

Beyond WIMP Dark Matter

Laura Lopez Honorez

TeVPA, Valencia, 3-7/11/2025

84% of the matter content is made of Dark Matter

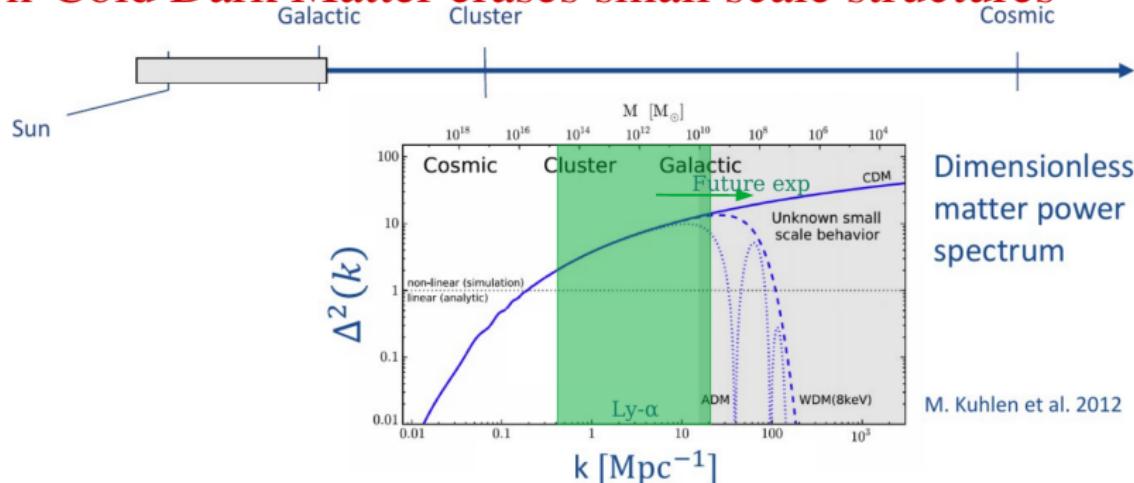
DM Particle: Wide range of mass

see also [M. Taoso talk]

Some a priori benchmarks:

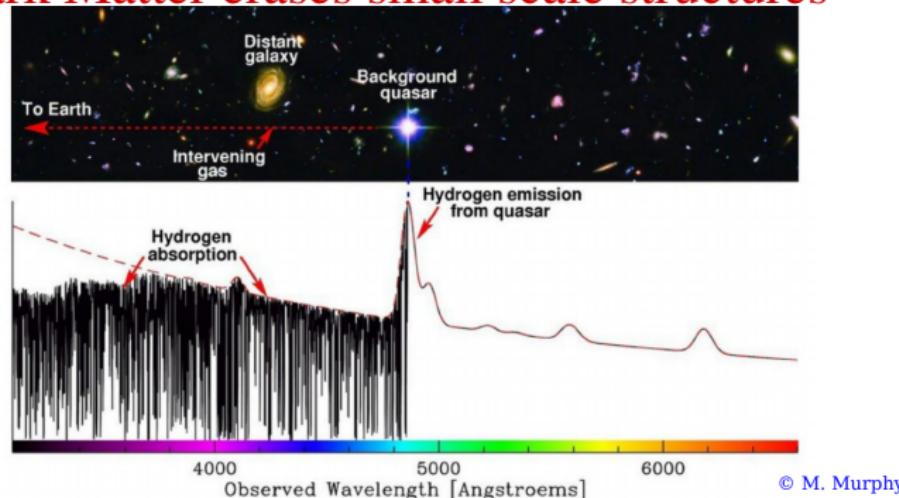
- **Bosonic DM:** $m_{\text{DM}} > 10^{-22} \text{ eV}$ for $\lambda_{\text{DB}} < \text{kpc}$
in addition: $m_{\text{DM}} < \text{few tens of eV}$ wave-like behaviour $\lambda_{\text{DB}} > n_{\text{DM}}^{-1/3}$
[see J. Redondo talk]
- **Fermionic DM:** $m_{\text{DM}} > \text{few tens of eV}$
from Pauli exclusion in astro objects.
- $m_{\text{DM}} \sim 100 \text{ TeV}$: unitary limit for annihilating DM
non-perturbative physics shall be accounted for [von Harling & Petraki '14, Smirnov & Beacom'19]+ non-thermal DM, non-standard cosmo can go beyond e.g. [Asassi'21]
- $m_{\text{DM}} > 10^{19} \text{ GeV} \sim 10^{-38} M_{\odot}$: macroscopic objects (PBH) e.g. [Byrnes talk]
~~ can also source DM particle production with e.g. Non Cold signatures

