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Examples of Current Experiments in Space

Non-magnetic calorimeters Magnetic detector
Voyager (1977 - ) Fermi-LAT (2008 -) AMS (2011 -)
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There are also may experiments and proposals: ISS-CREAM, GAPS, TIGER, HELIX, GRAMS, ...



Overall Picture of Cosmic Rays

Lepton
Electrons, Positrons
Antimatter
All particle Antiproton
Antideuteron, Antihelium
Nuclei (Periodic Table)
Proton, Helium
Heavy Primary Nuclei
Secondary Nuclei
- Mixed (Primary + Secondary)
S Ultra-heavy (Z>28) nuclei
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Deuteron, Lithium, Beryllium

Heliosphere Physics (solar modulation)

: Time variation of cosmic ray fluxes
Energy Reach of Current CRD experiments



Cosmic Positrons and Electrons
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AMS Empirical model for positrons: AMS Empirical model for electrons:
EZ Vs E? = = .
D+ (F) = ﬁ[cd(E/Eﬂyd + Cs(E/E3) “exp(— E/Es)] &,-(E) = E(Ca EYe + C,EYb> + Positron Source Term)
Solar Collisions Pulsars or Dark Matter Solar Power law a Power law b
Low energy High energy
Existence of a finite cutoff energy E; is determined to be 5o Emergence of charge symmetric source at 99.1% CL



Cosmic (Positrons + Electrons)
Extension to beyond 1 TeV energy with calorimeter experiments
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CALET: PRL 131, 191001 (2023). Updates in ICRC 2025 HESS: PRL 133, 221001 (2024)

AMS, CALET, DAMPE: Spectral break at ~ 1 TeV HESS: Continue with sharp drop above 3 TeV
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Key question: Spectral structure caused by nearby e- sources? = Future measurements
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Cosmic Antiprotons
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p from collision of cosmic rays
G. Jéhannesson et al 2016 ApJ 824 16
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AMS observation: p and p have identical rigidity dependence above 60 GV, p/p ratio is energy independent

This challenges the models with only secondary antiprotons (from cosmic ray collision with interstellar medium)



Cosmic Antiprotons and Positrons

AMS observed striking similarity in the energy
spectra of positron and antiproton.

Above 60 GV, e+/p =2.00 £ 0.03 + 0.05
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The extended measurements to higher
energy is the key to address their origin.

Comparison with a model of old supernova:
P. Mertsch, A. Vittino, S. Sarkar, PRD 104 (2021) 103029
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Heavier Antimatter in Cosmic Rays

A few antideuteron and antihelium 10"
candidates have been reported by AMS.
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Further experimental verification is being conducted.
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The Origin of Elements in Cosmic Rays

Primaries p, He, C, O, Sj, ..., Fe are produced in stars and accelerated by supernovae.
Secondaries Li, Be, B, and F are produced by the collision of Primaries with the interstellar medium
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Measurements of the cosmic ray nuclei fluxes are important in understanding their origin,
acceleration, and propagation processes in the Galaxy.
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Cosmic Proton and Helium: The Most Abundant Element
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Proton/Helium Flux Ratio and A Soft Component in Proton
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What is the origin of the soft component?
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DAMPE, CALET, CREAM: DAMPE:
softening at ~10 TeV “second break” at ~100 TeV

The direct measurement in space is touching the energy boundary of ground experiments.




Cosmic Helium: The Second Most Abundant Element
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Primary Cosmic Ray Nuclei
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AMS: above 60 GV, the light primary cosmic rays
He-C-O have identical rigidity (R=P/Z) dependence.
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Primary cosmic rays have at least two classes
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Carbon and Oxygen Spectral Feature at 10 TeV

DAMPE reported results on C and O, which
show softening at ~9 TeV/n, at the similar
energy of proton and He softening.

Awaiting the results from CALET.
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The Heaviest side: Iron (Fe)
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Binding Energy per Nucleon [MeV]

The Heaviest side: Nickel
Iron is the heaviest element produced by Stellar Nucleosynthesis
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Current results show that the rigidity dependence of Ni is identical to Fe
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Secondary Cosmic Ray Nuclei

Abundance in the solar system
from the Sun wavelength analysis and meteorites
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Li, Be, B, and F are secondary cosmic rays produced by

the collision of Primaries with the interstellar medium.

