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Atmospheric neutrinos

Neutrino energy flux E¢ [cm'2s'1]
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Origin of atmospheric leptons

Cosmic ray

Interaction with air
molecule

conventional

v

prompt p or v

conventional

p, A+ air — 7T:|:,7TO,K:|:, Kg’L

muons and muon neutrinos

wi, K+ - uiyu(ﬂu)

electron neutrinos

Ki, K% — [ﬂ'i, Wo]eiye(ﬁe)

prompt

p, A+air = D,Ac = v, Ve,



Smooth power-law like spectra, defined by CR spectrum...

Atmospheric muons Atmospheric muon neutrinos
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...and the interplay of parent hadrons
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Atmospheric muons

Atmospheric muon neutrinos
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Zenith distribution

— fromm

5GeV

— from u®
le—4
4 F
X
=
q_ =
- 2
0_
le—4
l-'h

i
o
I

7/

vy flux
N
o
/
]

Ve flux

—— from K*

1TeV

le-10

from K°

Vertical baseline <12500 km

vertical: cos8 = 1
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horizontal: cos8 = 0
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Zenith distribution
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Measurement principle with high-energy atmospheric v flux

Example: Imprint of neutrino Unperturbed flux model
oscillations in energy X zenith space without oscillation impact
1.00 1.0
0.75
0.8
0.50-
'é 0.25 0.6 ¢
()
& 0.00 15
w =
S -0.25 D:kig,
—-0.50 Distorted flux hypothesis with:
0.2 » Oscillations = neutrino properties, standard +
—0.75 sterile
=1.00 | Llp.o * Expected absorption effects = neutrino cross
10° 10! 107 sections, Earth tomography (Alex Wen NU311)
E [GeV] * Prompt neutrinos - (forward) charm production

T. Stuttard, IceCube cross section, intrinsic charm (G. Sigl NU229)

9



Undiscovered prompt neutrinos

hd Te rm CO|ned |n the late 7OS —ea I’ly 808 by Forward Physics Facility Snowmass arXiv: 2203.05090
Volkova and Gaisser & Halzen W N——
mmm BEJKRSS 16 === GRRST 15 BEJKRSS16
» Phase space for atmospheric charm is not [MESPROSATS)  NESGMS 1S ?Olpﬁjzl
. -, pEpPeCi1s . mpene o mm=e- 1pole Mode
covered by collider detectors (too forward) g | B DERGEYS ERoi ]
, . ] e I © FEGRS 15(MCEq) = JBDGKR21 7 kr—factorization
- interesting for particle physicists 2 10-3 ——
|
ol

* Large uncertainties from pQCD (factorization
and renormalization scale)

E
P

* pQCD might be incomplete (intrinsic charm) O 1074 _4
< &
I

* The fragmentation (c — D) function is not well
known for forward charm and high energy

CR: BPL, Vu i V,u

|

* Expected similar rate of v, and v, but not 1 10703 10? 105 108
because of additional decays of mesons E, [GeV]

107 108
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Measurement of prompt neutrinos by lceCube

Measurement combines tracks and cascades

Northern Tracks Cascades using IceCube’s “GlobalFit” Framework.
COS{erecg) COS(BI'ECO)
-1.00 -0.75 -0.50 -0.25 0.00-1.0 -=0.5 0.0 0.5 1.0
107 ﬂ | 1 1 | ﬂ 1 1 1 5
: ] —— Cscd only
] | ~ —— NT only
106 4 /
_ 0 E E —— Combined
% . 1 L 3 4
O 10 3
g
g,
7 10
1_
103 :
. - J . : . 0_ 1 ) 1 1 ) 1
[ m— — | 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00 0.05 0.10 0.0 0.5 1.0 Prompt normalization ®p ;.
SIVB S/VB

J. Bottcher for IceCube at ICRC2023 & PhD thesis RWTH »



Measurement of prompt neutrinos by IceCube correlations with astrophysical

Non-zero prompt normalization bestfit @ >1 ¢

Value compatible with “pQCD” predictions (SIBYLL 2.3c)

