

IFIC SEMINAR
THE LOHENGRIN
EXPERIMENT AT
THE ELSA
ACCELERATOR

Matthias Hamer, University of Bonn

OUTLINE

Motivation for Lohengrin: Light Dark Matter

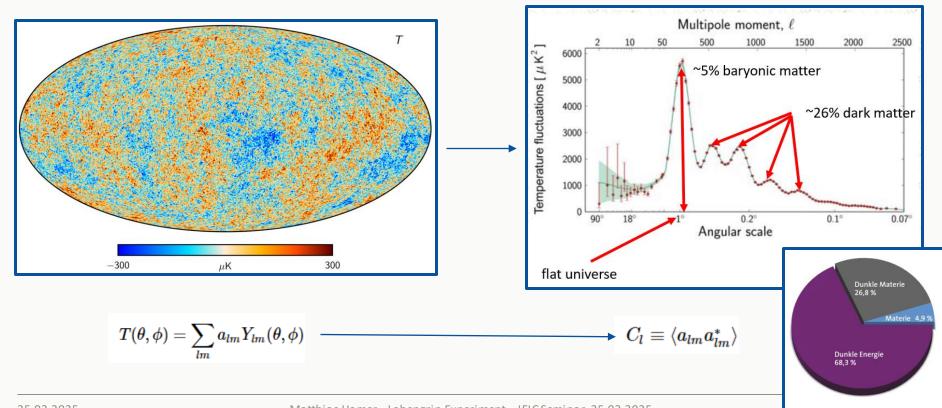
• General Principle of Lohengrin

• Design of the Lohengrin Experiment

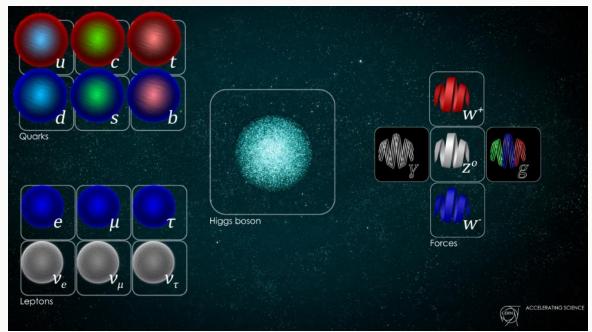
• Expected Sensitivity of the Lohengrin Experiment

The Way Forward

DARK MATTER



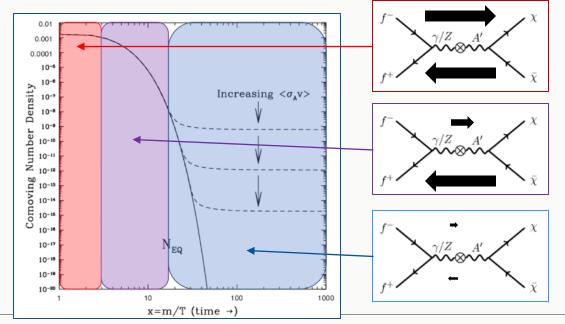
DARK MATTER



DARK MATTER

DARK MATTER - CANDIDATES?

- the SM cannot explain dark matter
 - we require one or multiple extensions to the SM in order to do that!


DARK MATTER - RELIC DENSITY

- what do we know about dark matter?
 - no so much, but we can infer some of its properties if we make certain assumptions

 relic density depends on annihilation crosssection, but not directly on the mass of the dark matter particle

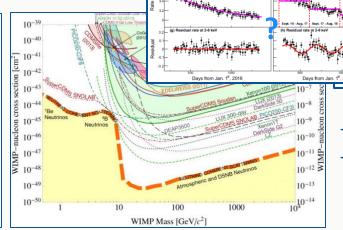
> $n_x/s \propto 1/M_x$ $\Omega \propto M_x * n_x$

 coupling of sole DM candidate → mass of DM candidate

- thermal equilibrium
 - annihilation and production balance
 - T dominated region
 - production is suppressed due to available energy
- H dominated region
 - annihilation is suppressed due to number density

DARK MATTER - WIMPS?

assuming weak coupling between SM and DM:


400 450

 $m(\widetilde{\chi}_{1}^{\pm})$ [GeV]

- smaller dark matter mass → smaller annihilation cross-section
- DM mass is limited in the range of GeV TeV

looking for weak-scale DM seems natural

 $\overrightarrow{X_1}\overrightarrow{X_1} \to \text{WW } \overrightarrow{X_1} \overrightarrow{X_1}$ $ATLAS \text{ Preliminary} \longrightarrow \text{Expected Limit } (\pm 1 \sigma_{\text{and}})$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \longrightarrow \text{Observed Limit } (\pm 1 \sigma_{\text{sheroy}})$ ATLAS 8 TeV, arXiv:1403.5294

many negative results from searches

 $n(\frac{1^{\circ}K}{\tau})^{3}(cm)^{3}$

102

1.0

102

ìoʻ

Lee, Weinberg, 1977

heavy neutral partides

NF: effective number of dof NA: fudge factor depending on

annihilation channels, etc.

