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First billion years - birth of structure and Cosmic Dawn
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First billion years - birth of structure and Cosmic Dawn
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First billion years - birth of structure and Cosmic Dawn
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the “formative childhood” of the
Universe, yet the majority of the
observable volume

e When and how did the
first galaxies form?

e How did they impact each
other and their
surroundings?

e What are the dominant
feedback mechanisms?

e Can we learn about Dark
Matter properties?

e How does the Hubble
parameter evolve?

\' .\ * What are the properties

of the first stars and black
i\ holes?
\ .‘_‘

/

% _ adapted from Cynthia Chiang




We know something about the mean IGM
evolution during the Cosmic Dawn and Epoch
of Reionization




Understanding the timing of reionization
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We now have a reasonable handle on when the bulk of reionization happened...
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What about the
heating history?

Until recently,
only constrained at z<~5....

adapted from McQuinn (2016)



How do we learn more?



The 21 cm line: the most powerful probe of
the IGM during the first billion years

F=1

——_
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= N
$ Hyperfine transition in the ground
L7 state of neutral hydrogen produces
the 21cm line.

5-——————

It has a “Goldilocks” optical depth for HI!
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We measure the difference
in intensities of the CMB
and the cosmic HI.
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SIS Cosmic 21-cm

We measure the difference
in intensities of the CMB
and the cosmic HI.



SIS Cosmic 21-cm

We measure the difference
in intensities of the CMB
and the cosmic HI.
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So how do we learn about galaxies and
physical cosmology, from the cosmic
21-cm signal?



Timing of reionization and the properties of

the (unseen) galaxies that drive it

e Galaxy clustering + stellar properties 2 evolution of

large-scale EoR/CD structures
o IR

Abundant, faint galaxies

3

I

§ ;

McQuinn+ 2007

vs Rare, bright galaxies



Patterns in the Epoch of Heating

High-energy processes in the first galaxies are also encoded in the cosmic 21-cm signal

‘hard’ SED ~ HMXBs ‘soft” SED ~ hot ISM

50

-150

-200

differences are easily detectable with HERA and the SKA
Pacucci, AM + 2014



More exotic sources of early IGM heating?

e Cosmic Rays? (e.g. Leite+2017; Jana and Nath 2018; Gessey-
Jones+2023)

e Dark matter annihilations? (e.g. Evoli, AM+2014; Lopez-
Honorez+2016)

e Dark matter decay? (e.g. Facchinetti+ 2023; Sun+2025)

stay tuned...
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Measuring the expansion history
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That sounds great, but where are we now?



Current status
global experiments

Letter Published: 01 March 2018

An absorption profile centred at 7S megahertzin the
Claim of a detection by EDGES sky-averaged spectrum

Judd D. Bowman &4, Alan E. E. Rogers, Raul A. Monsalve, Thomas J. Mozdzen & Nivedita Mahesh

Nature 555, 67-70 (2018) | Cite this article

Age of the Universe (Myr) 41k Accesses | 1056 Citations | 2063 Altmetric | Metrics
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Cosmic 21-cm si
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How to get a deep sorption trough?

b/ L+z 015 \V2 raph?y
s\ 10 Qyh? 0.023

(ST(,(I/) ~ 27XHI(]~ -+ (Snl) (

Either:
(i) increase numerator (extra radio background; e.g. Mirocha &
Furlanetto 2019; Reis et al. 2020; Sikder et al. 2023) or

(ii) decrease denominator (baryon cooling through DM interaction;
e.g. Barkana 2018; Muiioz & Loeb 2018; Berlin et al. 2018)
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An example: excess radio background from
Poplll hosting galaxies

102
10!

10°

e

= '__ =| SFRDyy; [meyr 'Mpc™ 10-3

—200

—400

5 10 15 20 25 30

<
self-sterilize through the build up of a LW background —>
no need for ad-hod z_off parameter Cang, AM+ 2024



An example seemingly consistent with data
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Doesn’t actually explain the data!
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An example seemingly consistent with data

Backward-model using Flattened Gaussian

Forward-model with Physical model

Almost all previous work just used this
recovered profile to claim their
cosmological model explains the data

One must use the likelihood in data space, NOT use some pseudo-likelihood
based on flattened Gaussian recovery (see also Sims & Pober 2020)

Cang, AM+ 2024



EDGES actually DISFAVORS a strong cosmical signal
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Physical models actually get in the way of foregrounds+systematics, which do a
better job of explaining the signal.