Some degeneracy with diffuse astrophysical flux

Atm. flux model dependence

IceCube Preliminary

10°

104 10°
Neutrino Energy [GeV]

Conv. Atmospheric:
---- 6=180°
— 6=90"°
------- 6 =0" (incl. veto)
Astrophysical:
—}— Combined Fit
90% prompt CL:
—F— This work
6y Northern Tracks

Best-fit (0.650) prompt:

6 =90°
6 =0° (incl. veto)

neutrino flux model

Eveto ] e
Aycr 1 e

¢?onv T e
Zbarr e

Ybarr .

Wharr e
Pparr e

Fit parameter

ATR @
Epreak ®
Y2 L]
Y11 @
] -
¢'astro o

T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 0.50 0.75
; 0
Correlation to @gompt

1.00

Degeneracy with atm. flux model

Model Hja-GST DAEMONFlux
Hya 1.00 0.84
GST 0.98 0.10
GSF 1.11 0.87
Honda 0.70 0.97
DAEMONFlux 0.73 1.00
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Fl.LIX Cca lC u latiO N 1D particle cascade Monte Carlo:

m et h O d S e CORSIKA 7: Ar, Becker Tjus, Desiati, PRD86 114024 (2012)
* High-energy part of HKKMS and Bartol calculations

M. Honda et al., PRD 92, 023004 (2015), Barr et al. PRD 70, 023006 (2004)

e FLUKA: 6. gattistoni et al. Astroparticle Physics 12, 315 (1999)

Approximate semi-a nalytical solutions  Gaisser, Engel, Resconibook (2016) or e.g.,

of cascade equations:
¢y (E): cosmic ray flux

B (E') . ¢N (E) Z ZNh,'yZh—H?,'y Zyn: particle production yields
; 1 — ZnN 1+ BpEcosf/e;,  BrandZ,_,;: kinematic factors

0
KK

Matrix Cascade Equations (MCEq) AF, F. Riehn, R. Engel, T.K. Gaisser, T. Stanev, PRD 100 2019

d - - - .
® = —Vp(diag(#)®) + (-1 + C)Ajns @

* [terative solution of coupled cascade equations X

* Veryfast and accurate
 Opensource https://github.com/afedynitch/MCEc p(X)

* Now alsoin 2D (energy-angle) 14



https://github.com/afedynitch/MCEq

daemonftlux approach to modeling atmospheric fluxes

* The open-source code MCEq solves the equations accurately, but flux predictions
depend on the arbitrary choice of input models

* Difficult to quantify theoretical error

* Data-driven input models parameterize external data and uncertainty, MCEq
propagates it to the flux predictions

”Flexible” flux model with uncertainty priors from data

Cosmic ray .
flux: Global Atmospheric

Muon data +
exp.

Hadronic

T interactions:
Spline Fit Efiiens DDM

Statistical
fitting

uncertainty machinery

Cross-calibration with atmospheric
muons

15



Global Spline Fit Cosmic Ray Model 2025

HAWC A  LHAASO < Tunka-133 Q  Telescope Array . A tic fl
105 - < GRAPES-3 O IceCube W KASCADE-Grande O  Pierre Auger gnostic .LIX .
. parameterization

(minimal assumptions)

Extensive reference list in backup

Aim:

<

AN A A
SAAARARARARAI A £

10% - Y Ry v e Stat. and syst.
; 13 uncertainties of data sets

- : e Parameterization with
103 - 7 i PR kT L e e R0 o TR uncertainties and
] correlations

News since 2017:

