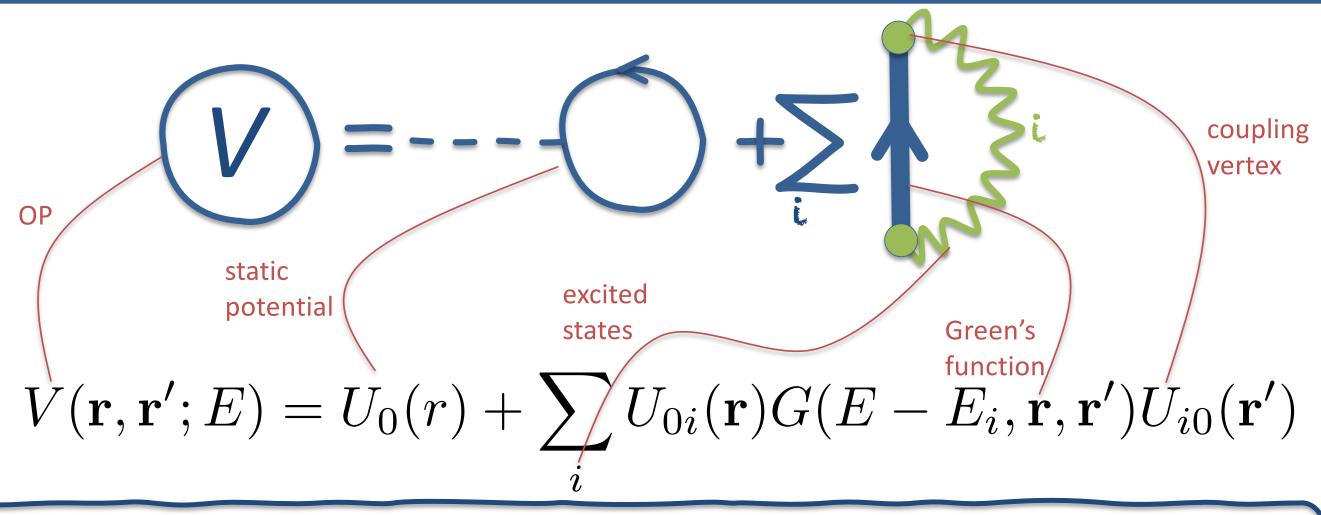






Computing the Optical Potential

The OP accounts for the composite nature of the target nucleus



- The computed OP is energy dependent, non-local, complex, and dispersive
- The OP verifies the Kramers-Kronig dispersion relations between the real and the imaginary part

²⁴Mg+n with valence shell model

excitation energy E_i

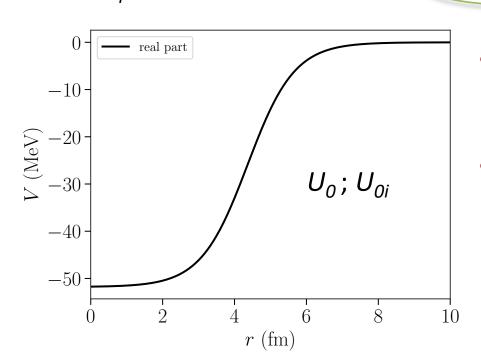
step 2: Static potential and couplings

angular momentum

parity

$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r}) G(E - E_i, \mathbf{r}, \mathbf{r}') U_{i0}(\mathbf{r}')$$

spectroscopic factor S_i



- static potential U_0 : real, local Woods-Saxon adjusted to reproduce binding energy of ^{25}Mg
- couplings U_{0i} : same Woods-Saxon, but adjusted to each E_i and multiplied by spottoscopic factor S_i

can be done better!

²⁴Mg+n with valence shell model

excitation energy E_i

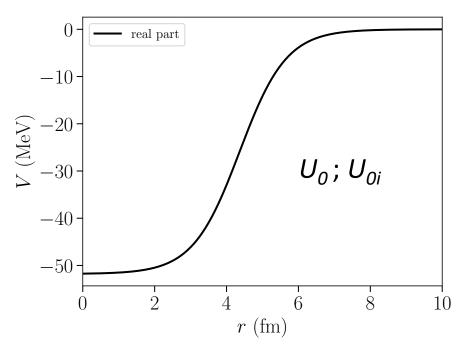
step 3: Iterative procedure

angular momentum

		1		
0	0	2	1	0.584066
0.701	0	0	1	-0.716831
1.169	0	2	1	0.488705
2.033	0	2	1	-0.288311
2.529	0	0	1	0.318332
2.701	0	2	1	0.542416
3.859	0	2	1	0.0495903
3.926	0	1	-1	-0.0298132
4.118	0	1	-1	-0.584623
4.226	0	3	-1	-0.651056
4.46	0	2	1	0.100777
4.816	0	2	1	0.0975601
4.945	0	1	-1	0.516883
5.065	0	1	-1	-0.0511968
5.416	0	0	1	-0.283037
5.638	0	3	-1	-0.219064
5.785	0	2	1	-0.0103979
5.792	0	2	1	0.132477
5.935	0	3	-1	0.069005
5.936	0	2	1	0.094658
6.033	0	1	-1	0.0353684
6.12	0	1	-1	-0.159821
6.243	0	2	1	-0.174362
6.35	0	3	-1	0.122727
6.385	0	0	1	0.182001
6.417	0	2	1	0.115995
6.609	0	2	1	0.100457
6.739	0	3	-1	0.157325
6.771	0	1	-1	0.419452
6 - 801	0	3	– 1	0.160889

parity

spectroscopic factor S_i



$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r})G(E - E_i, \mathbf{r}, \mathbf{r}')U_{i0}(\mathbf{r}')$$

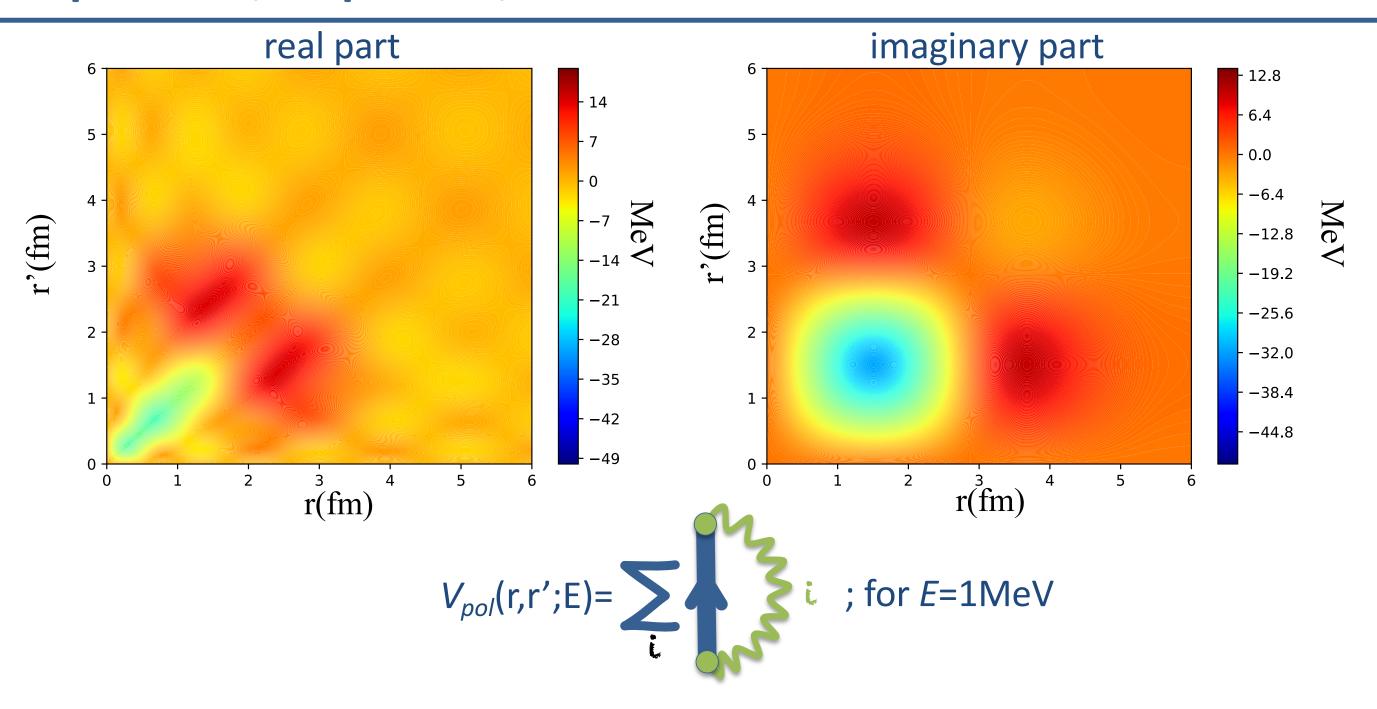
$$G(\mathbf{r}, \mathbf{r}', E) = (E - T - V(\mathbf{r}, \mathbf{r}'; E))^{-1}$$

- Iterate until convergence is achieved
- Consistency between potential and Green's function is achieved, as expressed by Dyson's equation:

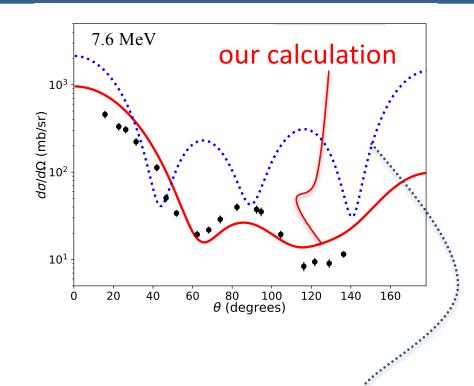
$$G(\mathbf{r}, \mathbf{r}'; E) = G_0(\mathbf{r}, \mathbf{r}'; E) + G_0(\mathbf{r}, \mathbf{r}'; E)V(\mathbf{r}, \mathbf{r}'; E)G(\mathbf{r}, \mathbf{r}'; E)$$
$$G_0(\mathbf{r}, \mathbf{r}'; E) = (E - T - U_0(r))^{-1}$$

As a bonus, we obtain the Green's function

The dynamical polarization potential is complex, energy-dependent, dispersive, and non-local

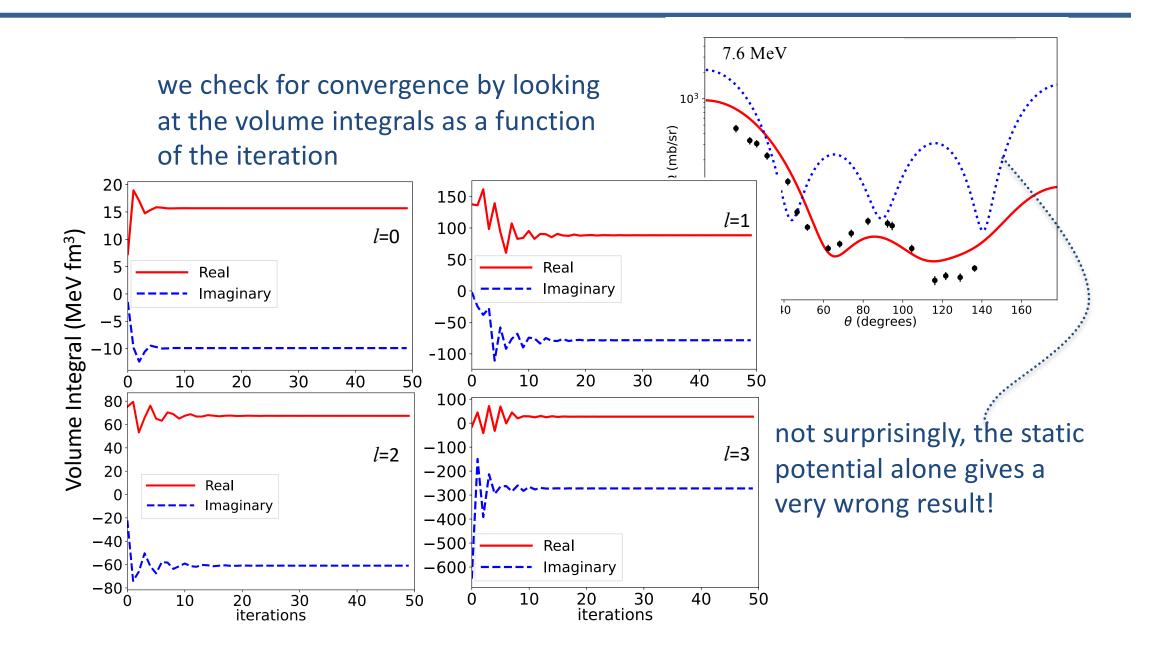


Our ²⁴Mg calculation compares well with experiment

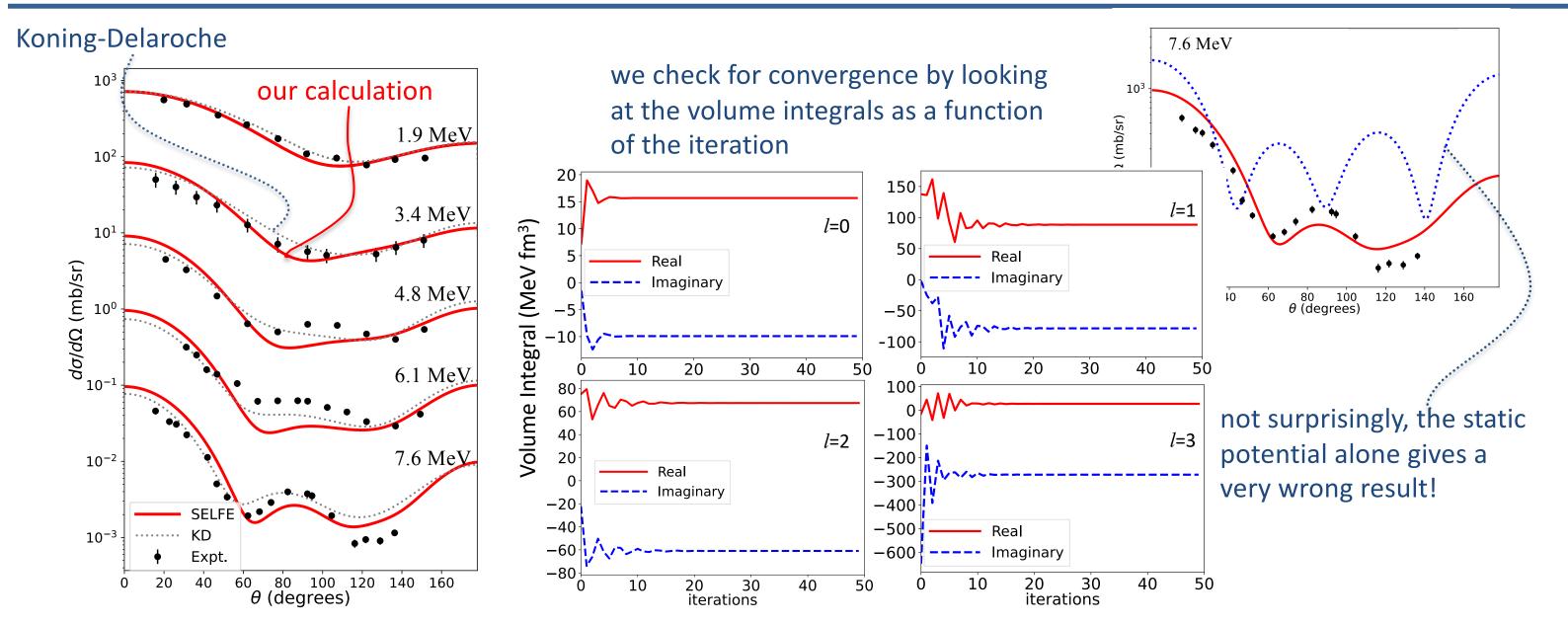


not surprisingly, the static potential alone gives a very wrong result!