0.5 GeV (NF = 4.5, NA = 14) I GeV (NF = 4.5, NA = 14)

2GeV(N_F=4.5, N_A=14) 5GeV(N_F=4.5, N_A=17)

10 GeV (NF=30, NA=17)

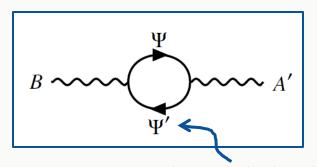
 some direct detection experiments claim to have found signal, but results are not reproducible

 $\mathsf{m}(\widetilde{\chi}^0_i)$ [GeV]

140 120 100

DARK MATTER - WISPS AND LDM

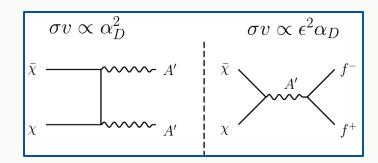
- dark matter from light particles?
 - need a fitting interaction between dark matter and SM sector
 - models with vector or scalar portals → can tune interaction strength to get right relic density
- one of the more simple models: massive boson from spontaneously broken $U(1)_D$ as portal \rightarrow "dark photon"
- minimal model: SM + DM + U(1)_D \rightarrow introduce coupling between DS and SM through kinetic mixing


$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{D} + \mathcal{L}_{SM \otimes D}$$

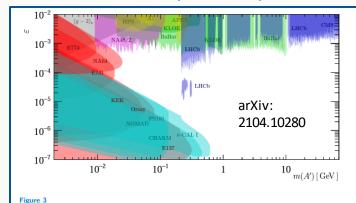
$$\mathcal{L}_{\rm D} \supset -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m_{A'}^2A'_{\mu}A'^{\mu} - g_{\rm D}A'_{\mu}J_{\rm D}^{\mu}$$

$$\mathcal{L}_{\mathsf{SM}\otimes\mathsf{D}} = -\frac{\sin\varepsilon_Y}{2} F'_{\mu\nu} B^{\mu\nu}$$

$$\mathscr{L} \supset -\frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} + \frac{m_{A'}^2}{2} A'_\mu A'^\mu - \boxed{A'_\mu (\epsilon e J^\mu_{\rm EM} + g_D J^\mu_D)}$$

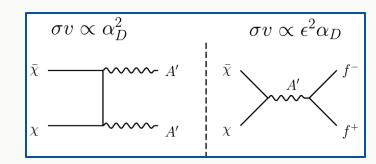


$$\begin{split} m_A^2 &= 0 \\ m_{\tilde{Z}}^2 &= m_Z^2 \left(1 + \varepsilon_Y^2 \frac{m_Z^2 s_W^2}{m_Z^2 - m_{A'}^2} \right) \\ m_{A_D}^2 &= m_{A'}^2 \left(1 + \varepsilon_Y^2 \frac{m_Z^2 c_W^2 - m_{A'}^2}{m_Z^2 - m_{A'}^2} \right) \end{split}$$


some heavy particles charged under both U(1) $_{\! D}$ and U(1) $_{\! Y}$

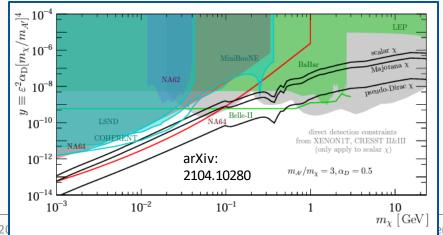
DARK MATTER DARK PHOTONS

- dark photon phenomenology
 - fundamental distinction: "visible" and "invisible" dark photons
 - "visible" dark photons: $m_{AD} < m_{\chi}$:
 - dark matter annihilation through pair production of A'
 - A' decays into SM particles, decays into DM kinematically forbidden

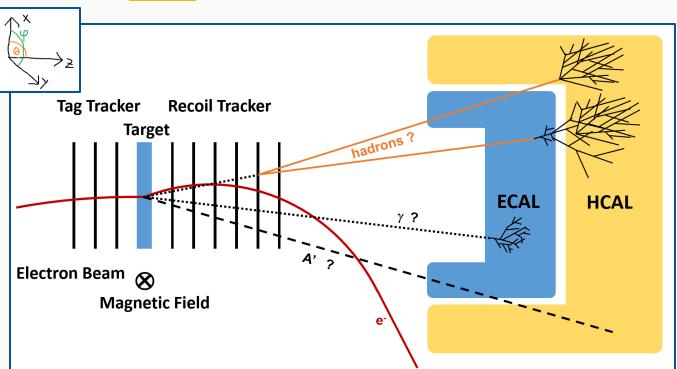

experiments. The constraint derived from $(g-2)_e$ is shown in grey (20, 21). The gaps in the prompt limits correspond to regions near the masses of the QCD vector mesons.

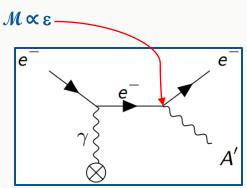
From Ref. (14) made using Ref. (19): Constraints on visible A' decays from electron beam dumps, proton beam dumps, e^+e^- colliders, pp collisions, meson decays, and electron on fixed target

- prompt A' decays:
 - irreducible $\gamma \rightarrow$ ff background $n(A' \rightarrow \ell^+\ell^-) = \varepsilon^2 n(\gamma^* \rightarrow \ell^+\ell^-) \mathcal{F}(m_{A'})/2\Delta m$
- displaced A' decays
 - $\tau_{A'} \propto [\epsilon^2 m_{A'}]^{-1}$
 - beam dump experiments with baselines up to O(100m)
 - collider searches with displaced vertices


DARK MATTER DARK PHOTONS

- dark photon phenomenology
 - fundamental distinction: "visible" and "invisible" dark photons
 - "invisible" dark photons: $m_{AD} > m_{\chi}$:


- dark matter annihilation through s-channel A' into fermions
- once produced, dark photon and its decay products do not necessarily produce any detectable signal