Juis/(GeV m?ssr)~! x (Exin/GeV)*©

102 4 /! e AN * Proton spectrum known
: f.’ il p He O* Fe* total ¢ \™ : > from data from GeV to 10
i i A ACE-CRIS ¥ CALET ® ISS-CREAM > HESS. o, | EeV
101 ] ,;, ::._- * PAMELA % DAMPE ¢ NUCLEON-KLEM + VERITAS o ° Up to <~200 TeV relevant
1000 ° AMS02 Y features of the CR flux are
100 10! 102 103 104 105 105 107 108 109 1010 10'“ almost perfectly known
Exin/GeV

Dembinski, AF, Gaisser, ICRC 2017 & H. Dembinski 2019 & Fujisue, AF, Engel UHECR2024 & Dembinski, AF, Engel, Fujisue ICRC2025 16



Connects direct and indirect CR measurements

4 ACE-CRIS * PAMELA Y CALET = ISS-CREAM
¢ HEAO

JLis/(GV mZssr)~! x (RIGV)26

104 4

103 E

101 E

100 4

» HES.S.
* AMS-02 * DAMPE ¢ NUCLEON-KLEM + VERITAS

p

102_; mw

Fe...

et

10! 102 10° 10*

R/IGV

PAMELA v CALET =
AMS-02 x DAMPE ¢+

2025

ISS-CREAM < GRAPES-3 O IceCube O Pierre Auger
NUCLEON-KLEM A LHAASO <  Tunka-133

Flux points of individual elements are available here,
but cannot be summed to points of group flux

Flux points of individual elements are available here,
but cannot be summed to points of group flux
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O@ °F
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54 .
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O T 1 T
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10° 106
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Define and fit 4 mass groups
globally

Element fluxes have constant
ratios within a mass group

outside of the data range
17



Nucleon fluxes (MCEqg & daemonflux input)

109 10! 102 103 10* 10° 10° 107 108 10% 1010101
Ekln,n/GeV

10 105 -
! P He O* I Fe* =— Total :
o : 9;
% 104‘5 @t 104-E
X
10 L 103 5
Nm NE
g >
S 107 2 10%
= ' % ]
= q =S
‘ A\ 2025
101 e E— 10! A
10" 102 10% 10* 10° 10° 107 10® 10° 10'0 10"

E N/ GeV

* Dominated by proton spectrum, which is known from data!

For daemonflux: reduce parameter

e Several new breaks in recent data space to 6 with PCA on covariance
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Comparison with other models used in neutring telescopes
ass fractions

104 p

J/(GeVm?ssr)~1 x (E/GeV)?”7

— GSF2025 Auger +11%
10°3 ___ GSF2019 @ LHAASO -2%
— H3a A IceCube -6%
—— H4a A  HAWC -5% energy scale

GST

All particle flux

1.5 1
1.0 A

0.5 A

Ratio to GSF

10! 103 10° 107 10°
E/GeV
* Bracketing doesn’t work at most of the

relevant energy range

e CR observations reveal new features and
more precise data

O* fraction He fraction p fraction

Fe* fraction

1.0 =
-- H3a - Héa  —-- GST-3gen .~ GSF2025
0.5 - SN
0.0
1.0
0.5 A
0.0 b | I LRl | | I
1.0
0.5 A
0.0
1.0 —_— =
4;.1;-:"{:’"“?:\ '/ /”’
0.5 i .‘f \‘ o...h.'./ﬁ
0.0I T rorrrr LA LR | T T T o T T T T T :."""I '__—_’r""'""“"'
10° 10° 107 108 10° 101°
Energy per nucleus in GeV
19

GST: T. Gaisser, T. Stanev and S. Tilav, Front. Phys. (Beijing) 8 748-758 (2013), H3/4a: T.K. Gaisser, ApJ35, (2012)



Comparison with other models used in neutrino telescopes
All particle flux >/,— Nucleon flux
:’.‘ :";\ 10% 4
g g
g 10 g
HX ] X 1 k—‘
| 7 1
v | — GsFa025 Auger +11% & 10°9 —— GSF2025
£ 10°3 __ GSF2019 @ LHAASO -2% E 1 — Gsr2019
& | — H3a A IceCube -6% $ | — nH3a
= —— H4a A HAWC -5% energy scale = | —— nH4a
GST nGST
L 1 I I
D 1.5 g . f
S 1.0- 2 —
= o
T 0.5+ 5
101 10° 105 107 109 101 10t 10° 105 107 10° 1011