Our ²⁴Mg calculation compares well with experiment

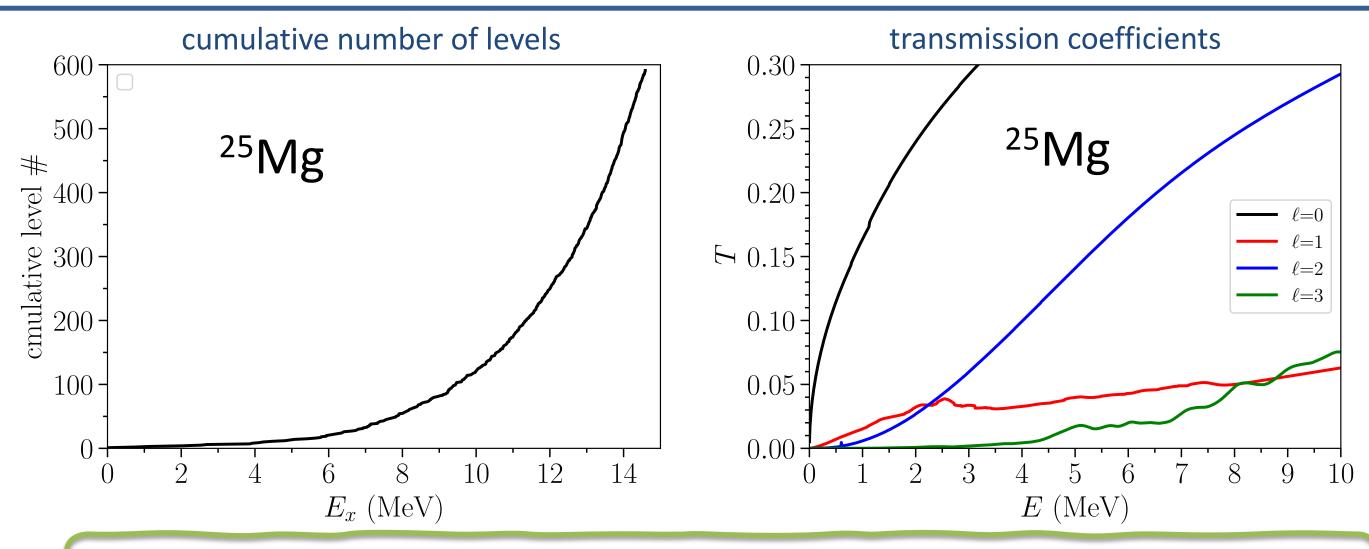


Our ²⁴Mg calculation compares well with experiment



Sargsyan, GP, Kravvaris, Escher; ArXiv (2024)

The OP, the level density, and the γ strength function are connected through the same underlying physics



We can explicitly connect with statistical model (Hauser-Feshbach approach) through energy-averaging

Conclusions and some perspectives

- Phenomenology has to be complemented with theory for reliable extrapolation across different regimes.
- The calculation of the OP provides a flexible and versatile path, including 3-body reactions (with GFT).

what's next?

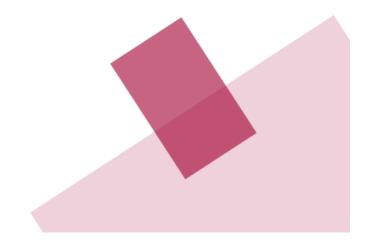
- Improve microscopic inputs.
- Disentangle direct, pre-equilibrium, and compound reactions.
- Explore the limits of validity of the statistical model.
- Symmetry-breaking systems (deformation, pairing).
- R-Matrix parametrization of indirect reactions.

Collaborators:

- J. Escher, K. Kravvaris,
- E. Vigezzi (INFN, Milano)
- F. Barranco (University of Seville)
- G. Sargsyan, F. Nunes (MSU)
- C. Hebborn (CNRS, Paris)

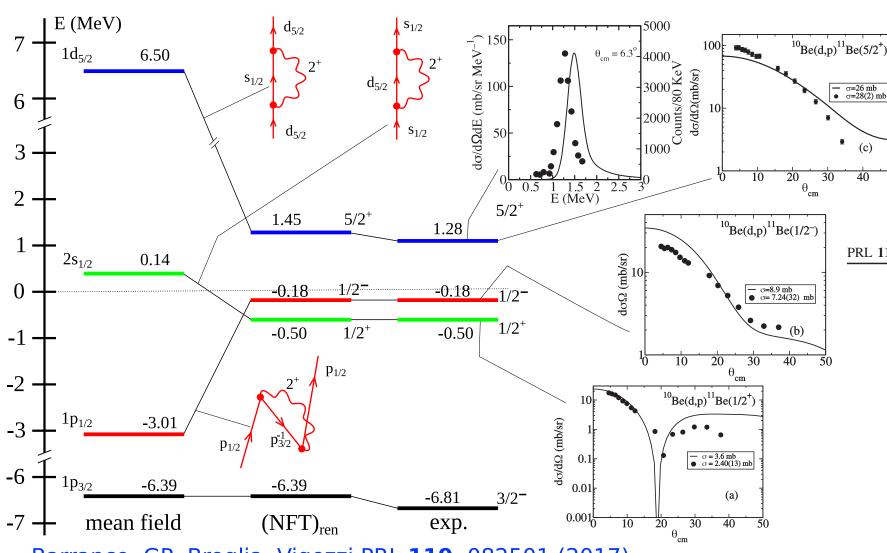
⁹⁵Mo: A. Ratkiewicz, J. Escher, J. Burke, R. Casperson, R. Hughes, N. Scielzo (LLNL), J. Cizewski, S. Burcher, B. Manning, S. Rice, C. Shand (Rutgers), M. McCleskey (TAMU), R. Austin (St Mary's), S. Pain (ORNL), W. Peters (U of Tennessee), T. Ross (U of Richmond) and K. Smith (LANL).

Thank you!



BACKUP SLIDES

It works for ¹¹Be, too!



Barranco, GP, Broglia, Vigezzi PRL 119, 082501 (2017)

PRL **119**, 082501 (2017)

PHYSICAL REVIEW LETTERS

week ending 25 AUGUST 2017

Structure and Reactions of ¹¹Be: Many-Body Basis for Single-Neutron Halo

F. Barranco, G. Potel, R. A. Broglia, and E. Vigezzi⁵

¹Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla,
Camino de los Descubrimientos, 41092 Sevilla, Spain

²National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

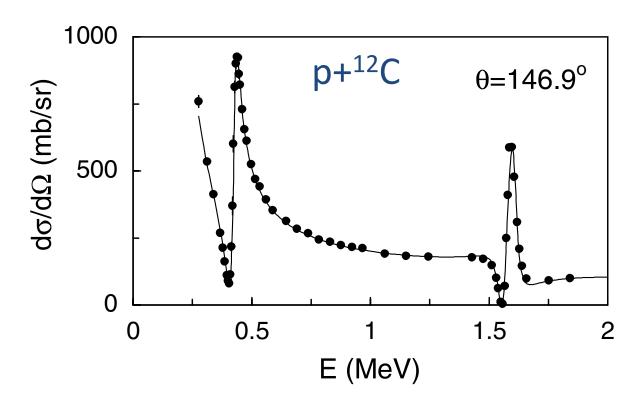
³The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

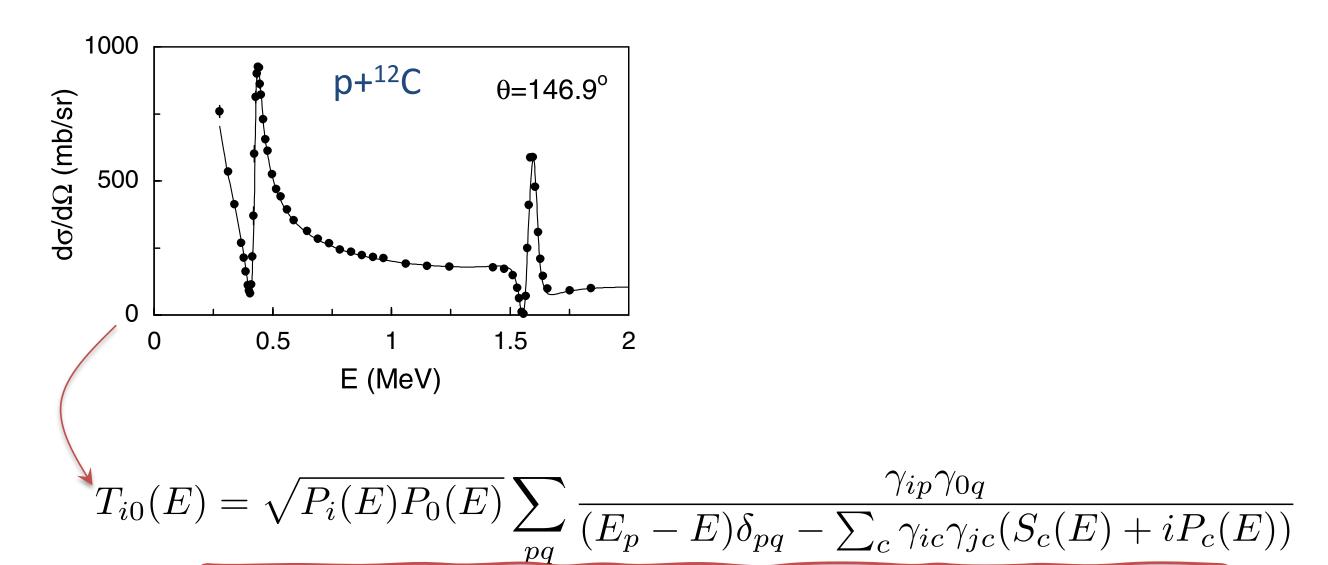
⁴Dipartimento di Fisica, Università degli Studi Milano, Via Celoria 16, I-20133 Milano, Italy