DM Particle: Wide range of mass


see also [M. Taoso talk]

Some a priori benchmarks:

- **Bosonic DM:** $m_{\text{DM}} > 10^{-22} \text{ eV}$ for $\lambda_{\text{DB}} < \text{kpc}$
in addition: $m_{\text{DM}} < \text{few tens of eV}$ wave-like behaviour $\lambda_{\text{DB}} > n_{\text{DM}}^{-1/3}$
[see J. Redondo talk]
- **Fermionic DM:** $m_{\text{DM}} > \text{few tens of eV}$
from Pauli exclusion in astro objects.
- $m_{\text{DM}} \sim 100 \text{ TeV}$: unitary limit for annihilating DM
non-perturbative physics shall be accounted for [von Harling & Petraki '14, Smirnov & Beacom'19]+ non-thermal DM, non-standard cosmo can go beyond e.g. [Asassi'21]
- $m_{\text{DM}} > 10^{19} \text{ GeV} \sim 10^{-38} M_{\odot}$: macroscopic objects (PBH) e.g. [Byrnes talk]
~~ can also source DM particle production with e.g. Non Cold signatures

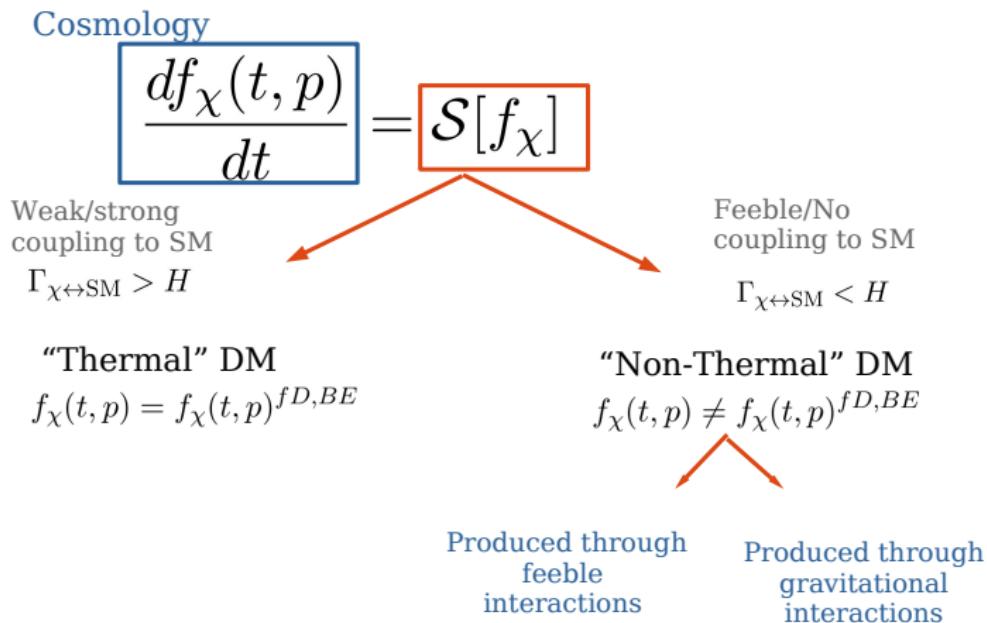

In the talk we focus on *some* particle DM candidates (bosons or fermions) beyond WIMPs giving rise to specific non-cold signatures in Cosmology.

Non-Cold Dark Matter erases small scale structures

- WDM free-streaming from overdense to underdense regions
 \rightsquigarrow Smooth out inhomogeneities for $\lambda \lesssim \lambda_{FS} \sim \int v/adt$
- Effects $P(k)$ generalized to **Non-Cold DM** see e.g. [Bode'00, Viel'05, Murgia'17], including non-thermal FIMPs or e.g. DM from PBH evap. [or e.g. free-streaming ALPs, see also R. Impavido talk]