E/GeV E/GeV/nucleon

* Bracketing doesn’t work at most of the
relevant energy range

e CR observations reveal new features and

more precise data 20



Data-driven hadronic model (DDM)

— p+n —_— 7t 90% relevant phase space neutrino
VSnn (GeV) K = Totg| Production
101 102 103
100 , - y HARP PHENIX/STAR Accelerator data taken at
‘EE NA49/NA61 —— LHC exp. fixed beam energies
o |
'48 - 0<9<1+0mrad
° 04 % T
ui L =
> 101 ) Pl it
g : . -e- ?0 ................
g 20 <0 <40 mrad
§ Vertex magnets
LLI VTPC:
II 1 Target 2
a e T |
X 10-2 DeepCore & ||
lceCube Upgrade }
4 $ 4 4 + — X oo |
10° 10' 102 103 10* 105 10° =
Beam momentum (GeV/c) y

A

AF & M. Huber, PRD 106, 2022
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Inter-/extrapolation of hadronic yields across energies

J. P. Yanez & AF, PRD 107, 2023
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0.0100 . g
v 0.06 4 0.04r . =
2 I | £ 1.2f
3 o o—4— 0.03 + P07 — _l 2
N 0.04r %_Q_ ‘&000504 P | 1.0}
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0-02r 1 o.o01} 10.0025 { Setofgradients & 08
mt m- K+t B
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0.4 I T T T T T T | 0.20 B T T T T T T ] 0.020 L T T T T T T ] 0‘6
4
0.3F 4 0.15F 100151 | (1).6 i
i 02 g {1 o.10f 4 0.010 4 E
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0.1r 4 0.05f ] 0.005 i /* . 2
o ~ 0 0 gl
0olP¥P . ot . o.ooo—K$+|.<L L - B
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* Interpolate parameterizations of fixed-target data taken at fixed energies e ' ' ' ' '

* Add additional degrees of freedom with loose priors when extrapolating
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Calibrate CR and hadron

_’ parameters on muons

J. P.Yanez & AF, PRD 107, 2023

L3+cosmic

BeSS-TeV MINOS &
OPERA

DEIS

Experiments disclosing systematic uncertainties. Most provide correction functions for the data.

Experiment Energy (GeV) Measurements Unit Systematics Location Altitude  Zenith range
BESS-TeV [44]  0.6-400 3, ». C 36.2°N, 140.1°W 30 m 0-25.8°

CMS [45] 5-1000 R+ /- Py Q 46.31°N, 6.071°E 420 m pcosf,
L3+C [46] 20-3000 @R+, Du C 46.25°N, 6.02°E 450 m 0-58°

DEIS [47] 5-10000 D, Pu Q 32.11°N, 34.80°E 5 m 78.1-90°
MUTRON [48] 80-10000 R+ /.- DPu Q 35.67°N, 139.70°E 5 m 87-90°
MINOS [49] 1000-7000 Ryt /- E, C 47.82°N, 92.24°W 5 m unfolded
OPERA [50] 891-7079 R4/ E, Q 42.42°N, 13.51° E 5 m E cos0*

23




Muon fluxes and cross-calibrated data
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J. P. Yanez & AF, PRD 107, 2023

Muon charge ratio
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Resulting neutrino fluxes and uncertainty

(E/GeV)? ®,_(GeV cm? s sr)~?