- collider searches, beam dump experiments (with and without direct detection) and direct detection experiments
- in particles for DM masses < 1 GeV, i.e. mA' < 3
 GeV, sizeable gap to relic target

FIXED TARGET DARK PHOTON SEARCH

- electron beam on fixed target $(^{10\%} X_0)$
- dominant reaction: SM bremsstrahlung, sometimes subsequent electro-nuclear or photo-nuclear reaction
- depending on $m_{A'}$ and ϵ : occasional radiation of dark photon

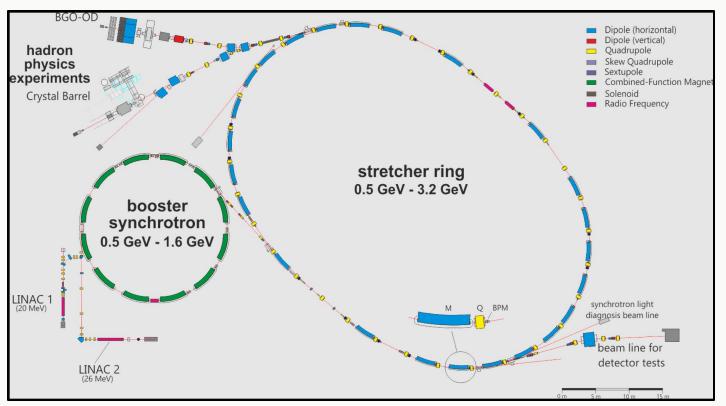
LOHENGRIN - IDEA

- inspired by the proposal for the LDMX experiment
 - electron beam-dump experiment with 4-16 GeV electrons and up to ~tens of electrons on target per spill (see <u>arXiv:1808.05219</u>)
 - Phase I: $\mu_e = 1 @ 50 \text{ MHz}$
 - Phase II+: μ_e = 2-10 @ 50 MHz -200 MHz
- studied the possibility to setup a similar experiment at the ELSA accelerator in Bonn
 - benefit from electron energy resolution of ELSA
 - use clean, single electron events at high rate
 - study orthogonal approach to LDMX calorimeter triggered approach
 - started with guiding principle: build the experiment fast using existing technology
 - have come to the conclusion that some detector R&D is required to be competitive

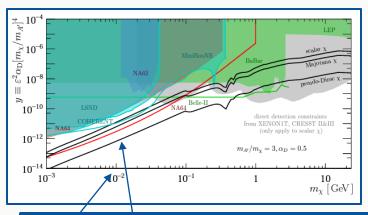
DARK PHOTON SEARCH AT ELSA: LOHENGRIN

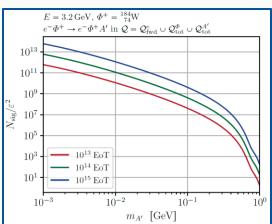
two equally likely options for the final thing

hopefully not the final thing



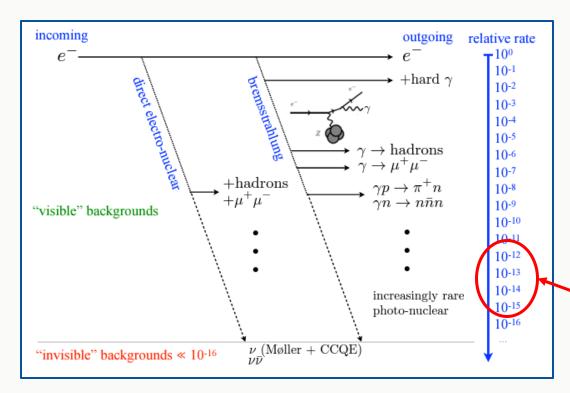
(almost) certainly not the final thing


ELSA - ELEKTRONEN STRETCHER ANLAGE


- ability to extract μ = 1
 electrons per 2 ns bunch
- electron energy up to 3.2 GeV
- this should be enough to do produce some lightweight dark photons in Bonn!

DARK PHOTON PRODUCTION AT ELSA

- how many electrons on target do we need to produce 1 dark photon with the right "relic target properties"?
- how many full days of beam time would we need to produce 100 dark photons at 100 MHz EoT rate?



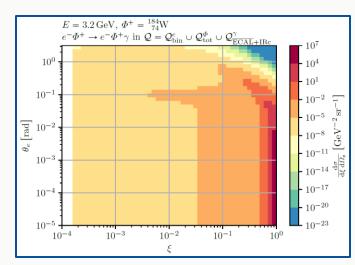
		Scalar			Majorana			Pseudo-Dirac		
mA [Mev]	ϵ^2	EoT ₁	t ₁₀₀ 2 [days]	ϵ^2	EoT ₁	t ₁₀₀ 2 [days]	ϵ^2	EoT ₁	t ₁₀₀ 2 [days]	
4.5	4.3E-11	4.9E+12	112	2.2E-11	9.6E+12	221	2.9E-12	7.4E+13	1709	
10	2.0E-10	4.7E+12	110	9.8E-11	9.7E+12	225	1.3E-11	7.5E+13	1729	
100	2.6E-08	1.0E+13	238	1.2E-08	2.1E+13	495	1.2E-09	2.2E+14	5205	
1000	5.4E-07	1.0E+19	238388060	2.7E-07	2.0E+19	472519191	2.5E-08	2.2E+20	5188446020	

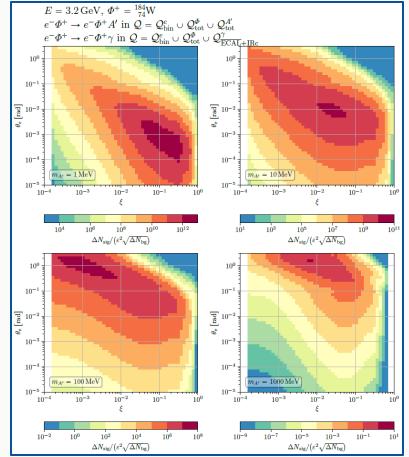
there is a chance to find dark photons at ELSA with the right properties if we can control our backgrounds!