Current status
global experiments

Claim of a detection by EDGES

BUT

No evidence of the signal in SARAS3 at 20
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N Singh+ 2021
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Current status
global experiments

Claim of a detection by EDGES
BUT
No evidence of the signal in SARAS3

Upcoming results from REACH, MIST, RHINO, etc.
updates from EDGES, SARAS

The interpretation is very challenging: with only an average measurement,
you need to understand the systematics / sky / instrument to extremely
high accuracy



I R Interferometry is both more

' 77.. ~ —

&%, rewarding and easier to confirm

N
.




First generation 21-cm interferometers




Next generation 21-cm interferometer
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Observing is HARD!
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But foregrounds should be smooth in frequency!

0.05

0.00
§
Q . .
i Cosmic signal
-0.05 @
g
€
ke L —0.10
2_
f=55 MHz 7=12
f=109 MHz 2=6 B
. f=203 MHz
- 103
g Foregrounds
>
€

102

2_
f=55 MHz 7=12

figure courtesy of F. Mertens
f=109 MHz z=6



Hope is to measure PS in the “EoR window”
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Measurements are improving, but currently
only upper limits on the PS
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Measurements are improving, but currently
only upper limits on the PS
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Can we learn something from upper limits that
are still x10-100 above the expected signal?



What kind of models are the easiest to rule
out (i.e. have the largest power)?
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What kind of models are the easiest to rule
out (i.e. have the largest power)?
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What kind of models are the easiest to rule
out (i.e. have the largest power)?

| ‘ H T\ (142 015 \'/* [ Qh?
OTo(v) ~ 21Xl + w7 H) (1 - T_;) ( 10 QMhz) (0-023) -

~01—1



What kind of models are the easiest to rule
out (i.e. have the largest power)?
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What kind of models are the easiest to rule
out (i.e. have the largest power)?

H T\ /1+z 0.15 \ /2 / Q,h2
5Tb(l/) ~ 27XHI(1 +5nl) (dVr/dr + H ) (1 - T_;) ( 10 QMh2> (002?,) mK

Models that are ruled out must have:

coLp I6M: Ty < T,




What kind of models are the easiest to rule
out (i.e. have the largest power)?

: - H T\ /142 015 \'* / Qyh?
OTo(v) ~ 2T%ar(L + O (dv,/dr T H) (1 B T_S) ( 10 sth'Z) (0.023) mi
Models that are ruled out must have:

coLp I6M: Ty < T,
+

Spatial fluctuations in either:
e jonization fraction (patchy EoR)
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What is heating the IGM?
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But heating could also come from the dark sector

* Contribution from dark matter:

o dark matter decay:

dE P, 1+ 2°T
avii ). : - Pro
injected

o dark matter annihilation:

dE o, c
I
injected

dVdt p m,

sensitive to halo sub-structure (e.g. Evoli, AM+2014; Lopez-Honorez+2016)



But heating could also come from the dark sector

4 Galaxy contrlbutlon |s not mcluded here
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Modeling 21cm with both galaxies and DM decay

* ex021cmFAST (Facchinetti+2024)

o Uses 21cmFAST(e.g. AM+2011) to compute 4D IGM lightcones,
following inhomogeneous galactic radiation fields

o including DarkHistory (Liu+2020) for energy deposition of dark
matter decay and annihilation in e*e~or yy.

see also DM21cm by Sun et al. 2025...



Modeling 21cm with both galaxies and DM decay
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Achievable constraints with 21cm PS
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Is there a smoking gun?

Smoking gun could be provided by DM heating/cooling/coupling Ts
BEFORE galaxies form (e.g. Evoli, AM+2014; Agius & Slatyer 2025)

Might require going to very high redshifts —> space/moon based telescopes?

Otherwise, we need Bayesian model selection (Montes-Doria+, in prep)



Conclusions

e The cosmic 21cm signal will allow us to learn the properties of the unseen
first galaxies as well as physical cosmology.
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Conclusions

The cosmic 21cm signal will allow us to learn the properties of the unseen
first galaxies as well as physical cosmology.

Contrary to initial claims, the EDGES “detection” of the global signal
disfavors a radio background excess during the cosmic dawn; stay tuned for
implications for millicharged DM...

Upper limits on the 21-cm power spectrum by SKA precursor, HERA, imply
some heating of the IGM by z>10.

If heating is provided by high mass X-ray binary stars, they are likely more
luminous then local ones, likely due to their low-metallicities.

Future 21cm power spectrum detections can place tighter constraints on
dark matter decay lifetimes than existing probes in the low-mass regime