Model / daemon
|_I
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9
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Super-K 2015
lceCube 2015
Antares 2020

4+

== daemonflux

HKKMS 2015
—— Bartol 2014
—— DDM

-== 52.3d+Bartol

Relative error

— daemonflux
—— DDM (hadronic)
Bartol (hadronic)

- 50%

- 10%
5%

101 102 103 104 105 10! 102 103 10* 105

Eiepton (GeV)

Extrapolation uncertainty comparable to previous
models

25

Uncertainties in daemonflux are driven by uncertainties
in the muon and CR data = high precision <1 TeV
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AF, W. Woodley, M.-C. Piro, ApJ 928 27 (2022)

The MUTE code is using MCEq and
PROPOSAL

Predicts muon spectra underground

Underground measurements reflect
higher energy muons at the surface

X(6,9)

W. Woodley, AF, M.-C. Piro., PRD 110, (2024)

~ MCEq+SIBYLL 2.3d + GSF
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MUTE

Neutrinos

Mount
| Everest

Muons

AF, W. Woodley, M.-C. Piro, ApJ 928 27 (2022)

Talk by W. Woodley GWA /CRA/CPP /13

The MUTE code is using MCEq and
PROPOSAL

Predicts muon spectra underground

Primary cosmic rays

Protons

Underground measurements reflect
higher energy muons at the surface

'

Balloon

X(6,9)

Decaying
pions

P}
Commercial
plane

W. Woodley, AF, M.-C. Piro., PRD 110, (2024)

daemonflux
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Progress on muon measurements @ KM3NeT

Aihosphiere o Muon bundle rate in KM3NeT ORCA compared to
Sibyll2.3d + GSF2017
KM3NeT/ORCA6
2, : : :
5 (7))

Sea level

- syst on flux + absorption

—l— MUPAGE tuned on CORSIKA - syst on flux + absorption + PMT eff.
- syst on flux : syst on flux + absorption + PMT eff. + hadronic int.
1 0_1 R 3 5 i 7 3 3 X
2

Ratio to MC

85 055 06 065 07 075 08 08 09 095 ]
cos 0

* Comparing MUPAGE MC tuned to CORSIKA with SIBYLL2.3D and GSF KM3NeT, EPJC 84 (2024)

* Observe large x1.4 disagreement in Data/MC -




Progress on muon measurements @ KM3NeT

Atmosphere Venugopal Ellajosyula’s talk
CR @ Cosmic Rays / 306

KM3NeT/ORCA-13 Preliminary, absoprtion length 90%
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% . \/stat? + daemonflux? + absorption? + PMTeff2
f i \/{stat;’+d:;|er'ncmflu>(2 + absorption?
5 10~2% V stat? + daemonflux?
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<+ Data, livetime: 1.24 days
i -+ MUPAGE: daemonflux K + default E + R,v CORSIKA
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* Significantly better agreement with their data Reconstructed cos 6

* Flux model precision is used to study water properties




Roadmap for MCEqg-based models

. New hadronic models: SIBYLL 2.3e, QGSJET-IIl, EPOS-LHC-R (this year)

Release of GSF 2025: including covariance matrix (early 2026)

. Daemonflux: update with GSF2025 and underground muon data (2026)

. Full zenith/azimuth atmosphere: found performance boost x100000 for

parallel calculations, model should remain lightweight (late 2026)

. Low-energy focus: fluxes < 5 GeV, geomagnetic cutoff + 3D (2027+)

30



Differential Muon Flux [em ™2 57! sr! GeV™]
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Made progress in atmospheric flux modeling and measurements. Model precision unlocks new types of tests and

measurements (see e.g., Venu’s talk)

Is MCEq + SIBYLL/EPOS/QGSIJET + X a bad model combination? = No, served well over the years within the
systematic uncertainties of the models and experiments

Do we observe a muon deficit in atmospheric leptons similar to the muon puzzle in UHECR? - maybe

Early adopters (IceCube Sterile Neutrino Search PRL133 2024, thanks Alfonso and MEOWS team) successfully
analysed data with daemonflux, and more rigorous tests by Neutrino Telescopes have not yet been finalized