BACKGROUNDS

- taken from arXiv:1808.05219
- dominant process: SM bremsstrahlung
- relatively rare:
 - photo-nuclear and electro-nuclear reactions producing neutral hadrons
 - neutrino backgrounds generally expected well below signal levels

this is where the music plays!

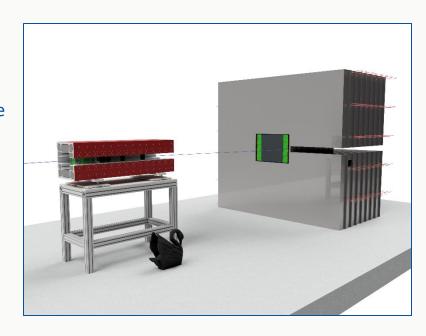

SM QED


- how to find our dark photon events?
 - need to get rid of all the SM QED events
 - find veto for rare hadronic final states
- where to look best?

FS phase space described by

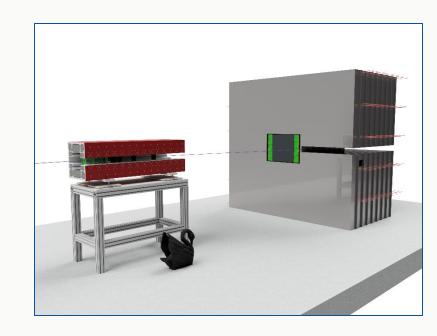
- e^{-} scattering angle θ
- e energy

$$\xi = \frac{E_{
m e,out}}{E_{
m e,in}}$$



LOHENGRIN - CONCEPTION OF LAYOUT AND OPTIMISATION

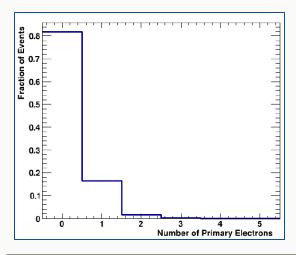
- goal posts are set
 - looking for events with
 - high energy electron in the initial state
 - low energy electron and nothing else in the final state
 - benefit from clean events
 - → single electrons on target
 - reasonable runtime of experiment
 - → high rate
- how to get to a working experiment?
 - sketch requirements
 - do first rough and global determination of key parameters
 - study performance of individual components and optimise

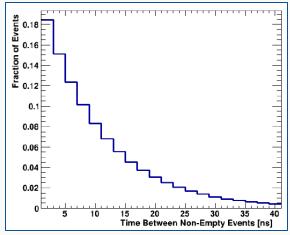

LOHENGRIN - CONCEPTION OF LAYOUT AND OPTIMISATION

experimental approach

- place tracker and target in strong magnetic field
- use ECAL to veto events with high energy photons
- use HCAL system to veto events with hadrons

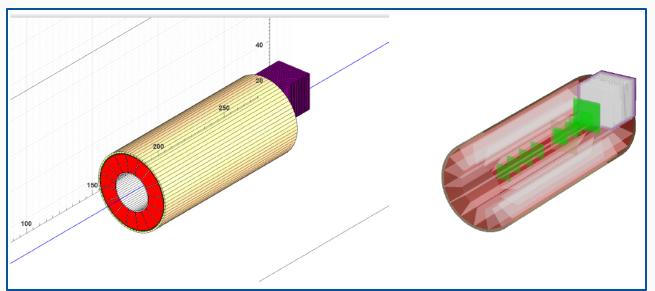
general requirements

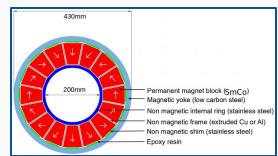

- high resolution, fast and thin tracker
- strong magnetic field
- calorimeter with fast signal processing
- highly efficient hadron calorimeter



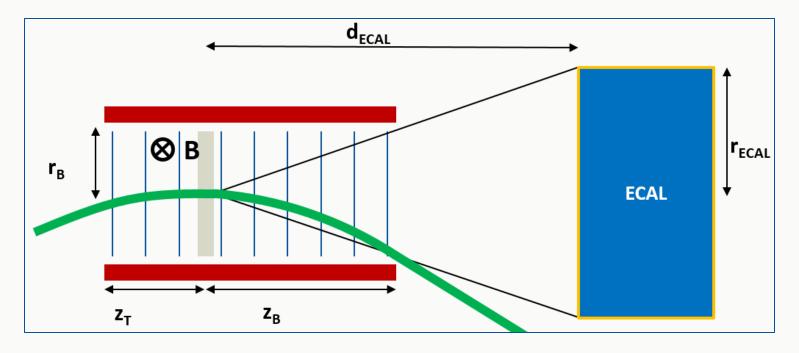
EVENT STRUCTURE

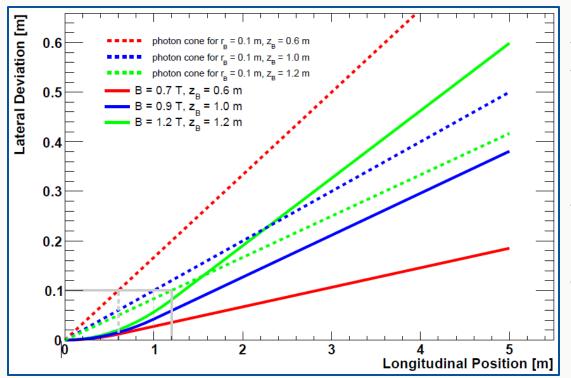
- extract electrons from ELSA at a rate of up to 500 MHz
- high energy resolution, 0.08%
- extract on average one electron every 5^{th} cycle, v_{eff} = 100 MHz
- beamspot on target: $\sigma_x = \sigma_y = 1$ mm, $\sigma'_x = \sigma'_y = 0.8$ mrad