Non-Cold Dark Matter erases small scale structures

- WDM free-streaming from overdense to underdense regions
 \rightsquigarrow Smooth out inhomogeneities for $\lambda \lesssim \lambda_{FS} \sim \int v/adt$
- Effects $P(k)$ generalized to **Non-Cold DM** see e.g. [Bode'00, Viel'05, Murgia'17], including non-thermal FIMPs or e.g. DM from PBH evap. [or e.g. free-streaming ALPs, see also R. Impavido talk]
- Tested against **Lyman- α** : absorption lines along line of sights to distant quasars probe smallest structures $\rightsquigarrow m_{WDM}^{\text{thermal}} > 5.3\text{-}5.7 \text{ keV}$
 see e.g. [Viel'05, Yehc'e'17, Palanque-Delabrouille'19, Garzilli'19, Isric'23]


DM Production: Model and Cosmology Dependent

Cosmology

$$\frac{df_\chi(t, p)}{dt} = \mathcal{S}[f_\chi]$$

Particle Physics ?

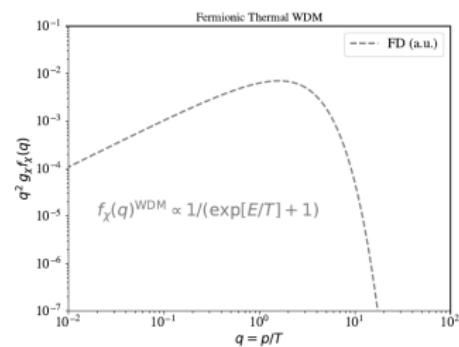
DM Production: Model and Cosmology Dependent

WIMP is under pressure ...
but not dead

WIMP Dark Matter

Weakly Interacting Massive particles coined in 1985 [\[Steigman & Turner\]](#) originally for CDM particles (heavy ν , SUSY, axions).

WIMP Dark Matter


Weakly Interacting Massive particles coined in 1985 [Steigman & Turner] originally for CDM particles (heavy ν , SUSY, axions).

- Relic Abundance:
Produced through freeze-out

Cosmology

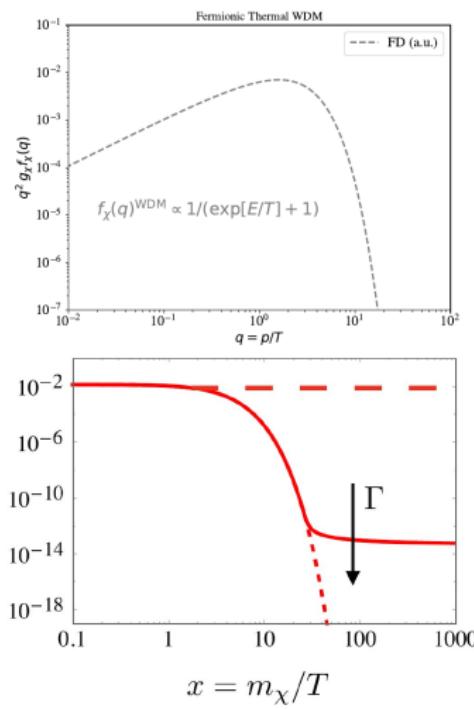
$$\frac{df_\chi(t, p)}{dt} = \mathcal{C}[f_\chi]$$

Particle Physics

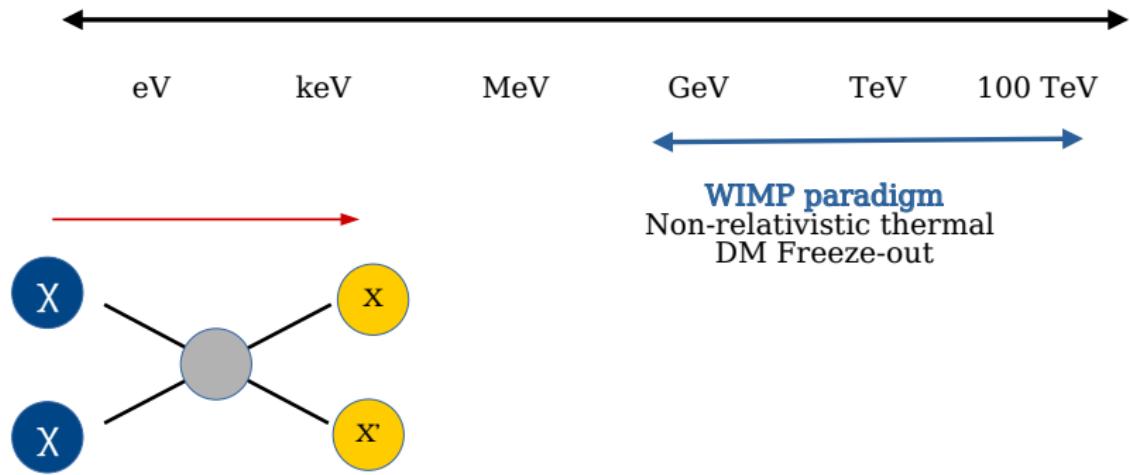
- WIMP assumptions
 - \sim Weak interactions
 - In thermal and chemical equilibrium with SM initially