Muon flux unfolding by P. Gutjahr

-{ICRC 2025)

Fog, [ceCube Preliminary
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Seasonal variations: mild disagreement with

model predictions. IceCube, EPJC83, 2023
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arXiv:2510.13948
Future Large Neutrino “Collider”

P-0n6. %1 -4 km3~
prototyping stage

* KM3NeT, ~1km2,

prototyping TRIDENT
| ~8 km3 | ,
also: NEON HUNT |

VN Y

IcelCubé1 km3/
| Data taking since 2011
Planned: IceCube-Gen2, ~8 km3




Vertical equivalent underground fluxes

https://github.com/wjwoodley/mute

2.0

1.871

0.471

AF, W. Woodley, M.-C. Piro, ApJ 928 27 (2022)

e SIBYLL-Z2.3D

Mei & Hime (2006) ¢ Baksan (1987) O LVD (1998) O Fréjus (1989)
= = Bugaev (1998) Crouch (1987) A MACRO (1995) ® SNO (2009)

-
A

Slant Depth, X (km.w.e.)

Data was found to be more constraining
than the theoretical uncertainties (bands).
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https://github.com/wjwoodley/mute

Studied problem in hig

N detail

10-° —— MUTE + DAEMONFLUX
(;‘882) ~—=- Mei & Hime (2006)
10~/
— Boulby (2003)
| SUPL (2021)
~' 1078
IE A MUTE
S o Flat Earth  SURF (L2017)
.5 10791 * Y2L(2020)
o Super-Kamiokande (2018)
KamLAND (2010)
10—10 LNGS (L2019) Ss
LSM (2013)
>  CJPL- (2020)
10—11

1 2 3 4 5 6 7

Equivalent Vertical Depth, h (km.w.e.)

* Modeled topography above labs

* Modeled chemical rock composition = critical

 Elaborated a reduced list of experiments with systematic

uncertainties, necessary conditions published,

consistent errors and measurements

* All preparations made for next-gen “daemonflux” fit

W. Woodley, AF, M.-C. Piro., PRD 110, (2024)

Relative difference to predicted total muon rate
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Transport and cascading of particles

Depth along CR trajectory [:

. : . ho
Equations for fluxes of particles of type h in the atmosphere: X(ho) _ / Al pai (E)
0
dq)h (E', X) L - absorption by \
dX o interactions Depend on
_ absorption by density or X Initial conditiqn is
decays the flux of cosmic ray T
J nucleons at X=0.
- ionization and radiation
losses
- Event generators like:
+ particle production in hadronic interactions * SIBYLL
Coupling * DPMIET
between * Pythia
particle types + particle production through decays : gz%?et




Transport and cascading of particles

Depth along CR trajectory [: p

Equations for fluxes of particles of type h in the atmosphere:

ho
X(ho) = [ 4t pur(

A0, (B, X)  ®u(E,X) )

— P
dX Aint. b (E) Depend on
(;[)h(E7 X) density or X Initial condition is
— the flux of cosmic ray T
)\(‘;ec,h(E’ ) / nucleons at X=0. ¥
- a—E(u(E)@h(E,X))+
o0 dN Event generators like:
Coupling — JE db Aint, k (Ek) . DPMJET

between o d . Pythia
\. k VE dE Adec.k (B, X) « QGSlJet




Transport and cascading of particles

Equations for fluxes of particles of type h in the atmosphere:

ddy, (E, X)

dX

Coupling
between
particle types

(B, X)
)\int,h(E)
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B )\dec,h(Ea X) )
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MCEq: Matrix Cascade Equations

1. Express integrals via midpoint rule as matrix-vector multiplication
2. Arrange all particles in a large, sparse matrix (like a state-space model in control theory)

3. Study stability and eigenvalues, deal with stiffness

h h
@l P )
dX /\;'7]'Tlt . Depend on
(I)Fé density or X
)\dec F; (X) )
h h
c
oL Z Z E(E; ﬁ»h(E)q)
Coupling E; >E; Al Lk
between d
particle types + Z Z U ER)_}‘” (Ei )(D