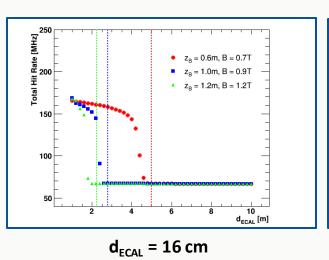




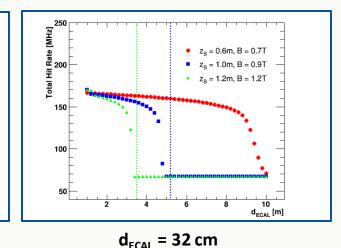
MAGNET


starting point: FASER magnets


- 1 m long permanent dipole
- 0.5 T orthogonal to beam axis
- similar, iron dominated design could provide magnetic field of ~1T



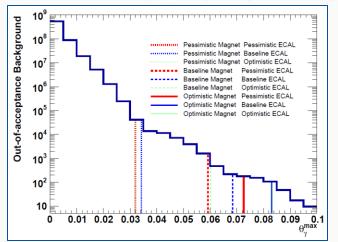
- considering three magnet scenarios
- ECAL coverage for photons determined by
 - maximum opening angle of magnet
 - lateral size of ECAL as function of its distance to target
- smaller coverage → larger out-ofacceptance background for SM QED events
- signal processing of ECAL limits acceptable hit rate
 - → bend electron beam around ECAL

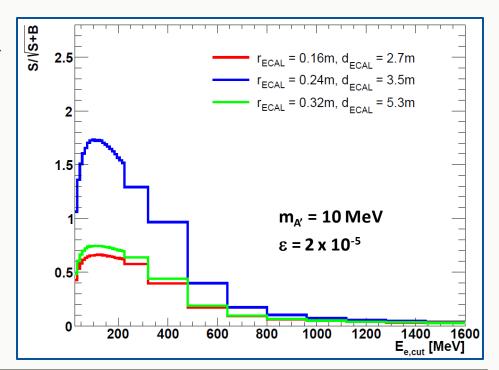

- drop off at large radius as electrons start to miss the ECAL
- stable pedestal at 70 MHz for 10+ MeV photons

1 Hit Rate [MHz] 000 005

100

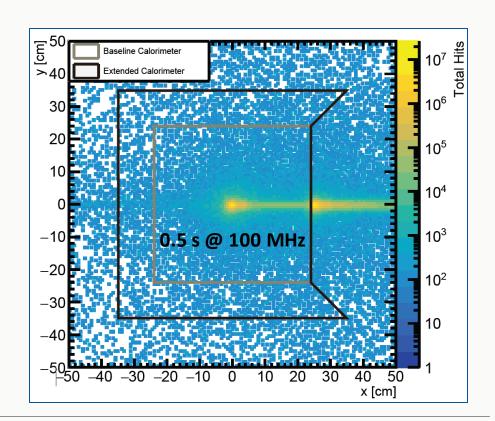
z_B = 0.6m, B = 0.7T


 $z_{B} = 1.2m, B = 1.2T$


 $z_{B} = 1.0 \text{m}, B = 0.9 \text{T}$

d_{ECAL} [m]

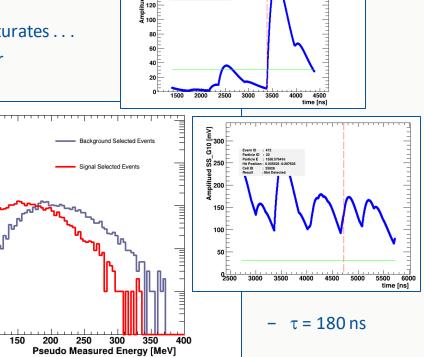
- baseline scenario with intermediate bending power
 - optimistic scenario desirable, feasibility unclear
 - photon acceptance limited
 - pessimistic scenario probably not good enough



THE ECAL

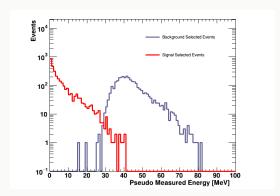
- ECAL measurement of photons
 - not using ECAL in the conventional way
 - high hit rate of photons in the same cells

QED bremsstrahlung

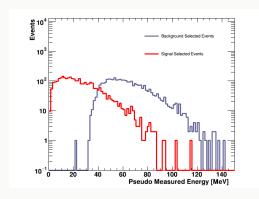

- estimated max hit rate per cell, assuming CALICESiW
 ECAL like granularity: ~40 MHz in central cells
 - mostly low energy photons
 - need to find the few high energy photons in this sea of high energy photons to effectively veto SM QED events
 - → need fast signal processing in ECAL