WIMP Dark Matter

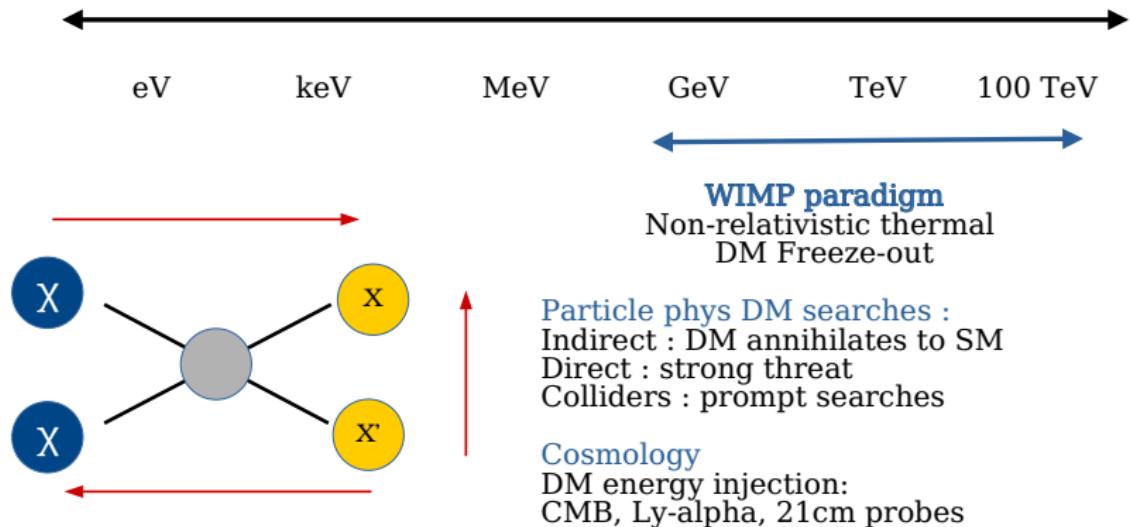
Weakly Interacting Massive particles coined in 1985 [Steigman & Turner] originally for CDM particles (heavy ν , SUSY, axions).


- Relic Abundance:
Produced through freeze-out

Cosmology

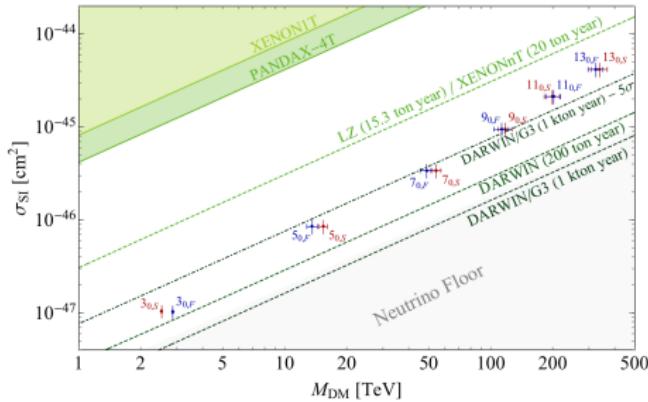

$$\frac{df_\chi(t, p)}{dt} = \mathcal{C}[f_\chi]$$

Particle Physics


- WIMP assumptions
 - \sim Weak interactions
 - In thermal and chemical equilibrium with SM initially
 - Non relativistic DM
 - Radiation dom. era

Large mass range: WIMP (testable!?) Paradigm

Large mass range: WIMP (testable!?) Paradigm


WIMP: Strong threat from direct DM searches

Predictive WIMP benchmark: Minimal DM [Cirelli'05]

DM = EW multiplet $n > 1$, including $\chi_{Q=0}$

& need Z_2 stabilizing symmetry for $n < 5$

- Very predictive: $SU(2)_L$ interactions
- Connecting dots? H -portal between n and $n + 1$ [Oncala'21,LLH'17]