⁵INFN Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy

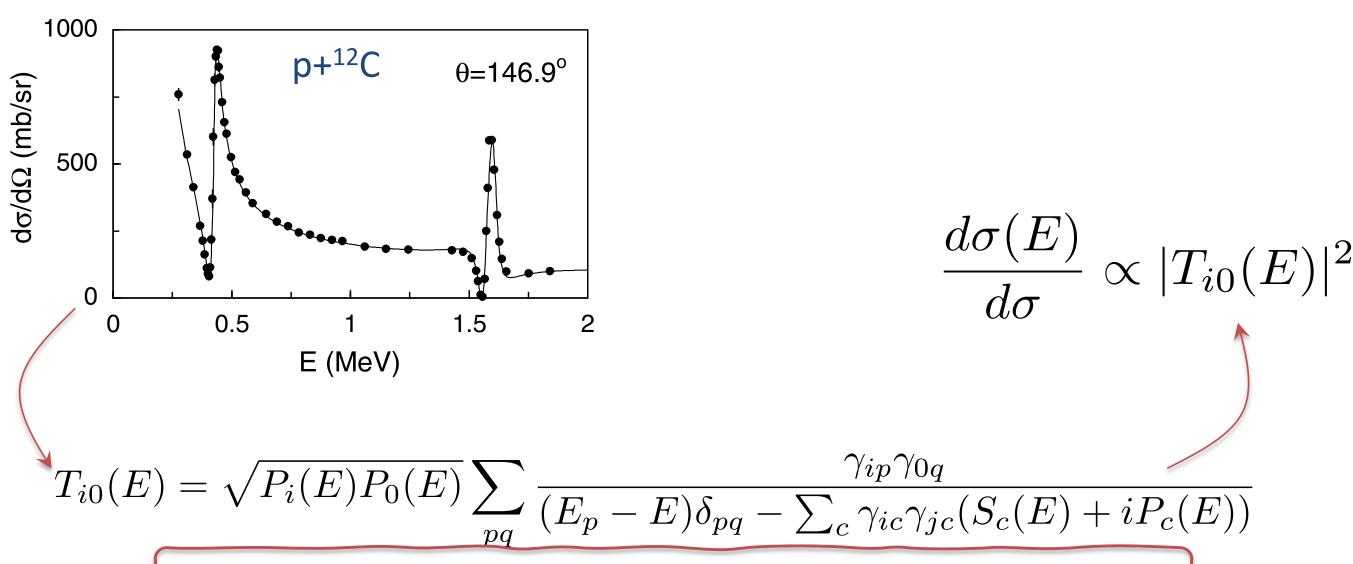
Part 5

Teaser: connections with R-Matrix and Hauser-Feshbach

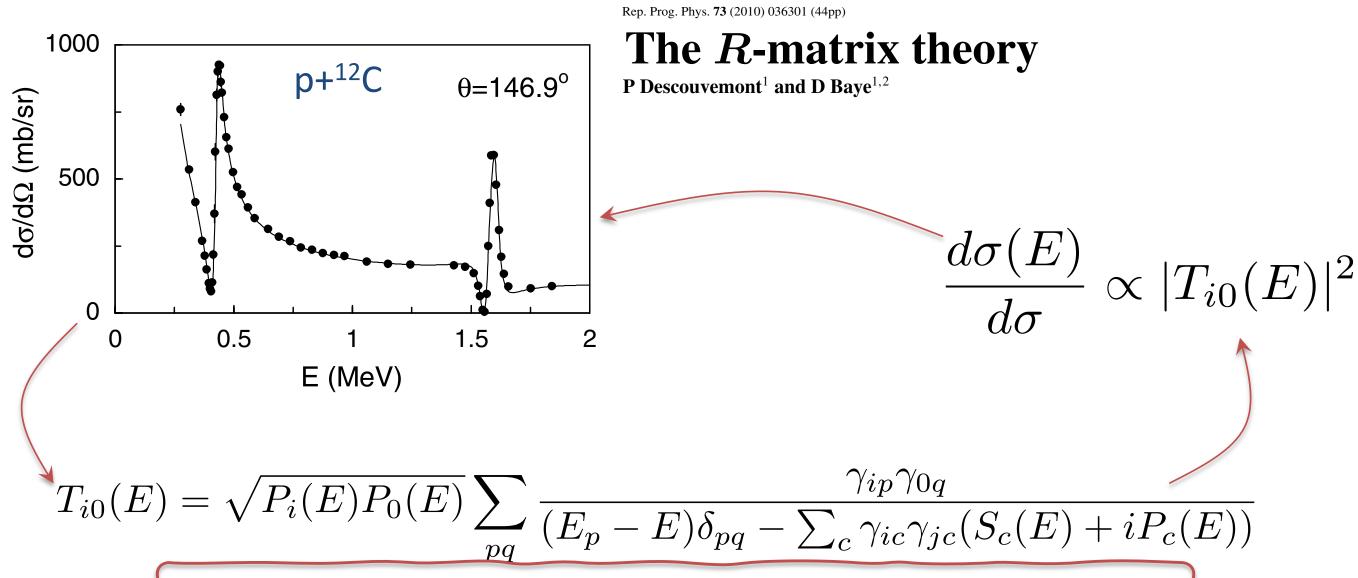




T-matrix partial widths and energy parameters fitted from data



T-matrix partial widths and energy parameters fitted from data



T-matrix partial widths and energy parameters fitted from data

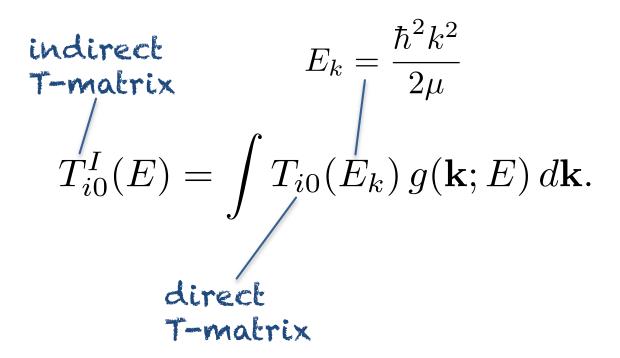
connection between direct and indirect R-matrix parameters example:

- direct: α scattering $(T_{i0}(E))$
- indirect: (6 Li,d). ($T'_{i0}(E)$)

connection between direct and indirect R-matrix parameters example: • direct: α scattering $(T_{i0}(E))$ • indirect: $(^{6}\text{Li,d})$. $(T'_{i0}(E))$

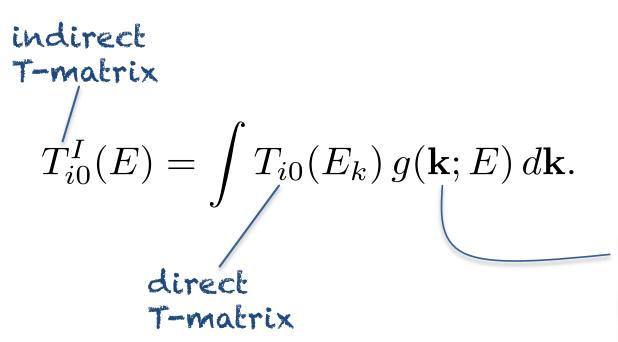
indirect T-matrix
$$T_{i0}^{I}(E) = \int T_{i0}(E_k) \, g(\mathbf{k};E) \, d\mathbf{k}.$$
 direct T-matrix

connection between direct and indirect R-matrix parameters example: • direct: α scattering $(T_{i0}(E))$ • indirect: $(^{6}\text{Li,d})$. $(T'_{i0}(E))$



connection between direct and indirect R-matrix parameters example:

- direct: α scattering $(T_{i0}(E))$
- indirect: (6 Li,d). ($T'_{i0}(E)$)



 $g(\mathbf{k};E) = \int \psi^{HM}(\mathbf{r}_{xA};E) F^*(\mathbf{r}_{xA},\mathbf{k}) d\mathbf{r}_{xA}$

9(K)

connection between direct and indirect R-matrix parameters example:
direct: α scattering
indirect: (⁶Li,d)

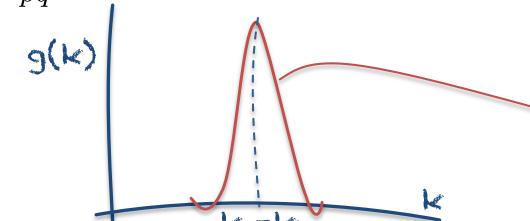
indirect T-matrix
$$T_{i0}^{I} = \int \sqrt{P_{i}(E_{k})P_{0}(E_{k})} \sum_{pq} \frac{\gamma_{ip}\gamma_{0q}}{(E_{p} - E_{k})\delta_{pq} - \sum_{c}\gamma_{ic}\gamma_{jc}(S_{c}(E_{k}) + iP_{c}(E_{k}))} g(\mathbf{k}) d\mathbf{k}.$$
 broadening factor
$$E_{k} = \frac{\hbar^{2}k^{2}}{2\mu}$$

$$g(\mathbf{k}) = \int \psi^{HM}(\mathbf{r}_{xA}) F^{*}(\mathbf{r}_{xA}, \mathbf{k}) d\mathbf{r}_{xA}$$

connection between direct and indirect R-matrix parameters example:
• direct: α scattering

- indirect: (6Li,d)

$$T_{i0}^{I} = \int \sqrt{P_i(E_k)P_0(E_k)} \sum_{pq} \frac{\gamma_{ip}\gamma_{0q}}{(E_p - E_k)\delta_{pq} - \sum_{c} \gamma_{ic}\gamma_{jc}(S_c(E_k) + iP_c(E_k))} g(\mathbf{k}) d\mathbf{k}.$$



$$g(\mathbf{k}) = \int \psi^{HM}(\mathbf{r}_{xA}) F^*(\mathbf{r}_{xA}, \mathbf{k}) d\mathbf{r}_{xA}$$

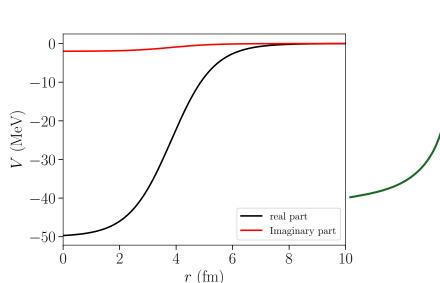
- If the broadening distribution is narrow, the T-matrix can be evaluated at the peak
- This is essentially the approximation made by Barker in *Aust. J. Phys.* **20** (341) 1967 for isolated resonances

$$T_{i0}^{I} = \int \sqrt{P_i(E_k)P_0(E_k)} \sum_{pq} \frac{\gamma_{ip}\gamma_{0q}}{(E_p - E_k)\delta_{pq} - \sum_{c} \gamma_{ic}\gamma_{jc}(S_c(E_k) + iP_c(E_k))} g(\mathbf{k}) d\mathbf{k}.$$

$$T_{i0}^{I} \approx \sqrt{P_i(E_k^{max})P_0(E_k^{max})} \sum_{pq} \frac{\gamma_{ip}\gamma_{0q}}{(E_p - E_k^{max})\delta_{pq} - \sum_c \gamma_{ic}\gamma_{jc}(S_c(E_k^{max}) + iP_c(E_k^{max}))} \int g(\mathbf{k}) d\mathbf{k}.$$

⁴⁰Ca OP calculated in a weak coupling, collective model approximation

$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r}) G(E - E_i, \mathbf{r}, \mathbf{r}') U_{i0}(\mathbf{r}')$$

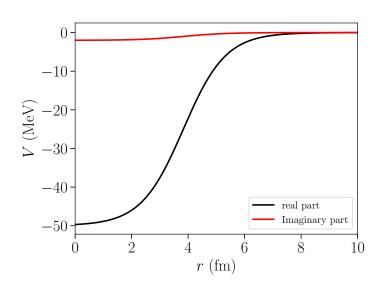


- the static potential is a simple Woods-Saxon
- a small imaginary part W is included to account for the lack of absorption of the model
- this is a consequence of the oversimplification of the spectrum
- The small imaginary part spoils dispersivity

From Rao, Reeves, and Satchler, NPA 207 (1973) 182

⁴⁰Ca OP calculated in a weak coupling, collective model approximation

$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r}) G(E - E_i, \mathbf{r}, \mathbf{r}') U_{i0}(\mathbf{r}')$$



- the spectrum of ⁴⁰Ca is approximated by 6 collective vibrational states
- the deformation parameters β_{λ} are constrained by the experimental inelastic scattering cross

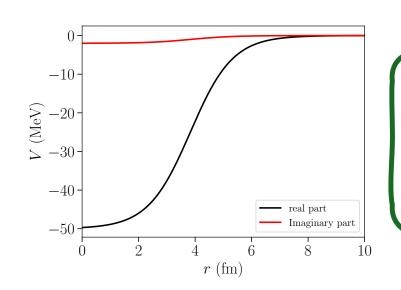
$$|\Phi(^{41}\text{Ca})\rangle_i \approx |\Phi(^{40}\text{Ca})\rangle_i \otimes |\chi(n)\rangle_i$$

$\hat{\lambda}_n^{\ \pi}$	• 1-	2+	2+	3-	4+	5-
E_n (MeV)	18.0	3.9	8.0	3.73	8.0	4.48
$\beta_{\lambda}(n)$	0.087	0.143	0.309	0.354	0.254	0.192
σ_{A} (mb)	17	43	176	164	78	37

From Rao, Reeves, and Satchler, NPA 207 (1973) 182

⁴⁰Ca OP calculated in a weak coupling, collective model approximation

$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r})G(E - E_i, \mathbf{r}, \mathbf{r}')U_{i0}(\mathbf{r}')$$



- the couplings are surface peaked
- by construction, the experimental contribution of each vibrational state to the absorption cross section is

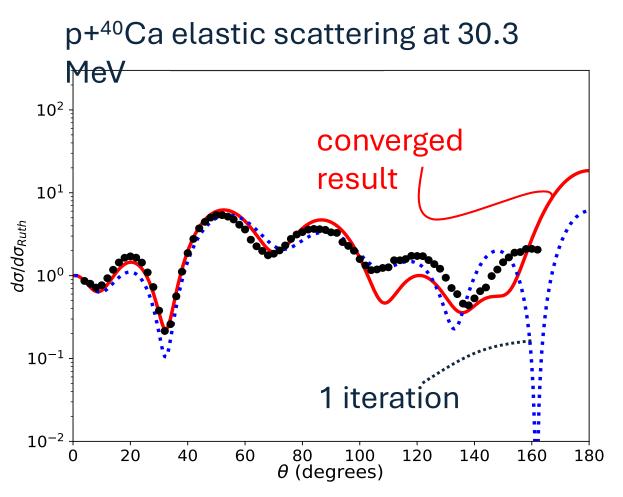
	12.5-		
\	10.0-		
	$ \begin{array}{c} \text{(Me)} \\ \text{(Me)} \\ \text{(Mo)} \end{array} $ 5.0-		
	≤ 5.0-		
	2.5-		
	0.0		10
	($ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10

$\hat{\lambda}_n^{\pi}$	• 1-	2+	2+	3 -	4+	5-
E_n (MeV)	18.0	3.9	8.0	3.73	8.0	4.48
$\beta_{\lambda}(n)$	0.087	0.143	0.309	0.354	0.254	0.192
$\sigma_{\mathbf{A}}$ (mb)	17	43	176	164	78	37

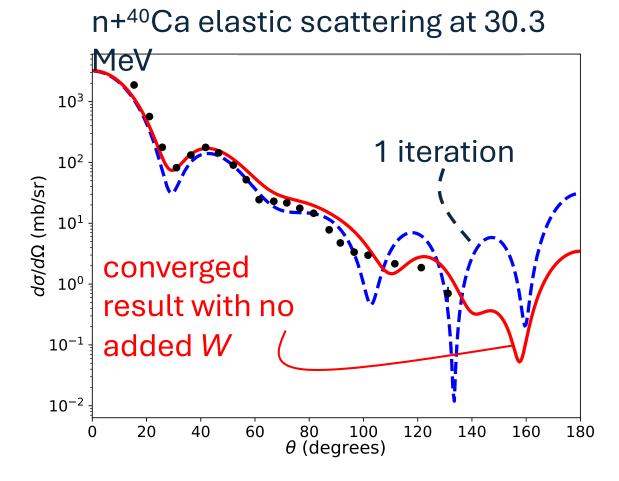
$$U_{0i}(\mathbf{r}) \sim \beta_i \frac{dU(r)}{dr} Y^{\lambda_i}(\hat{r})$$

From Rao, Reeves, and Satchler, NPA 207 (1973) 182

We benchmark our results against Rao et al., and look at the effect of iterations



- 1 iteration calculation agrees with Rao et al. (not shown)
- Converged result different at large angles



- Good result for neutrons just by removing Coulomb
- Added non-dispersive imaginary part W not needed for the converged result

ab initio methods applied to reactions

PHYSICAL REVIEW LYTTERS **129**, 042503 (2022)

Ab Initio Prediction of the ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$ Big Bang Radiative Capture

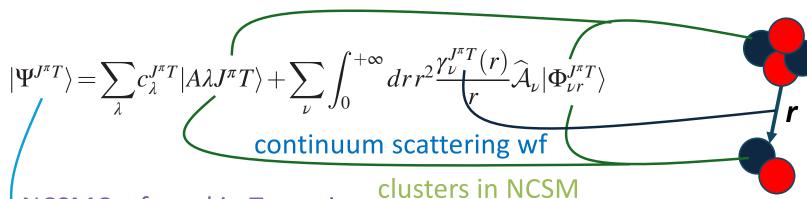
C. Hebborn, 1.2,* G. Hupin, K. Kravvaris, S. Quaglioni, P. Navrátil, 4 and P. Gysbers, 1 Facility for Rare Isotope Beams, East Lansing, Michigan 48824, USA