THE ECAL

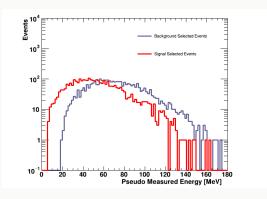
- assuming SiW ECAL with infinitely fast pre-amplifier that never saturates . . .
- otherwise, SCI ROC2a like characteristics, in particular CRRC shaper
- estimated signal efficiency for perfect background suppression:
 - SM QED events, including those with signal like electrons
 - pseudo signal events by removing hard photons from final state
 - with implemented shaping time, signal efficiency very low
 - too much "pile-up"



100

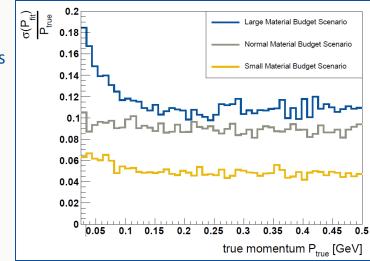

THE ECAL - SIGNAL PROCESSING

- assuming SiW ECAL with infinitely fast pre-amplifier that never saturates . . .
- otherwise, SCIROC2a like characteristics, in particular CRRC shaper



$$- \epsilon = 81\%$$

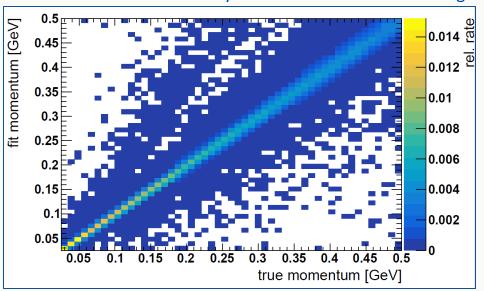
$$- \varepsilon = 68\%$$

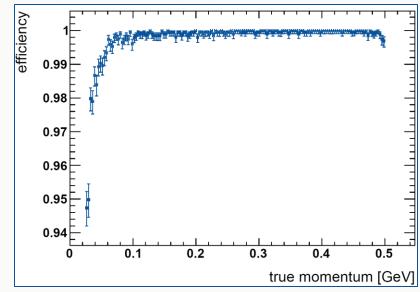


- $\tau = 60 \text{ ns}$
- th = 18 MeV
- $\varepsilon = 5\%$

TRACKING DETECTOR

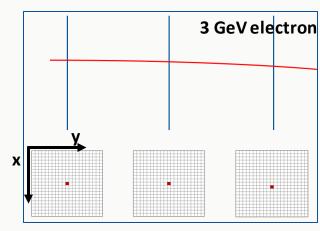
- tracking detector
 - reasonable per pixel hit rate
 - low material budget is key for tracking low momentum electrons
- estimated performance using TJ Monopix2 like tracking ASICs
 - DMAPS in Tower Jazz 180nm technology
 - $-33.04 \times 33.04 \, \mu m^2$ pixels
 - can be thinned to 50-100 um
 - assuming modules of 2x2 ASICs per tracking plane
- tracking performance estimated using ACTS for a telescope geometry

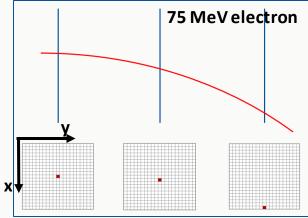



Layer	Target	1	2	3	4	5	6	7	8	9
z Position [mm]	2000	1810	1840	1900	2010	2030	2045	2070	2100	2130

TRACKING DETECTOR

- estimated tracker performance
 - visible branch due to hard scattering in tracking planes → importance of thin tracker!
 - reasonable efficiency down to 25 MeV → vanilla algorithm, improvements may be possible.

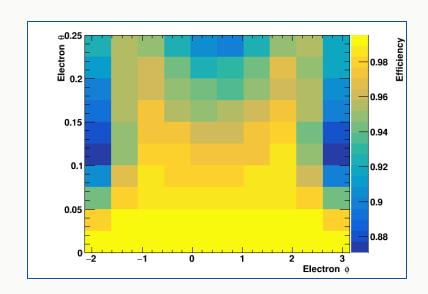


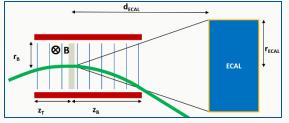

TRIGGER SYSTEM

- TJ Monopix2 has a fast hit-or signal
 - sensitive part of pixel matrix can be configured
 - could be used for a low energy electron trigger
 - hit in plane at z=1cm

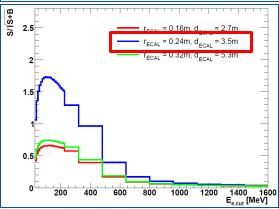
AND

- hit in plane at z=7cm with x > 3.1mm
 OR
- hit in plane at z=4.5cm with x > 2.3mmOR
- hit in plane at z=3cm with x > 1.99 mm
- Total Rate: 1.7 MHz

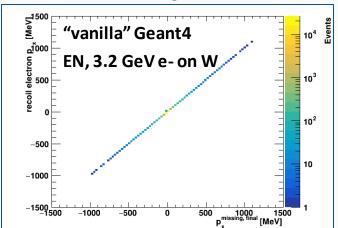


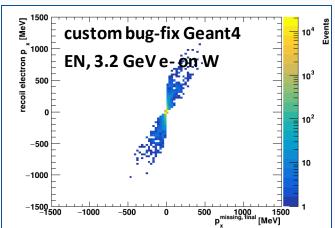

TRIGGER SYSTEM

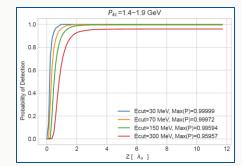
- estimated trigger efficiency
 - good efficiency for low energy electrons, but slow turn-off
 - structure in scattering angles due to magnetic field