Two groups of secondary cosmic nuclei: Li-Be-B, F
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F(Z=9) belong to the second group of secondaries.
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DAMPE and CALET also measured the Li, Be, and B spectra.
The hardening in secondary nuclei are confirmed.

Possible origins of the spectral hardening:
(1) Source --> same hardening in secondaries and primaries
(2) Propagation --> twice hardening in secondaries as in primaries
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Secondary-to-Primary Flux Ratio
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A in two rigidity intervals (60 - 192 GV and 192 - 3300 GV) exhibit an average hardening of

Above ~200 GV secondary cosmic rays harden twice as much as primaries.
This strongly supports that the spectral hardening is related to propagation in the Galaxy.

19



Flux ratio

Secondary-to-Primary Flux Ratio
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CALET observed that secondary-to-primary ratio DAMPE observed that secondary cosmic rays
(B/C and B/0O) hardens at ~200 GeV/n. harden twice as much as primaries.

These results also support that the hardening at ~200 GV is related to propagation in the Galaxy.
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Relative Abundance
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The Element Abundance at Cosmic Rays Source
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AMS Model-independent measurements of the relative abundances
at the source (before cosmic ray propagation)

Abundance Ratio at the Source

Dc /Do 0.83 + 0.025
On /Do 0.09 + 0.002
DOne /Dsi 0.83 £ 0.025
DOwmg/Dsi 1.01 + 0.025
Dna /Dsi 0.038 + 0.003
Dal /Dsi 0.105 + 0.004
ONWIOS 0.16 £ 0.006
Dar /Dsi 0.021 + 0.002
Sulfur
Magnesium Dca /Dsi 0.076 + 0.003

Earlier measurements are from HEAO, ULYSSES, Voyager-1, ACE/CRIS 53



Sub-Iron group (Z=21 ~ 25)
Sub-Iron group (Sc, Ti, V, Cr, Mn) contains secondaries from Fe interaction with interstellar medium.

Secondary components of Sub-lron are produced
a) Ti/Fe Ratio # CALET

in the closer part of the Galaxy
g |:]Tota| Error

; Systematic Error
\**\*k ¥ HEAO3-C2
O HEAO3-C2 (HNE)
N

Measuring their fluxes are important for the
understanding of the propa ation of heavier nuclei.

W

Ti/Fe Ratio

b) Cr/Fe Ratio ® CALET
¥ HEAO3-C2

HEAO3-C2: J. J. Engelmann et al.,

HEAO3-C2 (HNE): W. R. Binns et
al., Astrophys. J. 324, 1106
(1988).

®
Cr/Fe Ratio

102 10°
Kinetic Energy per Nucleon[GeV/n]

CALET and HEAO results on Ti and Cr show consistent energy dependence.

AMS will provide precise individual measurement of sub-lron nuclei in the coming years.

Astron. Astrophys. 233, 96 (1990).
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Ultra Heavy Nuclei Abundance

Corrected Relative Abundances
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CALET and DAMPE results on the abundance of Z>28 nuclei
agree with earlier measurements from ACE-CRIS and SuperTiger.
Note these experiments cover different energy range.

Future experiments: Energy spectrum of ultra heavy nuclei.




Cosmic Isotopes: Deuteron

D and 3He are considered to be secondary cosmic rays.