2 Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

3 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

4 TRIUMF, 4004 Wesbrook Mall, Vancouver British Columbia V6T 2A3, Canada

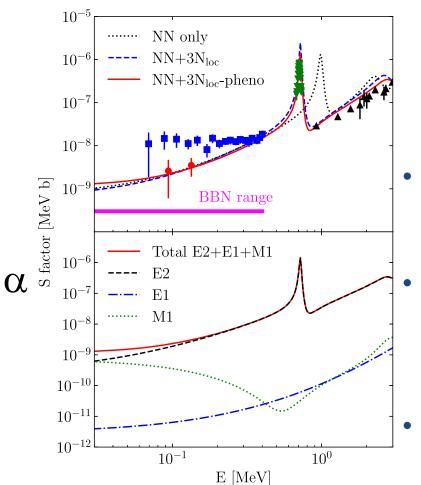
5 Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada



NCSMC wf used in T-matrix

$$\frac{1}{2\pi\epsilon_{0}\hbar v} \sum_{\kappa\lambda} \frac{\frac{\kappa_{\gamma}^{2\kappa+1}}{[(2\lambda+1)!!]^{2}} \frac{\lambda+1}{\lambda}}{[(2\lambda+1)!!]^{2}} \frac{1}{\lambda}$$
electromagnetic operator
$$\times \sum_{\frac{\alpha}{2}} \frac{\hat{J}_{f}^{2}}{\frac{\alpha}{2}} \frac{|\langle \Psi^{J_{f}^{\pi_{f}}T_{f}}||\mathcal{M}^{\kappa\lambda}||\Psi^{J_{i}^{\pi_{i}}T_{i}}_{l_{i}s_{i}}\rangle|^{2}}{|\Psi^{J_{i}^{\pi_{i}}T_{i}}|^{2}}$$

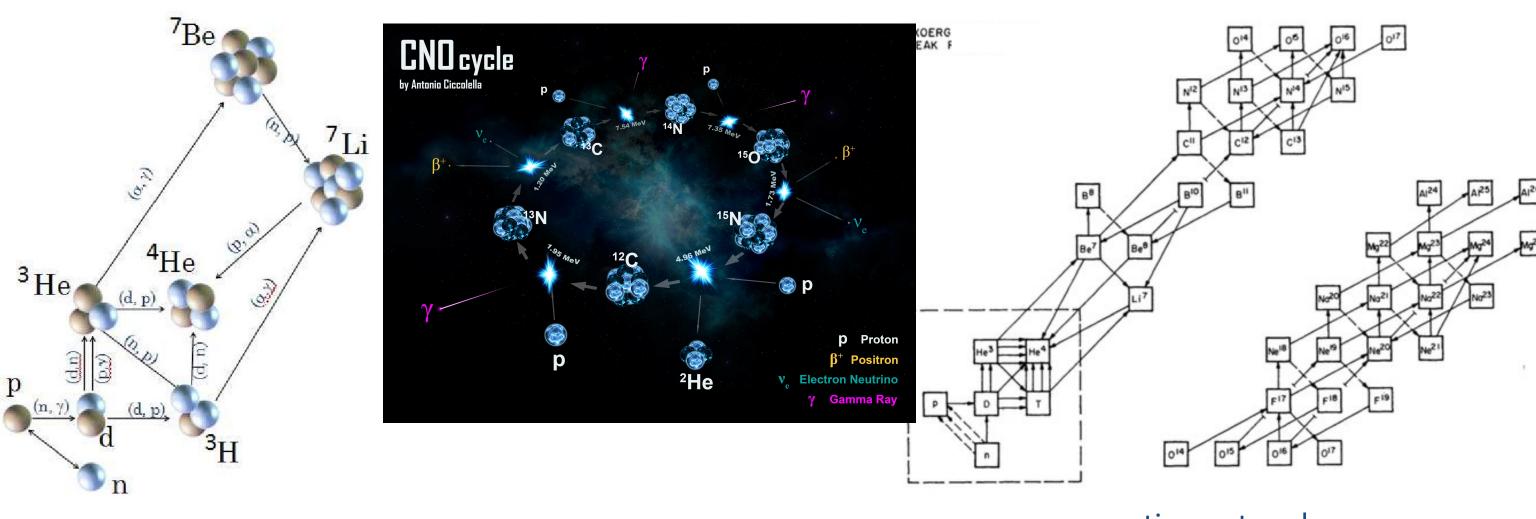
T-matrix



- solution of 6-body
 Hamiltonian with chiral
 NN interaction
- No Core Shell Model
 with Continuum
 (NCSMC) combines
 NCSM with scattering wf
 only possible for very
- only possible for very light nuclei

Nuclear reactions of astrophysical interest

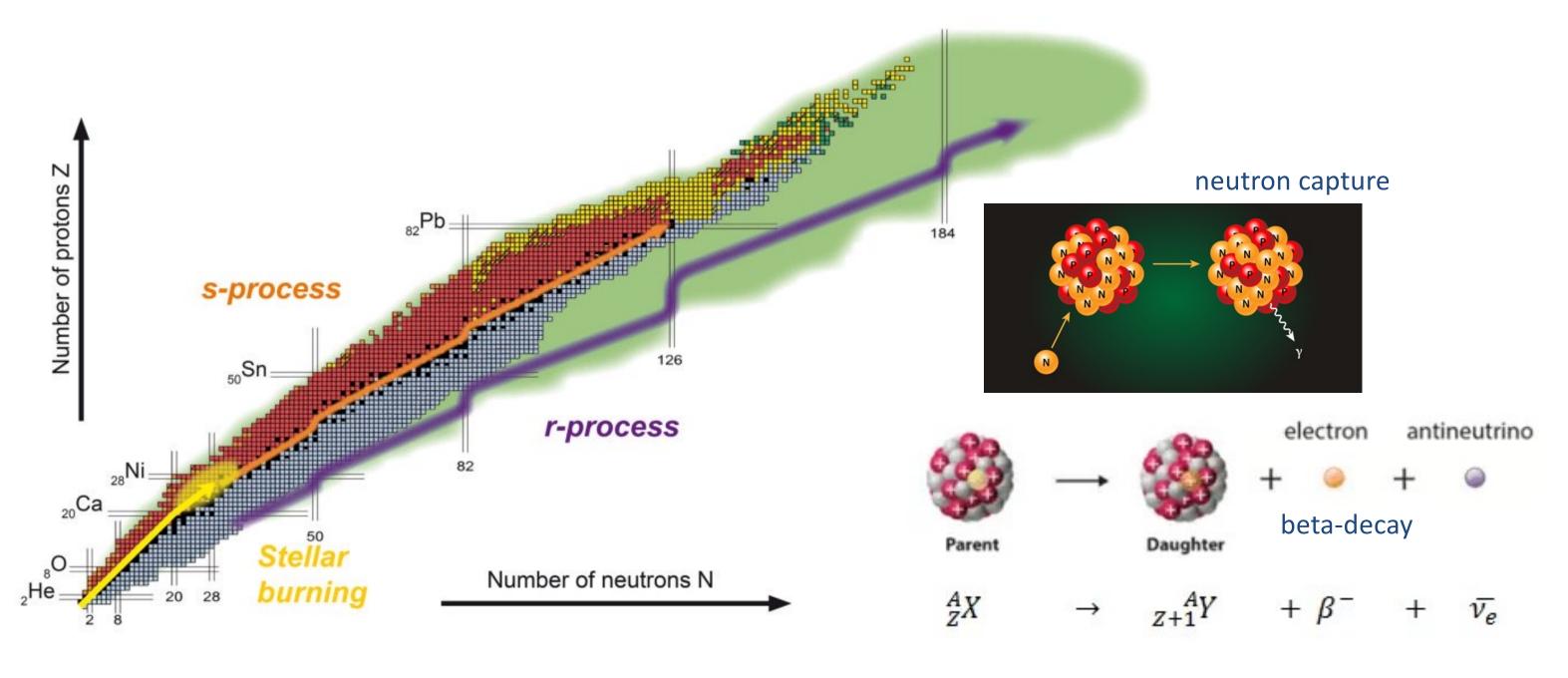
(light elements)



Big Bang nucleosynthesis

reaction networks

Nuclear reactions of astrophysical interest (heavy elements)

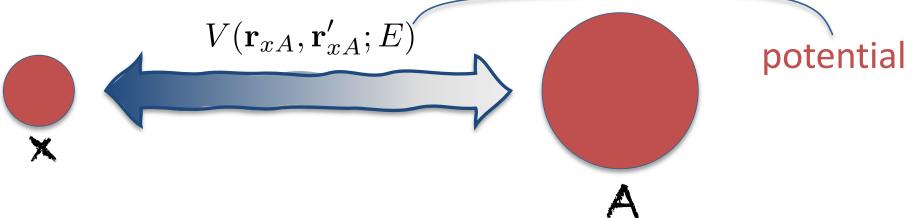


Both elastic and absorption cross sections can be calculated from the OP_{a}

$$(E-T-V(\mathbf{r},\mathbf{r}';E))\,\phi=0$$
 \Longrightarrow elastic scattering from phase shifts

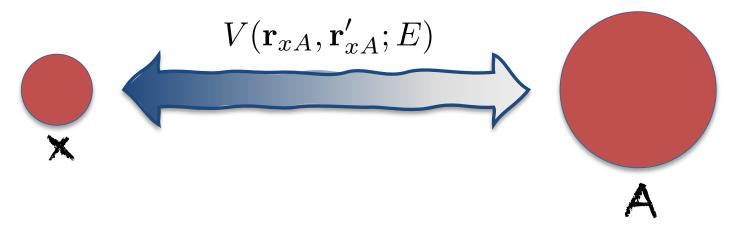
$$\sigma_{abs} \sim \langle \phi | Im(\textbf{Sizi}) | \phi \rangle \implies \text{absorption from imaginary part of polarization potential}$$

2-body scattering in a nutshell



2-body scattering in a nutshell

elastic scattering between 2 nuclei x and A

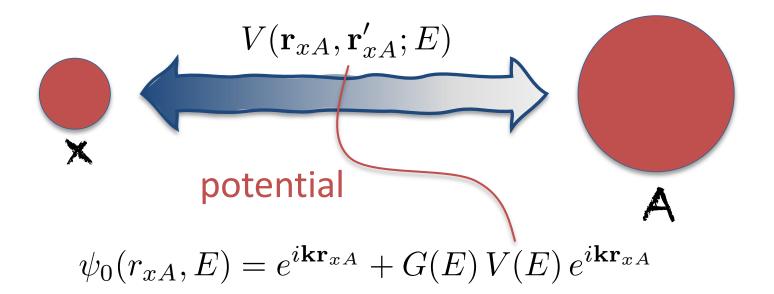


$$\psi_0(r_{xA}, E) = e^{i\mathbf{k}\mathbf{r}_{xA}} + G(E) V(E) e^{i\mathbf{k}\mathbf{r}_{xA}}$$

Lippmann-Schwinger equation

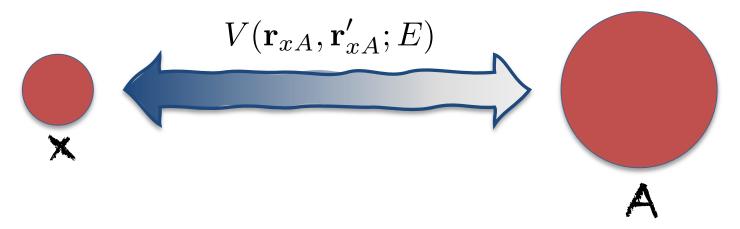
2-body scattering in a nutshell

elastic scattering between 2 nuclei x and A



2-body scattering in a nutshell

elastic scattering between 2 nuclei x and A

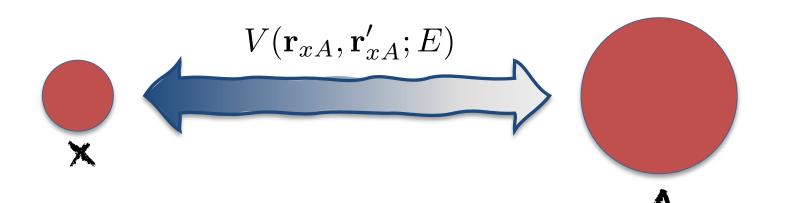


$$\psi_0(r_{xA},E) = e^{i\mathbf{k}\mathbf{r}_{xA}} + G(E)\,V(E)\,e^{i\mathbf{k}\mathbf{r}_{xA}}$$
 Green's function

$$G(E) = (E - T_x - V(E))^{-1}$$

2-body scattering in a nutshell

elastic scattering between 2 nuclei x and A



 $\psi_0(r_{xA},E) = e^{i\mathbf{k}\mathbf{r}_{xA}} + G(E)\,V(E)\,e^{i\mathbf{k}\mathbf{r}_{xA}}$ Green's function