Ew>F; deC E,:L

Rewrite as a simple matrix equation,
implement using BLAS and solve iteratively

d

d_(f) = —ﬁE(diag(ﬁ)(ﬁ) +(—1+ C)Aint5

b (=1 4+ D)Age P
[)(X)( ) d
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Eigenvalue analysis = Eliminate stiffness - Resonance approx.

incoming hadron  interaction ! ! ! !

| =" -—=- top atm.
160 N i 1 B
plo,m, I | - —— surface
- i L res. approx.
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5 | !
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% 801 | i - |
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integration steps 40 A | i i
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| ! _
* Large negative eigenvalues (from decay of short-lived 0 ___ _
particles) 2 Solution attenuates too quickly , 10-12 10-° :
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Charm production cross section inaccessible to present-day colliders

- |ceCube prompt v, PHENIX/STAR
=== same for E;eco > 100 TeV LHC exp.
----- Prompt I,(E, > 1 PeV)
vsnn (GeV) « Each line represents a collider running at
102 103 10* .
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10 - ' , *
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2 ;.. | FASER & FPF the beam pipe
o ol (V)
u? N\ * Detectors need particle ID capability &
> 10-1 sufficient luminosity
§ * Indirect constraints from new forward
n detectors like FASER and the proposed
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New level of detail: resolve the hadronic origin of atm. leptons

other prompt
——=- other conv.

—_— total
total conv.
— = total prompt

_— I

D — A —— u decay

—_— D° unflavored T

— D

=
(=]

relative
to total
()
w

O
o

Muon energy (GeV)




Gradients defined by parameters of DDM and GSF

Muon flux Muon charge ratio Muon neutrino flux Electron neutrino
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Global fit to recent, well documented CR measurements
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The Global Spline Fit (GSF) — bridging two experimental worlds

Direct experiments measure elements Indirect experiments measure mass groups
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2025

Fit 4 mass groups

Oxygen mass group O*

100 10" 102 10° 10* 10° 10° 107 108 10° 10910

10!

107 3

T T
R}
o
—

¢(ARD/"™F) X |-(ISS ;W ADD)/STIp
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102 103 10* 105 10° 107 10% 10° 10'0 10"

10!
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Fe*
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i
2
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25 A
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15 -

N

10

RIGV

InA

Uses B-splines to fit four mass groups from GeV to 100 EeV
Interpolates direct satellite/balloon element data at low energies

Fits mass groups to indirect experimental data

Takes into account systematics = exclusively uses experiments with systematics
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Energy scale systematics

Original data 2017
10° 6M
¢ HEAO * PAMELA » AMS-02 » CREAM 4 ARGO-YBIJ ¢ HEAO

:‘i ¢ TUNKA ’:T; 5M PAMELA

% 10* \ b4 5 a0 K%, o IceCube 3 " AMS-02

=) geett ek, % K 4M{ e CREAM

X Peoe i, v X 4  ARGO-YBJ

ik |
2 10° /}" ‘”)qé##+ ‘ i, © 7M1 ¢ TUNKA
ﬁé ’ o o IceCube
= ZM_

: b | 20V % KG R

":210] ..'l'. glM— v TA ‘#4‘

= °O+ ‘% = ©  Auger

. . , v | | _w‘. :‘I, i .
10! 10° 10° 107 10° 10" 902 10* 106 108 1010
ElGeV ElGeV

The determination of energy scale in air-shower ~
experiments is uncertain f(E} . ]{E)dE _ 7 E 1
This is caused by inconsistencies of hadronic dE L+z2p ) 1+ 2

interaction models and reconstruction methods

Fit each experiment’s energy scale using native
uncertainty estimate as penalty/prior