(*He, C, O, ...) + Interstellar Medium = (D, 3He, ...) + X

B T r T r 1 | - ] 03 | ' | ! | ' | ! |
Latest model with D as
C 3 4 ° AMS-02 i | R D 4He secondary cosmic rays |
0.3 - He/ He = PAMELA-CALO ] 0 25%}}{; / a
- ¢ O PAMELA-TOF 7] ' v AMSO1
025 [ A IMAX-92 - [ O BESS |
= B % e BESS-98 . £ 0.2} & & IMAX -
g* | & BESS.83 ) S f!] " O PAMELA |
2 02 %'t — — — GALPROP 4 "» i
e | | ¢, :‘ ~ : peq 0_15 —_
fl L b ® ~— - — 7 _
0.15 it \\\4\\; 01 Primary D
0.1 EK [GeV/n] —- 0 05 L | L | Ek[.Ge\,/rl‘:I L | ) ]
Y T T 10 ' 2 4 6 ) 10

AMS results are consistent with secondary 3He, but disagree with secondary D.
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Deuterons have a significant primary component

Secondary, ®p= 0.58x®s,,,

Primary, ®{= 0.09x®-,,,
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Rigidity R [GV]
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Li has 3 or more possible
sources in the cosmos.

1.4

1.2

0.8

0.6

Results on Cosmic Lithium Li

\ \..
Big Bang Nucleosynthesis

T I T T T I T T T I T T T I T T T I T

Li 7+ °Li e AMS _
(I)L/q)L v AMSO01 i
+ SMILI-II -
= ISOMAX -
- + PAMELA 4
ty -
RELX .
Pradegp by
E, [GeV/n] -

B S S S T

(I)7Li /(I)GLi

0.8

Stellar Evolution (Nova)

1 T I T T ] T
e AMS

Fit to Eq. (4)

[ —— GALPROP
[ B== USINE

_Rigidity R [GV] ,

10
Excludes the existence of a sizable primary component in the “Li flux

15

20

Cosmic ray collision with
Interstellar Medium

1 Model assuming a
Jprimary component

in the “Li flux

1 Model assuming
1 secondary origin

of 6Li and “Li



PhyS|cs of Beryllium Isotopes
’Be, °Be, and 1°Be

‘Stable °Be propagate in the entire galactlc halo
whlle 10Be decay to 19B before reachmg the boundary of the Galaxy "

e e e S

Jljoejen

.............................................................................

Y. S SIPRE T NPT % 2 . ol ST S S L L e

J1oejen |

A B N R T .

The ratio of unstable-to-stable, 19Be/?Be, measures the Galactic halo size L
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Beryllium isotopes
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AMS results provide unique insights to the asymptotic behavior of 1°Be/?Be at high energy

Expect to have important results from HELIX
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Cosmic Ray Propagation in the Heliosphere

F i 250-"'l""l""l""l""l""l""
C 1[1-year solar cycle
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150+ & field reversal \ i

100}

O iR 5]
Low Energy Cosmic Rays -

Cycle
25

Cycle )
Y

32000 2005 2010 2015

2020 2025 2030
Year
Low energy cosmic rays are more affected by the magnetic field in the solar system.

Solar magnetic field changes with time due to solar activities. --> Cosmic ray fluxes changes with time.

The propagation mechanism (parker equation) is identical in solar system and in the Galaxy. )



@, Flux [GV's'sr''m?]

Daily Proton Flux over an 11-year Solar Cycle
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Larger solar activity (more sunspots number), lower proton fluxes
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Cosmic Ray Propagation in the Heliosphere

30

.fil'lll|llll
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Solar magnetic
field reversal

AMS

[1.00-1.71] GV

Proton/54.9
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and proton carry opposite charge;

their fluxes show different time dependence.

(Hysteresis)

Hysteresis is also observed in electron vs positron.

--> Charge sign dependent solar modulation.

Also reported by CALET using (e*+e") vs proton.

Electron Flux [m2sris1GV-1]

30—

20

[1.00-1.71] GV

Moving Average of
14 BRs with 1-day step

Proton Flux [m2sris1GVv]

500 1000 1500
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Same mass, Opposite charge

Cosmic Ray Propagation in the Heliosphere: Based on four elementary particles
Same charge, different mass
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- pvset ] i - ]
Results from AMS . P r ] EVsE F ]
i o‘{ 4 : y: E
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. . L2 1 & / ] 2013
particles with same charge, P 1 F Eﬂ, P :
different mass 0.8 »” 1ot / ] 2014
o* ..o’. ]
0.6f- / 1 ol (\, ; 2015
Hysteresis between particles (I)e’/fq)e*) N Pe/ (D, 2016
. . o4l L 10 1 1 P 0400 10| P BRI B
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o PVSE J 14 PVSP N 2018
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Prospects in the coming years