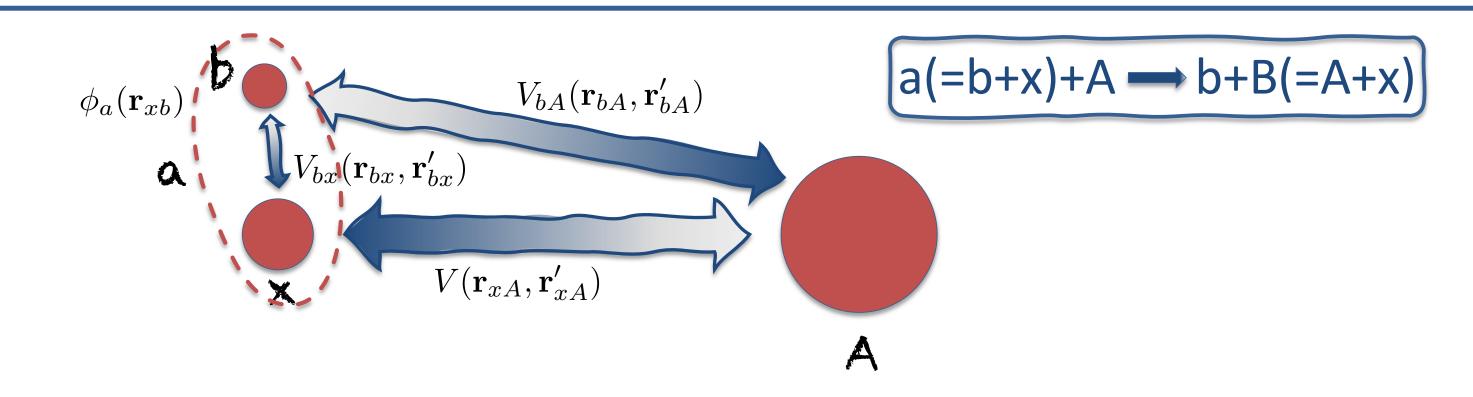
$$G(E) = (E - T_x - V(E))^{-1}$$

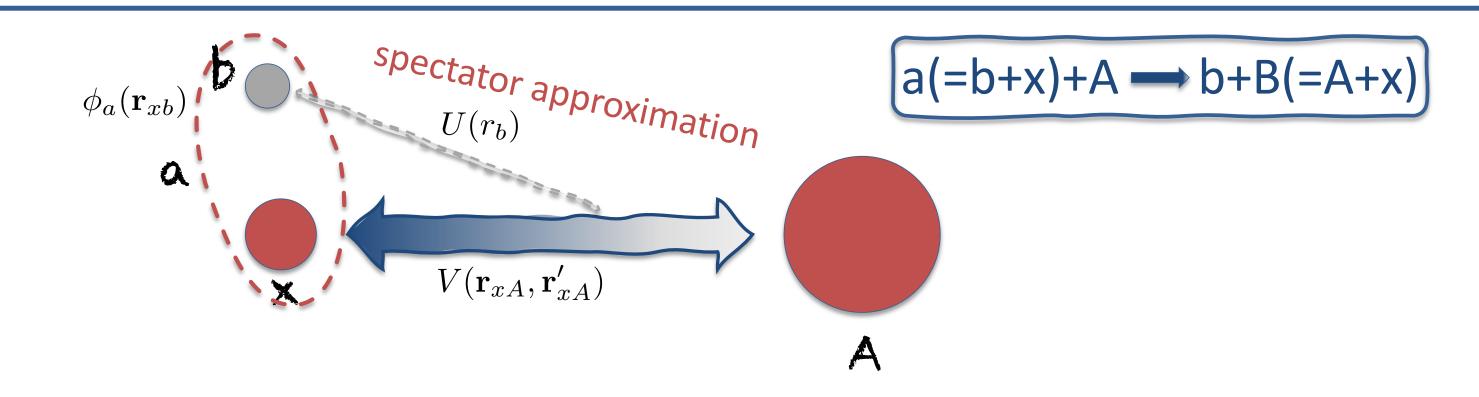
reaction cross section

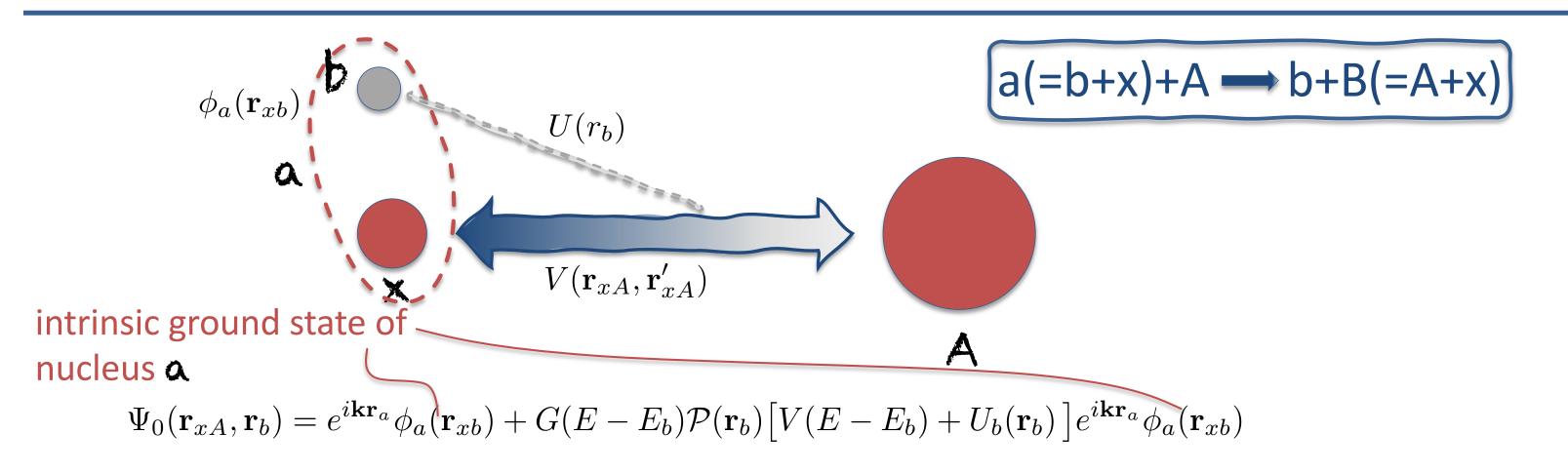
$$\sigma_R = \frac{2\mu}{\hbar k_x} \langle \psi_0 | \text{Im} V | \psi_0 \rangle$$

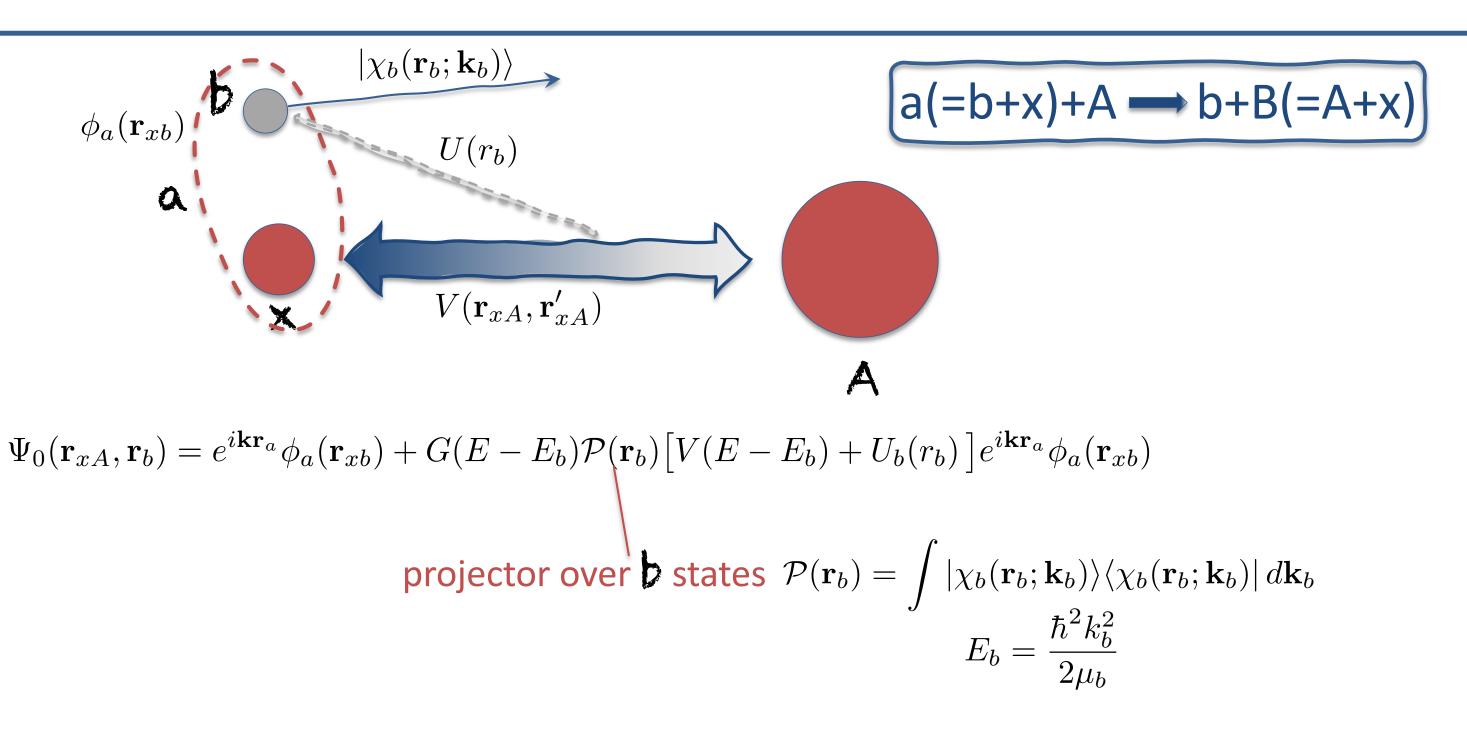
Part 2

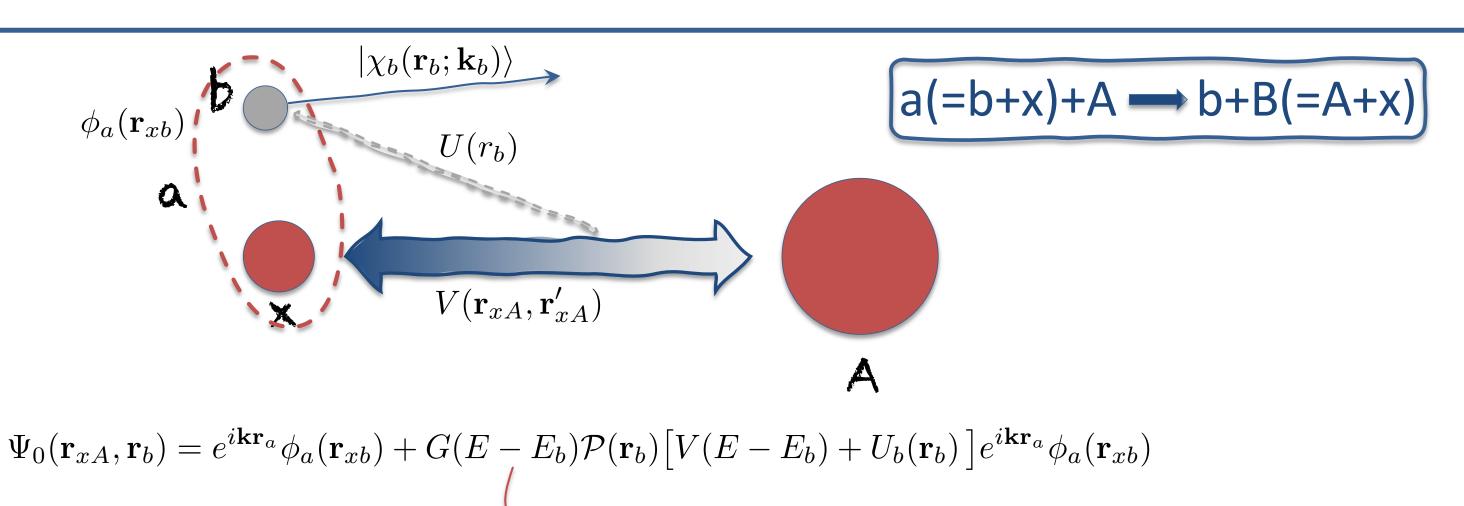
Expanding the scope to 3-body scattering: GFT