- candidate signal region
 - ==1 electron in initial state
 - ==1 charged track, compatible with electron hypothesis with E_e < 75 MeV, in final state
 - no significant energy deposition above background level in ECAL
 - no significant energy deposited in hadron calorimeters
- considering baseline magnet scenario with baseline ECAL scenario
 - main background expected to stem from out-of-acceptance SM QED
 - hadronic backgrounds are difficult to estimate → next slides

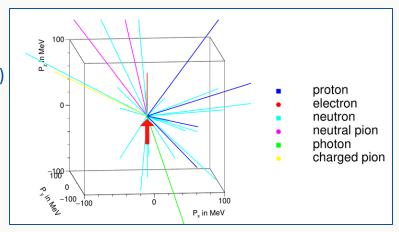

$4 \cdot 10^{14} \text{ EoT}$	number of γ		$\begin{split} m_{A^{'}} &= 10\mathrm{MeV} \\ \varepsilon &= 1.4\cdot 10^{-5} \end{split}$	
total $\xi < 0.95$	$3.1\cdot10^{14}$	26	80	27
$p_e < 75 \text{MeV}, \theta_e < 0.25 \text{rad}$	$1.0 \cdot 10^{12}$	1.3	26	5.1
$E^{\gamma}(\theta_{\gamma} < 0.07) < 640 \mathrm{MeV}$	293	1.3	26	5.1


- pessimistic: $B = 0.6 \,\mathrm{T}, \, z_B = 0.6 \,\mathrm{m}$
- baseline: $B = 0.9 \,\mathrm{T}, z_B = 1.0 \,\mathrm{m}$
- optimistic: $B = 1.2 \,\mathrm{T}, \, z_B = 1.2 \,\mathrm{m}$



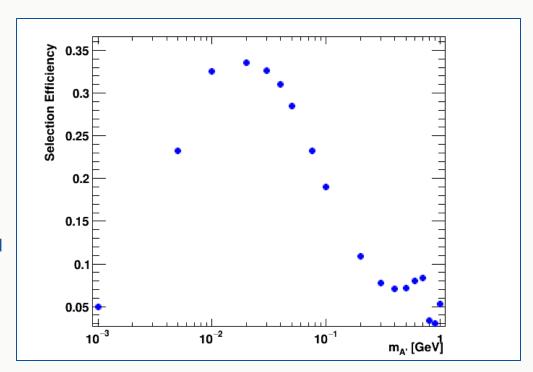
- H H₀
- initially used Geant4 to estimate electron-nuclear and photon-nuclear backgrounds
 - bug in Geant4 produces non-physical results (missing rotation to lab frame)
 - can be fixed in Geant4 source code
 - equivalent photon approximation does not produce reliable results for high q² that defines our SR
 - dominant contribution to background is expected to be out-of-acceptance background → important to get kinematic distributions right!

- Geant4 effectively cuts off the photon momentum when transforming the virtual photon into a real photon
- causes momentum imbalance that is pronounced for large values of |q²|

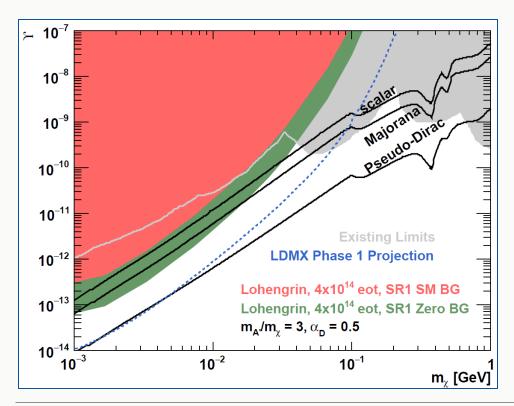

- have used limited sample size MC to estimate number of background events
 - 10⁷ electron-nuclear and 10⁷ photon-nuclear interactions in the target and first layer of the ECAL
 - no events survive all SR cuts
- estimate is limited by the sample size → need reliable generator before generating more MC
 - looking into FLUKA as an alternative to Geant4 for the eN interactions
- expect somewhat isotropic distribution of FS hadrons
 - unreasonable to set BG expectation to 0
 - set the expectation to 10 events in the SR (arbitrary number)
 - very conservative compared to LDMX for example

•
$$e^- + \mathcal{H} \to e^- + \mathcal{H}' + \pi^0 + 3n + 5\gamma$$
 ,

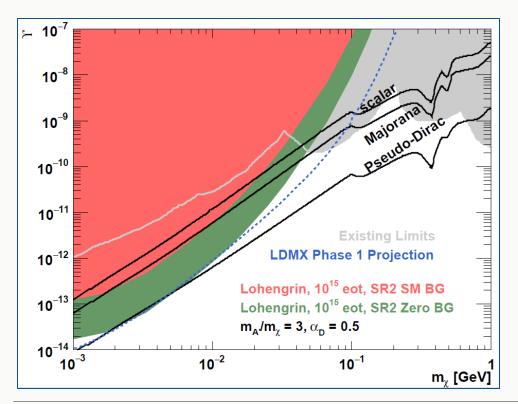
•
$$e^- + \mathcal{H} \to e^- + \mathcal{H}' + \gamma + 8n + 2p + 7\gamma$$
 ,