HELIX (Isotope)  TIGERISS (High Z elements) HERD on CSS (~2028)
] PeV energy

Camera 200¢™

TIGERISS
Instrument
78.3
cm
Side
H-Fixture

DAQ Thermal
System System

Power
System

Space Craft & §
Service Module

Plastic scintillators

RV et + many more proposals and R&D efforts

Electric propulsion
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Summary and Prospects

Cosmos is the ultimate laboratory providing particles and nuclei to the highest energy.
The direct detection in space bring the cosmic ray study to a precision era.

Our understanding of the cosmic rays are being re-shaped by the discoveries of new
phenomena and call for the development of a comprehensive cosmic ray model.

In the coming future, we expect more unexpected results from the current experiments.

The R&D efforts are pushing next generation experiments (both magnetic and non-
magnetic) on the horizon.
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Backup
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Interaction cross section is one of the most important source of uncertainty for cosmic ray measurements.

Increasing Attention to Cross-sections

AMS systematically measured the inelastic cross-section of nuclei with material, using the “beam” from space.

AMS horizontalv

“nuclei beam"

L1
. i L

Use right-to-left nuclei

to measure nuclear interactions
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}m

l[[ﬁ'

in the TRD+TOF LI DL L L L L L L LI
2000} Inelastic Cross Section o, . [mb] e -
: S| :
1500 Ne M9 a
L C 1
1000  BeP J
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L9 - He Jaros (1978)5.8GV 7
500( “ .
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o

measure the nuclear interactions

in the TOF+RICH
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Positron Anisotropy

North-South

direction
?izc\/tvz;t E Forward-Backward Astrophysical point sources will imprint a higher
1 1 u | . o . - - - -
s P direction anisotropy on the arrival directions of energetic
S e e wsne®®

positrons than a smooth dark matter halo.

Solar System

EEEEEEN
*

Dipole anisotropy: § = 3,/C{/4m C;is the dipole moment

Isotropic map

Events/pixel Events/pixel

AMS Currently at 95% C.I.:

for 16 < E < 500 GeV 6+ < 0.0144

Poster by Inaki Rodriguez Garcia



Future AMS measurement with improved positron statistics will allow us to distinguish dark
matter and pulsars origin at the 99.93% C.L. in 2030, and at 99.99% C.L. in 2035

0.020
I Expected o
z | I 68.3% CL
m -
©
o> i
T 0.010 Pulsar
g -
= |
/4]
S 0.005
=

0.000

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
year

Pulsar Model :
D. Hooper, P. Blasi & P. D. Serpico, JCAP 0901(2009)
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AMS provides the most accurate measurement in the GeV-TeV energy range
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DAMPE at ICRC 2025
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@, Flux [GV s sr'm?]

Particle Emission from the Sun (Solar Energetic Particles)
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Cosmic Ray Propagation in the Heliosphere

Positrons and Protons carry the same charge, though different mass;
Their fluxes show nearly identical time variation.
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Electron Flux [m2sris1GV]

Electron vs Proton
Opposite charge sign
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Cosmic Nuclei over an 11-year Solar Cycle

Talk by J. Tian Phys. Rev. Lett. 134, 051001 (2025)

Li, Be and B are significantly less C, N and O are significantly less
modulated than He up t0 3.6 GV [1.92-2.15]GV modulated than He up to 2.15 GV
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By 2030, AMS will provide unique information for understanding
particle transport in the heliosphere over 22-year Solar Cycle 48



o Forbush Decrease (FD)

Heliophysics with DAMPE

explosive solar activity, e.g. CME

o Large acceptance and polar orbit of DAMPE—

allows precise FD measurement
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New FD features for the relation: recovery time vs. decrease amplitude —> diverse properties of FDs
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Heliophysics with CALET

electron and proton count rates at an average rigidity of 3.8 GV
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