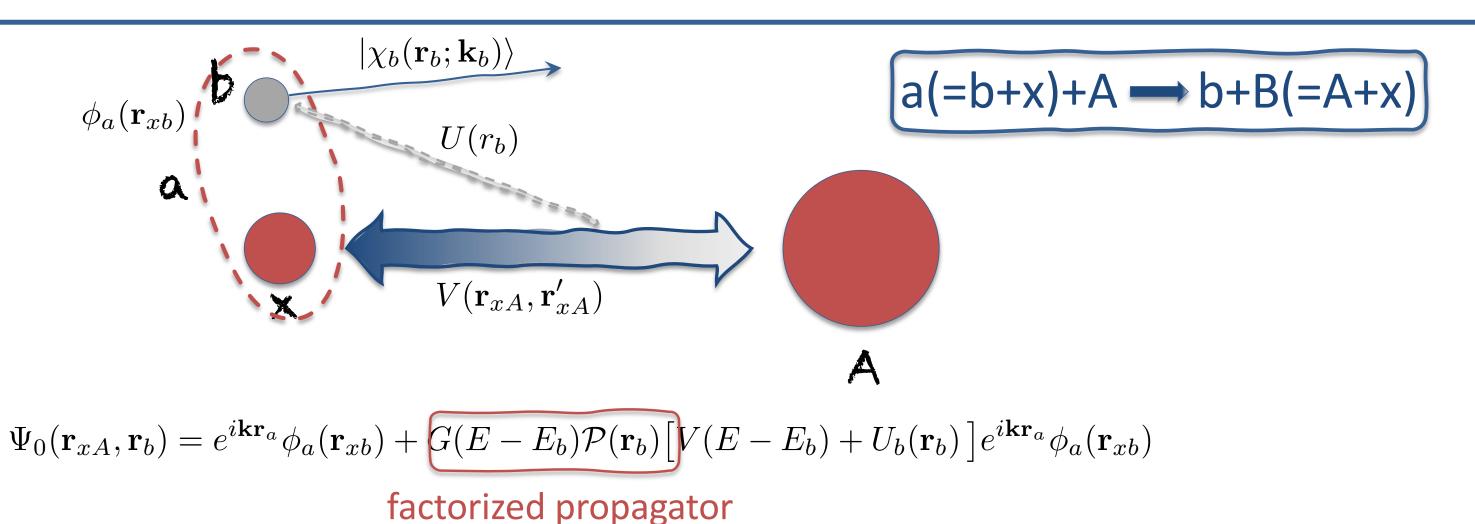


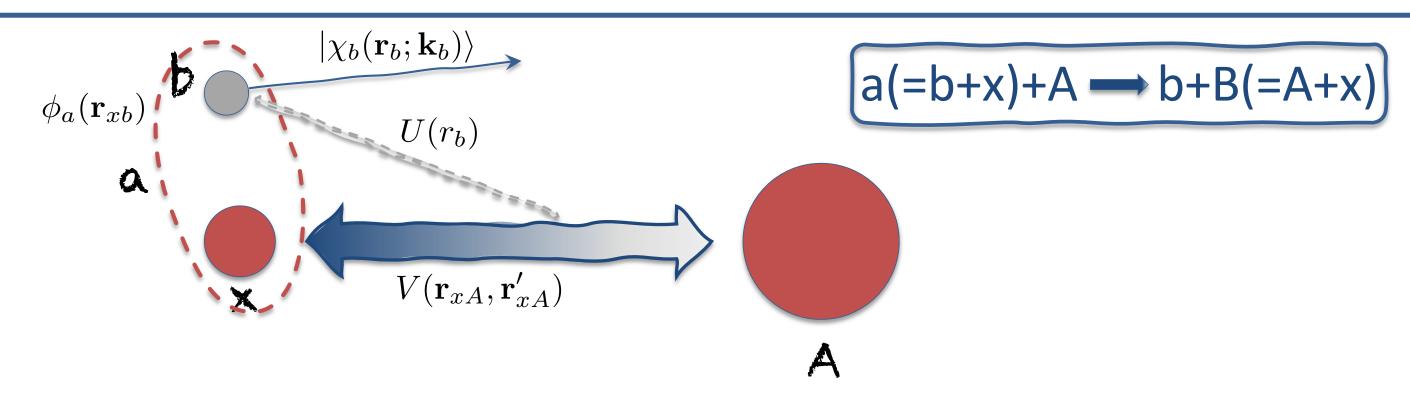






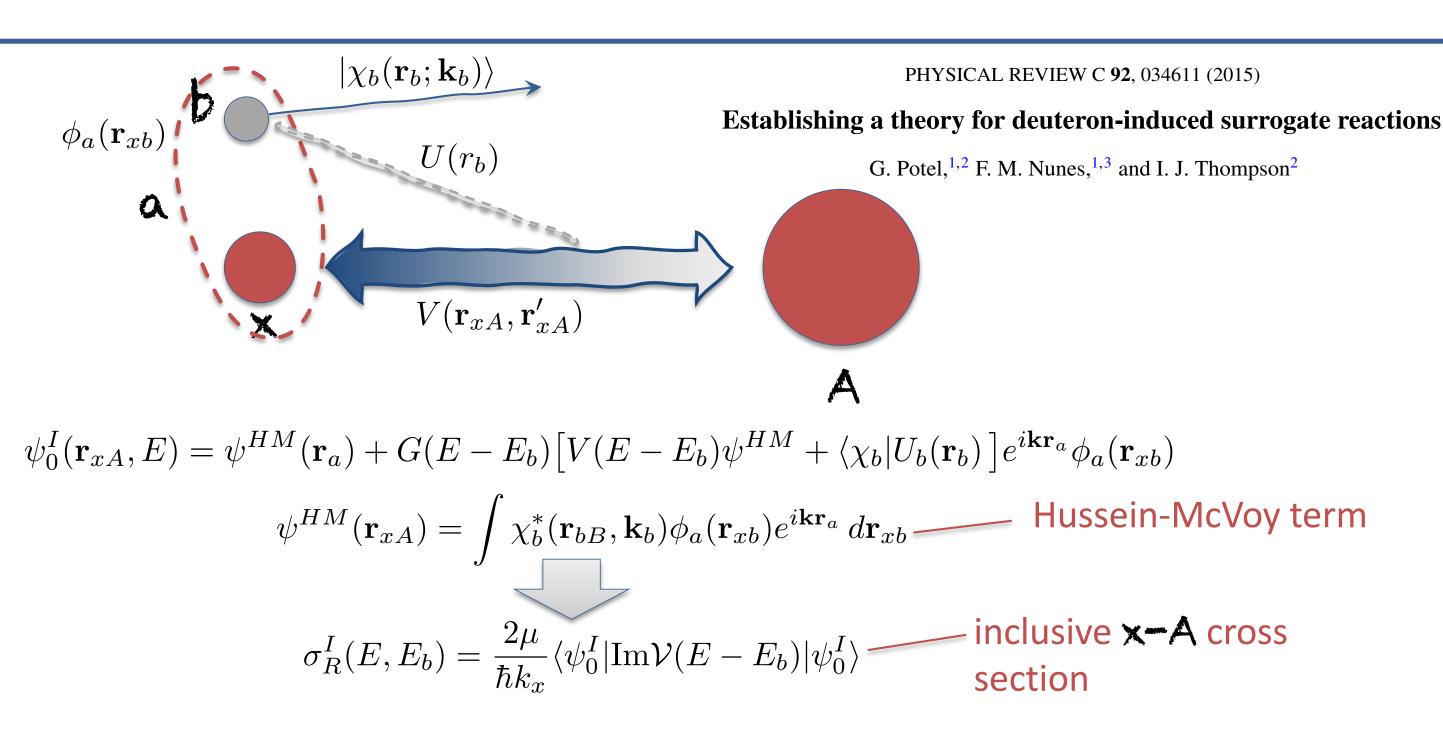
Green's function $G(E) = (E - T_x - V(E))^{-1}$ Same as for x-A scattering!





$$\langle \chi_b(\mathbf{r}_b; \mathbf{k}_b) | \Psi_0(\mathbf{r}_{xA}, \mathbf{r}_b) = \langle \chi_b(\mathbf{r}_b; \mathbf{k}_b) | \left(e^{i\mathbf{k}\mathbf{r}_a} \phi_a(\mathbf{r}_{xb}) + G(E - E_b) \mathcal{P}(\mathbf{r}_b) \left[V(E - E_b) + U_b(\mathbf{r}_b) \right] e^{i\mathbf{k}\mathbf{r}_a} \phi_a(\mathbf{r}_{xb}) \right)$$

project over b state to get x-A wavefunction



$$\psi_0(r_{xA}, \xi, E) = e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi) + \mathbf{G}(E)\mathbf{V}(E)e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)$$

$$\psi_0(r_{xA}, \xi, E) = e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi) + \mathbf{G}(E)\,\mathbf{V}(E)\,e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)$$
 project on observed scattered direction

$$\langle e^{i\mathbf{k}_f \mathbf{r}_{xA}} \phi_0(\xi) | \psi_0(r_{xA}, \xi, E) \rangle = \langle e^{i\mathbf{k}_f \mathbf{r}_{xA}} \phi_0(\xi) | \mathbf{G}(E) \mathbf{V}(E) | e^{i\mathbf{k}\mathbf{r}_{xA}} \phi_0(\xi) \rangle$$

$$\psi_0(r_{xA},\xi,E) = e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi) + \mathbf{G}(E)\mathbf{V}(E)\,e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)$$
 optical potential
$$\langle e^{i\mathbf{k}_f\mathbf{r}_{xA}}\phi_0(\xi)|\psi_0(r_{xA},\xi,E)\rangle = \langle e^{i\mathbf{k}_f\mathbf{r}_{xA}}\phi_0(\xi)|G(E)\mathcal{V}(E)|e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)\rangle$$

$$\psi_0(r_{xA},\xi,E)=e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)+\mathbf{G}(E)\,\mathbf{V}(E)\,e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)$$

$$\langle e^{i\mathbf{k}_f\mathbf{r}_{xA}}\phi_0(\xi)|\psi_0(r_{xA},\xi,E)\rangle=\langle e^{i\mathbf{k}_f\mathbf{r}_{xA}}\phi_0(\xi)|G(E)\,\mathcal{V}(E)|e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)\rangle$$
 classification according to asymptotic behavior

$$\lim_{r_{xA}\to\infty} = 0 \to \text{structure} =$$

$$\psi_0(r_{xA},\xi,E) = e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi) + \mathbf{G}(E)\,\mathbf{V}(E)\,e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)$$

$$\langle e^{i\mathbf{k}_f\mathbf{r}_{xA}}\phi_0(\xi)|\psi_0(r_{xA},\xi,E)\rangle = \langle e^{i\mathbf{k}_f\mathbf{r}_{xA}}\phi_0(\xi)|G(E)\,\mathcal{V}(E)|e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)\rangle$$
 classification according to asymptotic behavior
$$\lim_{r_{xA}\to\infty} = 0 \to \text{structure}$$

$$= 0 \to \text{structure}$$

$$= 0 \to \text{structure}$$

 $r_{xA} \rightarrow \infty$

$$\psi_0(r_{xA}, \xi, E) = e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi) + \mathbf{G}(E)\mathbf{V}(E)e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)$$

$$\langle e^{i\mathbf{k}_f \mathbf{r}_{xA}} \phi_0(\xi) | \psi_0(r_{xA}, \xi, E) \rangle = \langle e^{i\mathbf{k}_f \mathbf{r}_{xA}} \phi_0(\xi) | G(E) \mathcal{V}(E) | e^{i\mathbf{k}\mathbf{r}_{xA}} \phi_0(\xi) \rangle$$

classification according to asymptotic behavior

$$\lim_{r_{xA}\to\infty} = 0 \to \text{structure}$$

$$\lim_{r_{xA}\to\infty} = \text{oscillatory} \to \text{reaction}$$

some possible implementations of structure-reactions consistency

- · ab-initio,
- · Enfort,
- · QRPA+G-matrix,
- •

$$\psi_0(r_{xA}, \xi, E) = e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi) + \mathbf{G}(E)\mathbf{V}(E)e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)$$

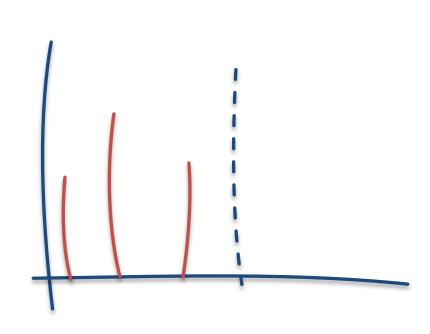
$$\langle e^{i\mathbf{k}_f\mathbf{r}_{xA}}\phi_0(\xi)|\psi_0(r_{xA},\xi,E)\rangle = \langle e^{i\mathbf{k}_f\mathbf{r}_{xA}}\phi_0(\xi)|G(E)\mathcal{V}(E)|e^{i\mathbf{k}\mathbf{r}_{xA}}\phi_0(\xi)\rangle$$

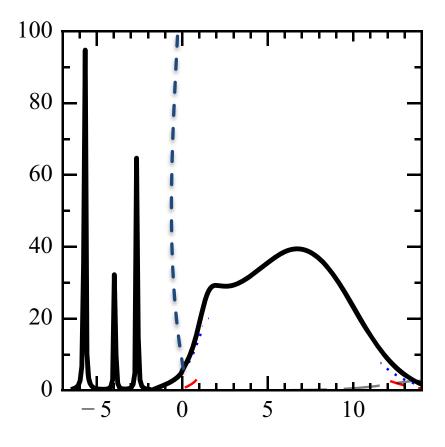
A proposed scheme to enforce structure-reactions consistency

$$\psi_i(r_{xA},\xi) \to \mathcal{V}(E) \to G(E) = (E - T - \mathcal{V}(E))^{-1}$$

$$|\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2$$

$$\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2 \qquad \sigma_R^{GFT}(E) \sim \langle G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} | \operatorname{Im} \mathcal{V}(E) | G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} \rangle$$

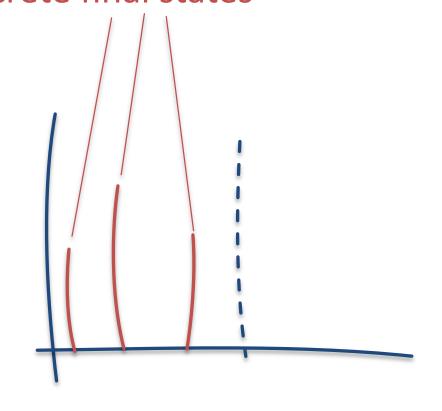


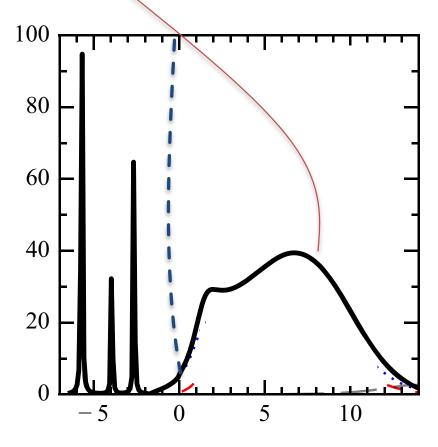


 $\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0
angle|^2$ discrete final states

 $\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2 \qquad \sigma_R^{GFT}(E) \sim \langle G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} | \operatorname{Im} \mathcal{V}(E) | G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} \rangle$

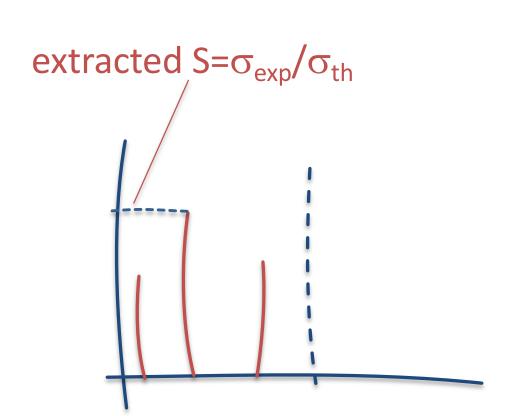
continuous function of E



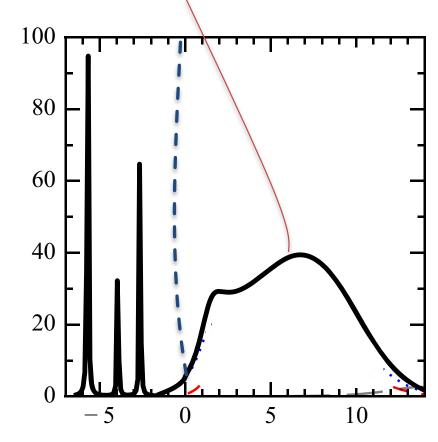


$$\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2$$

$$\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2 \qquad \sigma_R^{GFT}(E) \sim \langle G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} | \operatorname{Im} \mathcal{V}(E) | G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} \rangle$$

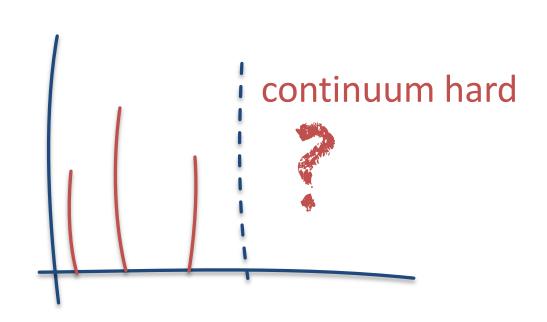


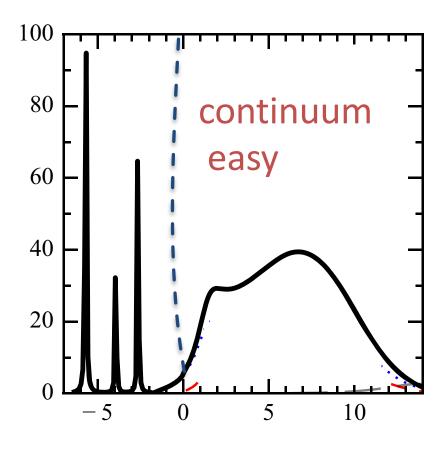
consistent normalization



$$\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2$$

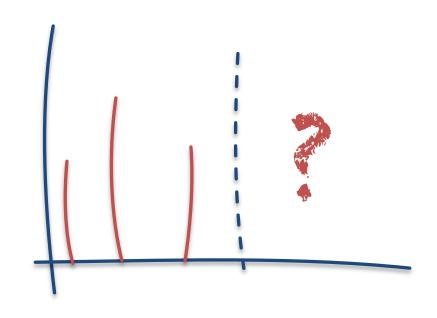
$$\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2 \qquad \sigma_R^{GFT}(E) \sim \langle G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} | \operatorname{Im} \mathcal{V}(E) | G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} \rangle$$