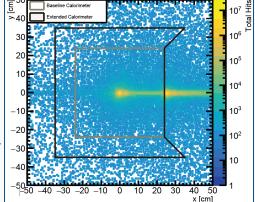

•
$$e^- + \mathcal{H} \to e^- + \mathcal{H}' + \pi^- + 3p + 4n + 6\gamma$$
 ,

$$e^{-} + \mathcal{H} \rightarrow e^{-} + \mathcal{H}' + 2\pi^{0} + \pi^{+} + K^{0} + \Lambda + 31n + 9p + 5\gamma$$



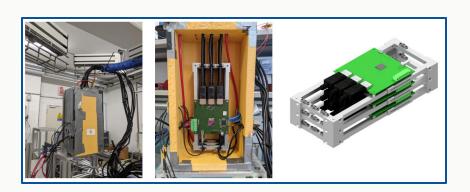
- signal efficiency, including
 - trigger efficiency
 - electron reconstruction efficiency
 - calorimeter veto efficiency
 - selection efficiency
- achieve reasonable signal efficiency for targeted mass interval




- with conservative estimates, sensitivity approaches relic target for scalar dark matter with 4x10¹⁴ electrons on target
- reduction of out-of-acceptance backgrounds could expand the reach beyond relic target for scenarios with scalar and Majorana dark matter
- lower centre-of-mass energy limits expected sensitivity with respect to the LDMX projection

- possible improvements
 - moderate increase in luminosity
 - electron reconstruction down to the lowest energies
 - enhanced coverage for photon and hadron

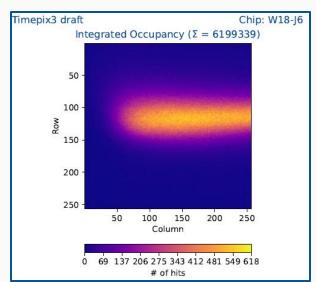
vetos

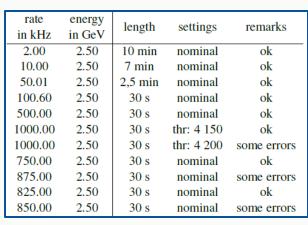


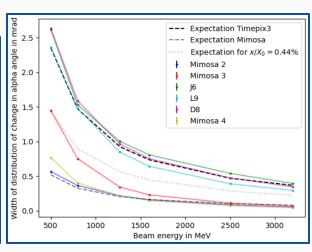
"slot" in ECAL could drastically reduce QED background

LOHENGRIN - RATE TESTS WITH TIMEPIX3 MINITRACKER

- started focusing on the tracker
 - implementation of a Kalman filter in simulation
 - production of a mini-tracker using untriggered TimePix3 silicon modules with beam telescope
 - rate capabilities of TimePix3 tested
 - first analysis of multiple scattering done

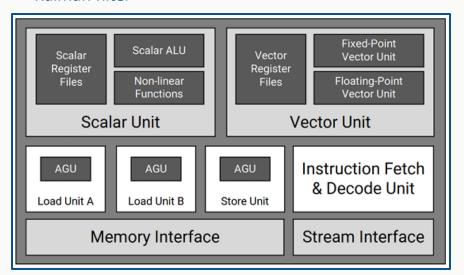




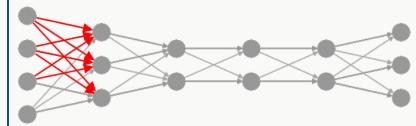

LOHENGRIN - RATE TESTS WITH TIMEPIX3 MINITRACKER

- detector development: tracker
 - first testbeam in 2020 with 3 Timepix3 silicon assemblies

2.5 GeV electron beam, 100 kHz

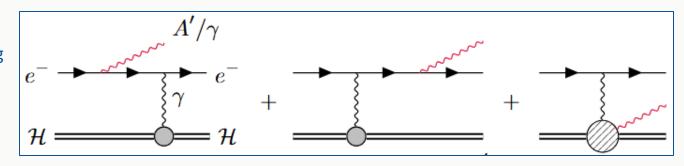


- tests with Timepix3 minitracker with and without ANEMONE telescope
 - lower than expected maximum rate (bottleneck in software)
 - tracking resolution not perfectly understood yet (MS? track reco?)



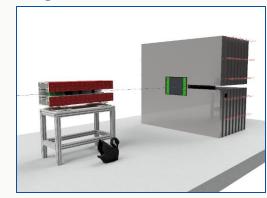
LOHENGRIN - TRIGGER

- use of AI engine driven track trigger for Lohengrin?
 - pattern recognition for multi-track events
 - implementation of track building and track fitting, e.g.
 Kalman filter



LOHENGRIN - NEXT STEPS

- feasibility study submitted to journal: https://arxiv.org/abs/2410.10956
 - revision will be submitted this week
- setting up new beam test for second trigger stage
 - no magnetic field, test pattern recognition and rate capabilities
 - inclusion of target and simple hadron counter in the beam test setup
- improving estimates:
 - virtual compton scattering
 - hadronic backgrounds



LOHENGRIN - ROADMAP

- phased setup of experiment at ELSA
 - development of tracker ASICs and finalisation of experiment layout in the tracking volume
 - improvement of tracking algorithm
 - investigation of alternative triggering strategies (scintillator based trigger?)
 - development of suitable ECAL and readout (fast clear?)
 - design and test of suitable HCAL

- phase 1: high-rate test to establish the (non)relevance of VCS
- phase 2: high-rate test with hadron counter → improve prediction for EN and PN interactions
- phase 3: first dark photon search run

collaborators welcome!