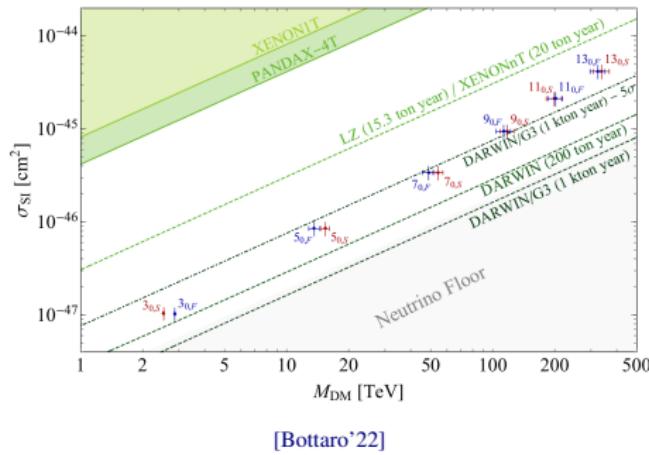
[Bottaro'22]

WIMP: Strong threat from direct DM searches

Predictive WIMP benchmark: Minimal DM [Cirelli'05]

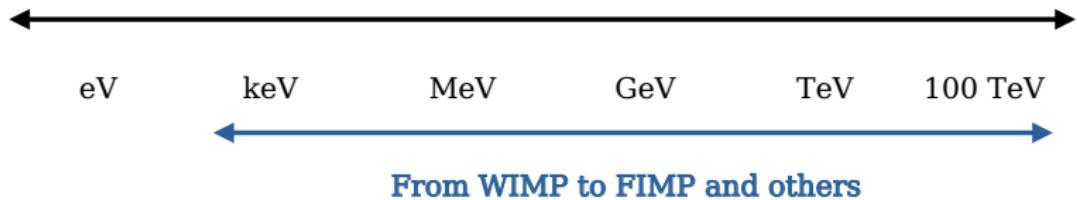
DM = EW multiplet $n > 1$, including $\chi_{Q=0}$
& need Z_2 stabilizing symmetry for $n < 5$

- Very predictive: $SU(2)_L$ interactions
- Connecting dots? H -portal between n and $n + 1$ [Oncala'21,LLH'17]

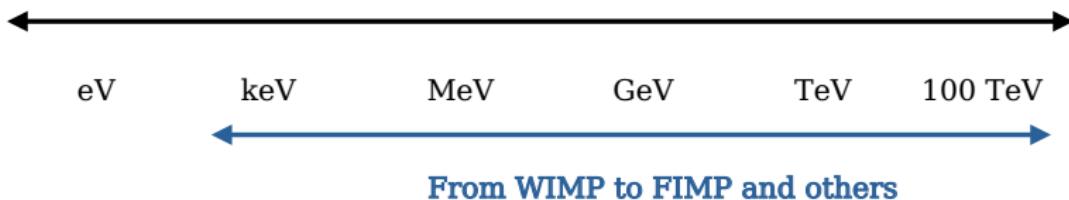

• Theory Challenge

Accurate DM relic and Indirect signatures (γ lines)
needs Sommerfeld, bound state treatment [Oncala'21, Beacom'19, Mitratech'17.]

- **Exp. Challenge:** go deeper
Direct Detection & Indirect detection


[M. Taoso, D. Cerdeño + Mon-Thur talks]

- $n = 3$ ruled out by Fermi (even for large core) [Safdi & Xu '25]



Beyond WIMP with feeble interactions

From WIMP to FIMP: thermal and non-thermal candidates

From WIMP to FIMP: thermal and non-thermal candidates

Thermal to non thermal DM production :

Mediator annihilation/Conversion/Semi-annihilation
driven Freeze-out ; Freeze-in - Super-WIMP ; +
+SIMPs ; asymmetric DM ; etc