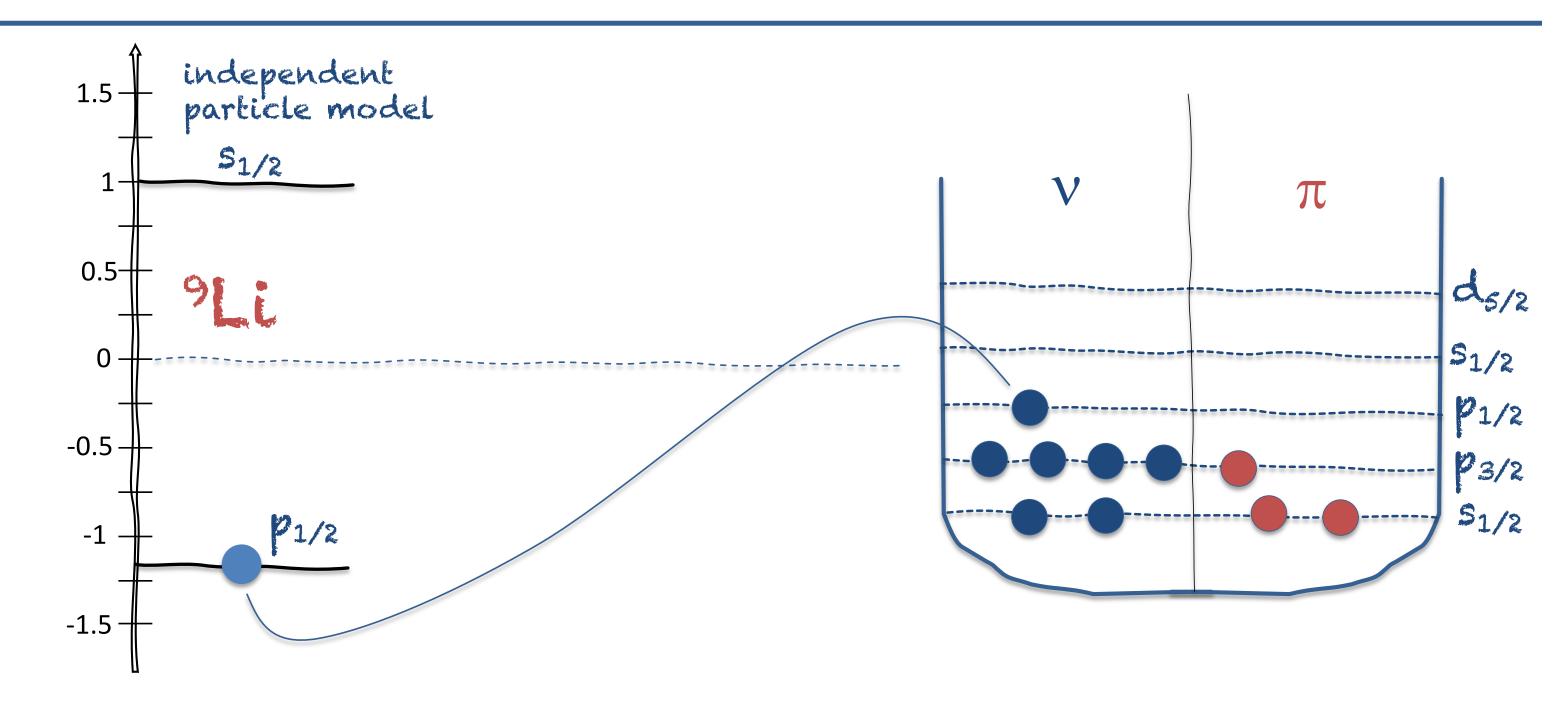
$$\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2$$

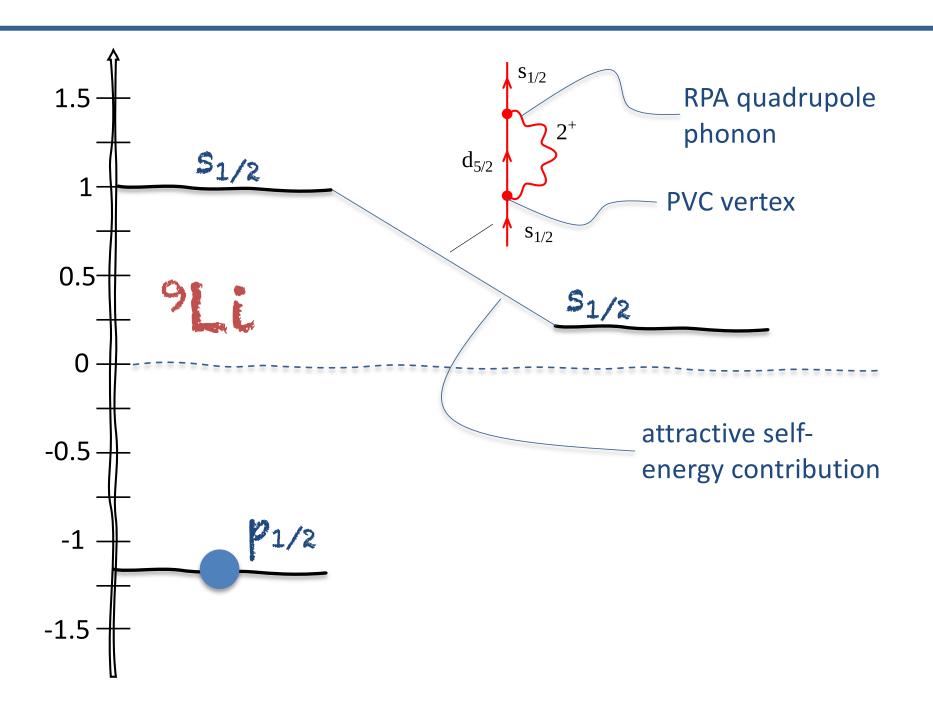
$$\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2 \qquad \sigma_R^{GFT}(E) \sim \langle G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} | \operatorname{Im} \mathcal{V}(E) | G(E) \left(\mathcal{V}(E) + U_b \right) \psi^{HM} \rangle$$

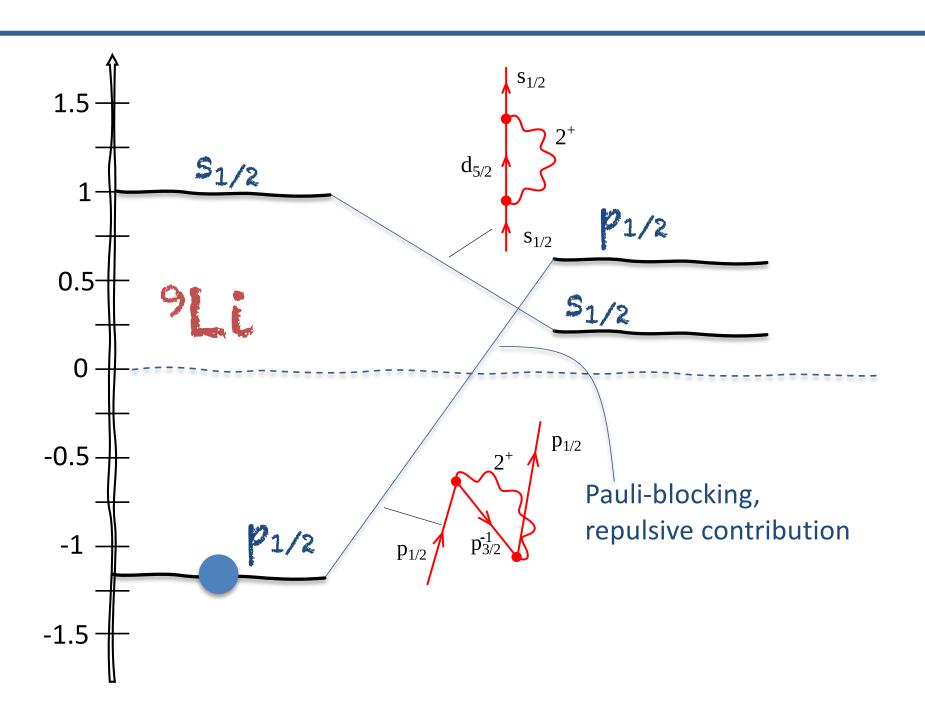


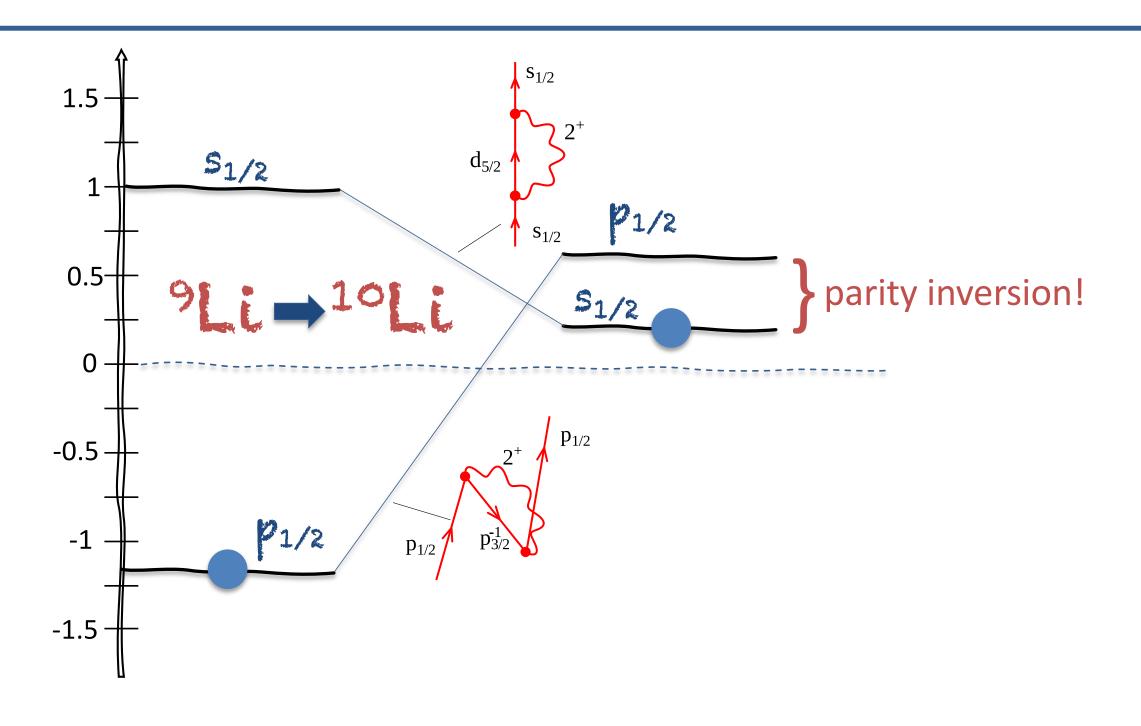
$$G(E) = (E - T - \mathcal{V}(E))^{-1}$$

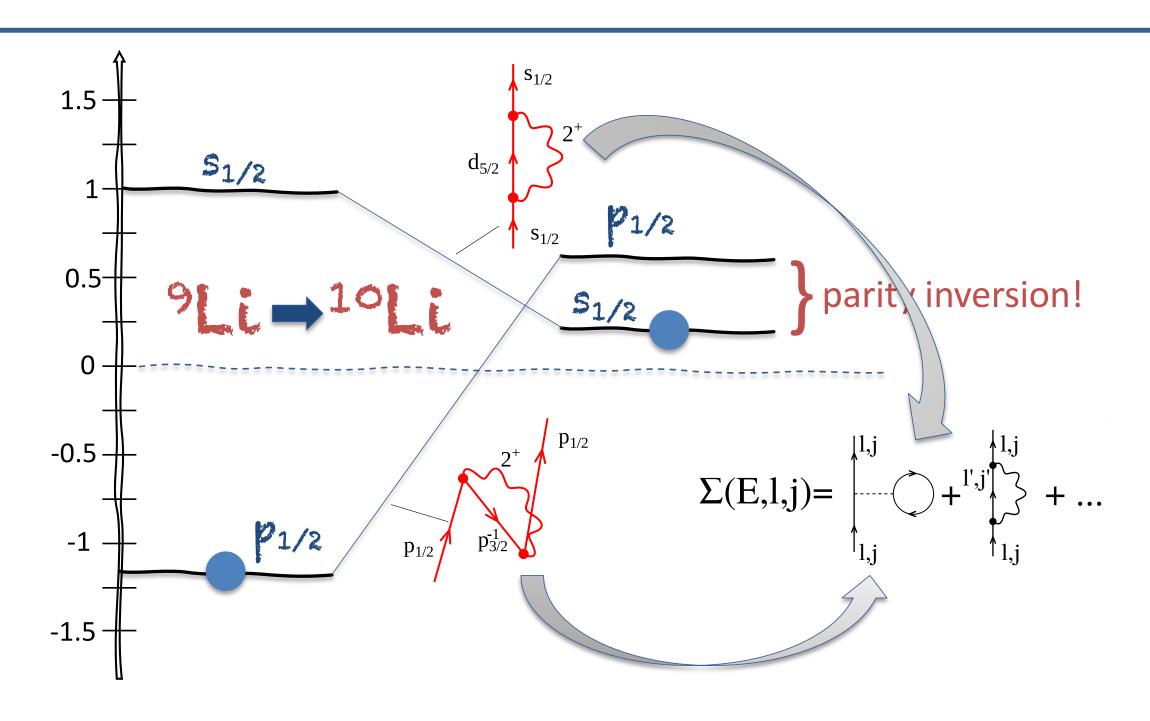
- Consistency between structure and reactions
- Same ingredients as **x-A** scattering
- Need for tools for inverting Hamiltonians with non-local potentials











step 1: ²⁵Mg shell-model calculation excitation energy E_i angular momentum parity -0.288311 0.318332 spectroscopic factor S_i ~600 states from E_i =0 to E_i =14.6 MeV Shell model calculations by K. Kravvaris -1 -0.159821with PSDPF interaction M Bouhelal, et al., Nucl. Phys. A 864 (2011)

excitation energy E_i

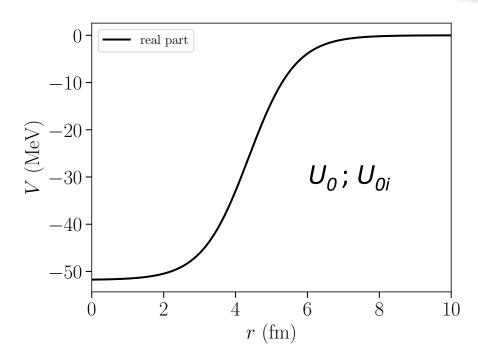
step 2: Static potential and couplings

angular momentum

parity

$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r}) G(E - E_i, \mathbf{r}, \mathbf{r}') U_{i0}(\mathbf{r}')$$

spectroscopic factor S_i



- static potential U_0 : real, local Woods-Saxon adjusted to reproduce binding energy of ^{25}Mg
- couplings U_{0i} : same Woods-Saxon, but adjusted to each E_i and multiplied by spectroscopic factor S_i

excitation energy E_i

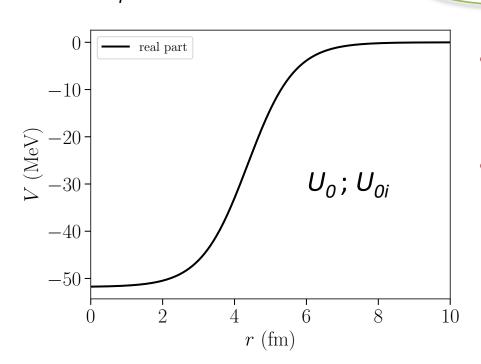
step 2: Static potential and couplings

angular momentum

parity

$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r}) G(E - E_i, \mathbf{r}, \mathbf{r}') U_{i0}(\mathbf{r}')$$

spectroscopic factor S_i



- static potential U_0 : real, local Woods-Saxon adjusted to reproduce binding energy of ^{25}Mg
- couplings U_{0i} : same Woods-Saxon, but adjusted to each E_i and multiplied by spot troscopic factor S_i

can be done better!