Sum remaining systematic uncertainty in quadrature
with stats

Flux distortion caused by energy-scale offset z,

S=" 7 +Xj: (((;[J;?/J‘E)j)2

i
Flux residuals Energy-scale offset residuals
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Combined fit to all-particle, mass group flux and energy scale

Adjusted data

10°
+ HEAO * PAMELA = AMS-02 = CREAM & ARGO-YBJ

3 © TUNKA
E 10* \ 244 Mdh A2 o IceCube
= = I i, 7
= mfgets
% *‘r H“ i ':'!-':f;;j--_._ 7
P ' T
7 10°; /"’)"‘"‘;#M‘ H
o ¢
=
2 107 A
= 5 é: \%

10! 107 10° 107 107 104

E/GeV

The determination of energy scale in air-shower
experiments is uncertain

This is caused by inconsistencies of hadronic
interaction models and reconstruction methods

Fit each experiment’s energy scale using native
uncertainty estimate as penalty/prior

Sum remaining systematic uncertainty in quadrature
with stats

oM

g

_h_
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JHGeVm®ssr)~! x(E/GeV)?
[ ] L] L
= £

<

2017

ﬂﬂ—]@ﬂg—J( E ) !

HEAQO
PAMELA
AMS-02
CREAM
ARGO-YBIJ
TUNKA
IceCube
KG

TA

Auger

0 49 % 0 ¢ [ = = * #

10° 108 1010
E/GeV

(IE 1‘|‘ZE 1+-'.'E

Flux distortion caused by energy-scale offset z,

-S4+ (tfey)

Flux re5|dua|s Energy scale offset residuals 50




GSF 2025: mass composition

* PAMELA v CALET = [SS-CREAM < GRAPES-3 0O IceCube O  Pierre Auger 4 LHAASO ©  Pierre Auger
« AMS-02 * DAMPE ¢ NUCLEON-KLEM A LHAASO < Tunka-133

<
=
* 1/2 Flux points of individual elements are available here, =
@) | but cannot be summed to points of group flux S
1/4 - -
0B/ I'e)
O bk | AL | LR | MR | ML | R | MR | AL | MEREMALLL | LR | ! ""I'"I
3/4 - o A 43 100102 10 104 105 10° 107 108 10° 1010 10!
%SJ 1/2 Flux points of individual elements are available here,
o but cannot be summed to points of group flux Eyin/GeV
1/4 1
0

10! 102 103 104 10° 100 107 108 10° 1010 101
Ekin/GeV

* |nAinformationis now fully used, LHAASO, Auger SD
* Tests showed that just InA moments are insufficient to fit 4 components
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GSF parameter

Dimensionality reduction to ~6 parameters

104 4 P
: Realizations of the proton flux

Realizations of the neutron flux

103 _

: = central proton flux
== central neutron flux
102 1 1 T
10° 102 104 106 108
Kinetic energy per nucleon Enycleon (GeV)
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80 A . H____ -
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" o : L
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GSF parameter

Correlation coefficient

Explained variance ratio
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—— Exp. cumulative variance

—— 90% threshold
B Exp. individual variance

2 3 4 5 6 7
Principal component index

E27Flux (resampled from 6 component

104

1073

Principal component

101 103 10° 107
CR energy per nucleon (GeV)
1.0
0.5
- 0.0
-0.5
T T 1 T _1-0
2 3 4 5 6 50

Principal component
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6 Principal components of CR nucleon fluxes

zenith-averaged muon

neutrinos

1.10 -
3 « Component1is a“global” spectral
Q- index correction
o 1.05 -
O « Sum of components can reproduce
o 90% allowed shapes from the 1-
+ 1.00 - sigma range of GSF
3 - 6 simple, data-motivated nuisance
.E 0.9541 —— PC; PC. parameters for systematics

lculati
$ PC, PC- calculations
- GSF2025 may need fewer than 6
0.90 - PCs PCe
parameters
101 10% 103 10° 107

Muon neutrino energy (GeV)
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