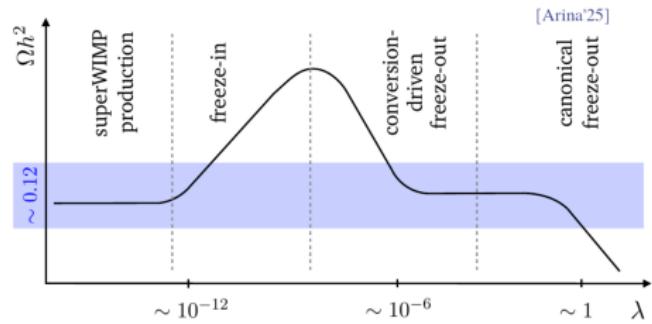
Particle physics searches : [see talks D. Cerdeño, M. Taoso, S. Lowette]

Direct DM searches: sub-GeV challenge

Colliders : Displaced vertex searches

Beam-dump experiments

Cosmology : [see e.g. A. Mesinger, D. Agius talks]

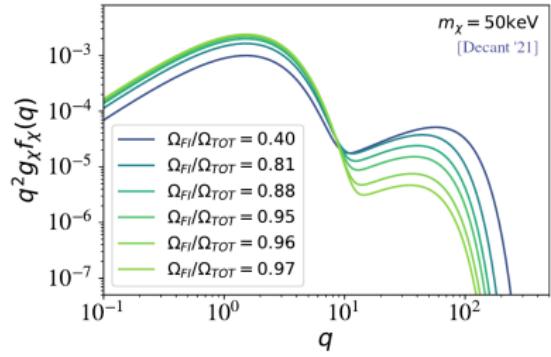
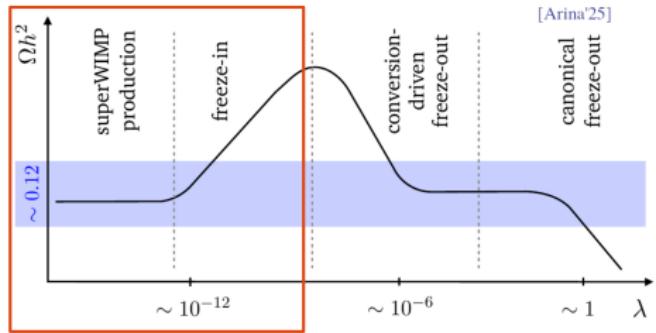

BBN (~MeV), Lyman-alpha (non-cold), ΔN_{eff} , energy injection, 21cm probes

From WIMP to FIMP: t-channel as illustrative framework

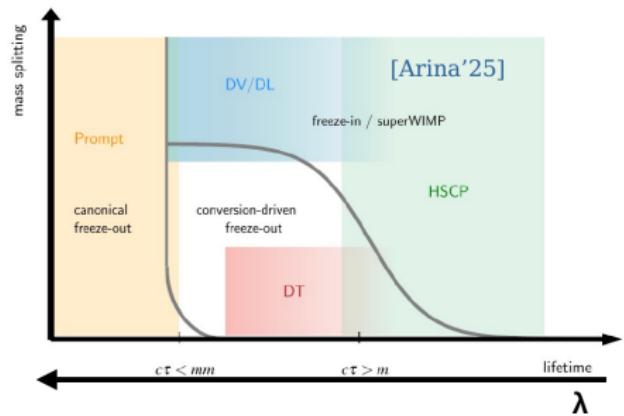
t-channel models require 2 dark sector particles $X = \text{DM}$, $Y = \text{mediator}$

$$\mathcal{L} = \lambda X Y S M + h.c.$$

- Relic Abundance: Can continuously go from thermal relics with DM Freeze-out ($XX \rightarrow \text{SMSM}$) to non-thermal relics from Freeze-in and Super-WIMP (set by $Y \rightarrow X$) by decreasing the coupling λ .