excitation energy E_i

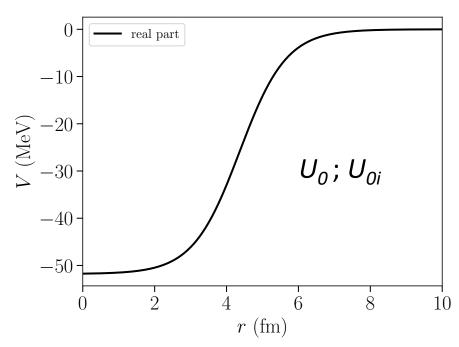
step 3: Iterative procedure

angular momentum

		1		
0	0	2	1	0.584066
0.701	0	0	1	-0.716831
1.169	0	2	1	0.488705
2.033	0	2	1	-0.288311
2.529	0	0	1	0.318332
2.701	0	2	1	0.542416
3.859	0	2	1	0.0495903
3.926	0	1	-1	-0.0298132
4.118	0	1	-1	-0.584623
4.226	0	3	-1	-0.651056
4.46	0	2	1	0.100777
4.816	0	2	1	0.0975601
4.945	0	1	-1	0.516883
5.065	0	1	-1	-0.0511968
5.416	0	0	1	-0.283037
5.638	0	3	-1	-0.219064
5.785	0	2	1	-0.0103979
5.792	0	2	1	0.132477
5.935	0	3	-1	0.069005
5.936	0	2	1	0.094658
6.033	0	1	-1	0.0353684
6.12	0	1	-1	-0.159821
6.243	0	2	1	-0.174362
6.35	0	3	-1	0.122727
6.385	0	0	1	0.182001
6.417	0	2	1	0.115995
6.609	0	2	1	0.100457
6.739	0	3	-1	0.157325
6.771	0	1	-1	0.419452
6 - 801	0	3	– 1	0.160889

parity

spectroscopic factor S_i



$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r})G(E - E_i, \mathbf{r}, \mathbf{r}')U_{i0}(\mathbf{r}')$$

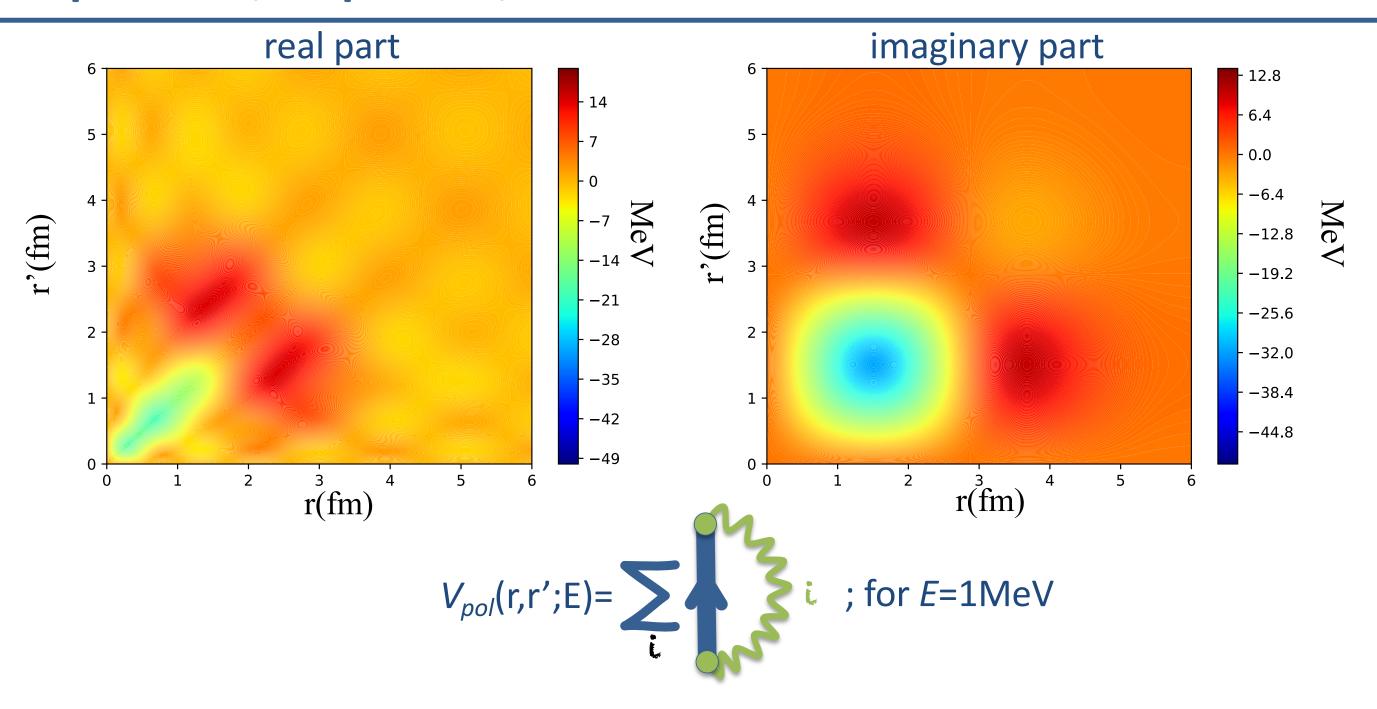
$$G(\mathbf{r}, \mathbf{r}', E) = (E - T - V(\mathbf{r}, \mathbf{r}'; E))^{-1}$$

- Iterate until convergence is achieved
- Consistency between potential and Green's function is achieved, as expressed by Dyson's equation:

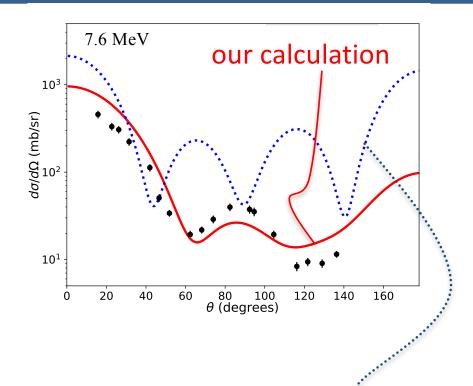
$$G(\mathbf{r}, \mathbf{r}'; E) = G_0(\mathbf{r}, \mathbf{r}'; E) + G_0(\mathbf{r}, \mathbf{r}'; E)V(\mathbf{r}, \mathbf{r}'; E)G(\mathbf{r}, \mathbf{r}'; E)$$
$$G_0(\mathbf{r}, \mathbf{r}'; E) = (E - T - U_0(r))^{-1}$$

As a bonus, we obtain the Green's function

The dynamical polarization potential is complex, energy-dependent, dispersive, and non-local

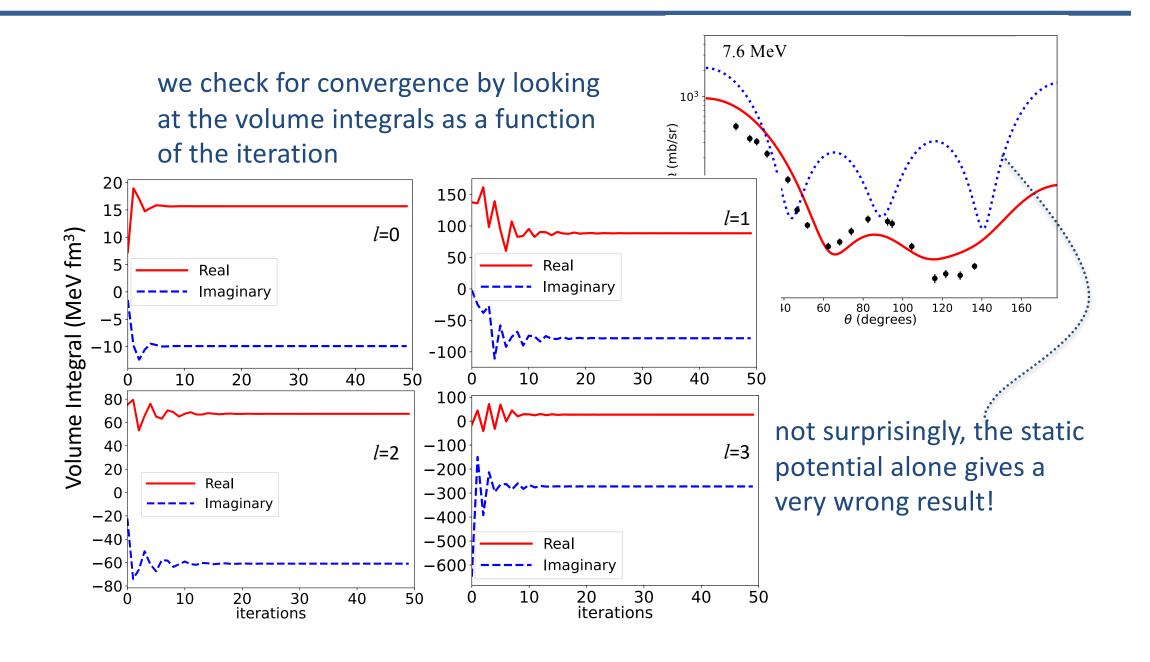


Our ²⁴Mg calculation compares well with experiment

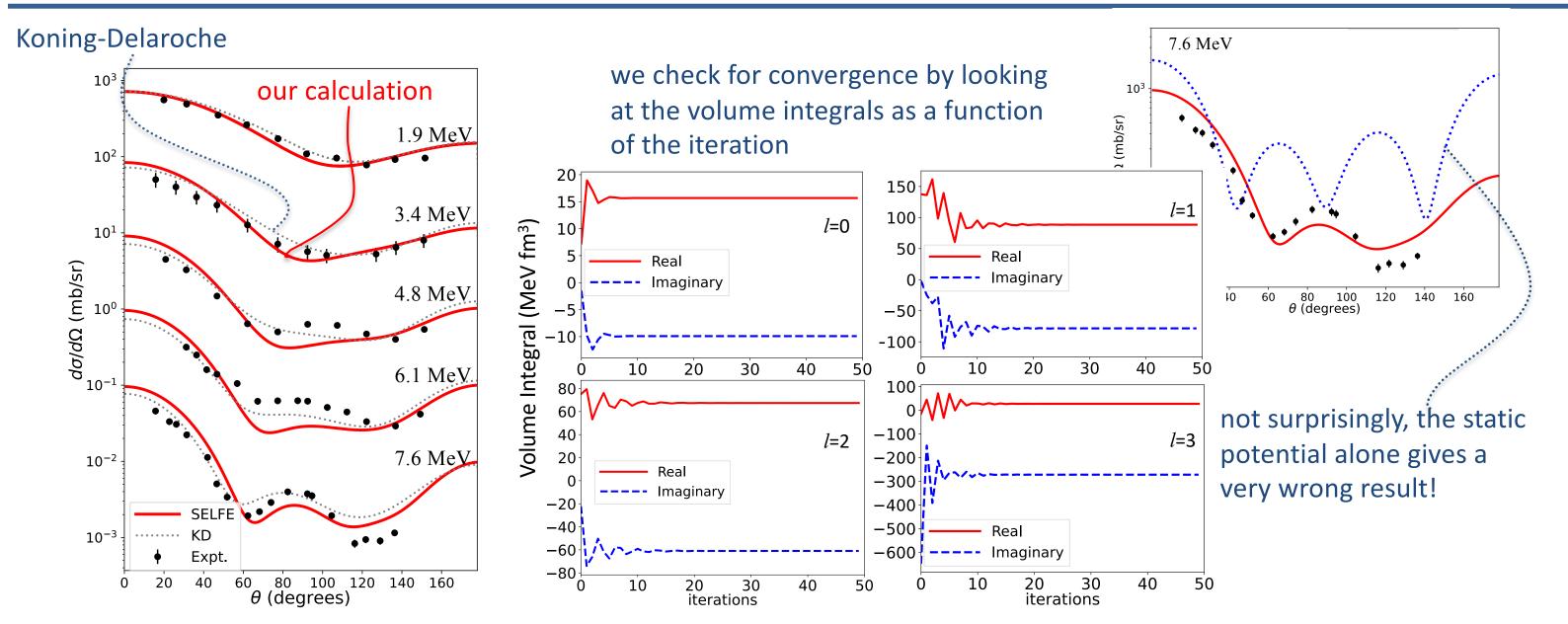


not surprisingly, the static potential alone gives a very wrong result!

Our ²⁴Mg calculation compares well with experiment



Our ²⁴Mg calculation compares well with experiment



Sargsyan, GP, Kravvaris, Escher; ArXiv (2024)

The Optical Potential is a projection of the many-body Hamiltonian on the elastic channel

$$\begin{bmatrix} T+V_{oo} & V_{o1} & V_{o2} & & & & \\ V_{1o} & T+V_{11} & V_{12} & & & & \\ V_{2o} & V_{21} & T+V_{22} & & & & \\ \vdots & \vdots & \vdots & \ddots & & & \end{bmatrix}$$

- The "optical reduction" transforms a many-body operator into a one-body operator
- It is a well-defined, in principle exact, mathematical operation

The OP accounts for the composite nature of the target nucleus