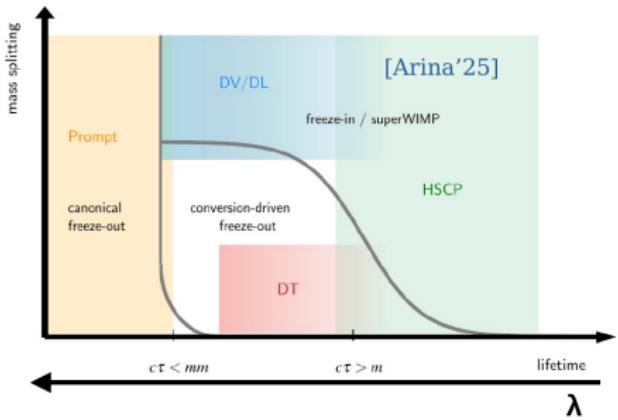
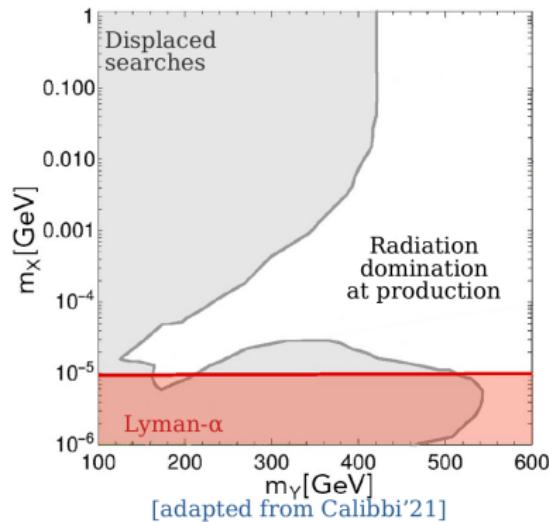


From WIMP to FIMP: t-channel as illustrative framework

t-channel models require 2 dark sector particles $X = \text{DM}$, $Y = \text{mediator}$

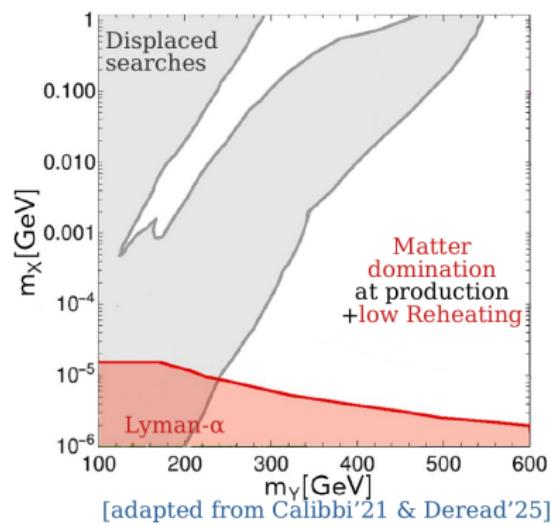
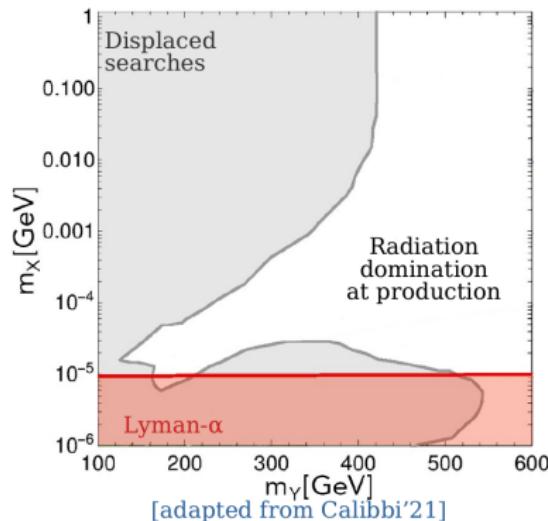

$$\mathcal{L} = \lambda X Y S M + h.c.$$

- Relic Abundance: Can continuously go from thermal relics with DM Freeze-out ($XX \rightarrow \text{SMSM}$) to non-thermal relics from Freeze-in and Super-WIMP (set by $Y \rightarrow X$) by decreasing the coupling λ .

- FIMPs characteristics
 - feeble interactions ($\lambda \ll 1$)
 - non thermal distribution
 - imprint sensitive to early universe Cosmo

From WIMP to FIMP: t-channel as illustrative framework



- **Colliders** may help to probe each regimes see also [S. Lowette talk]

From WIMP to FIMP: t-channel as illustrative framework

- **Colliders** may help to probe each regimes see also [S. Lowette talk]
- Complementarity with **Cosmo** probes for FIMPs (Ly- α , BBN, etc)

From WIMP to FIMP: t-channel as illustrative framework

- **Colliders** may help to probe each regimes see also [S. Lowette talk]
- Complementarity with **Cosmo probes for FIMPs** (Ly- α , BBN, etc)
- **Modified early Cosmology** with late Reheating see also [N. Barbieri talk]: can improve collider reach and suppress Cosmology bound

Challenge: Large parts of the parameter space are still to be reached

need complementary Astro-Particle-Cosmo exp. efforts to constrain or validate key signatures.

Beyond WIMP

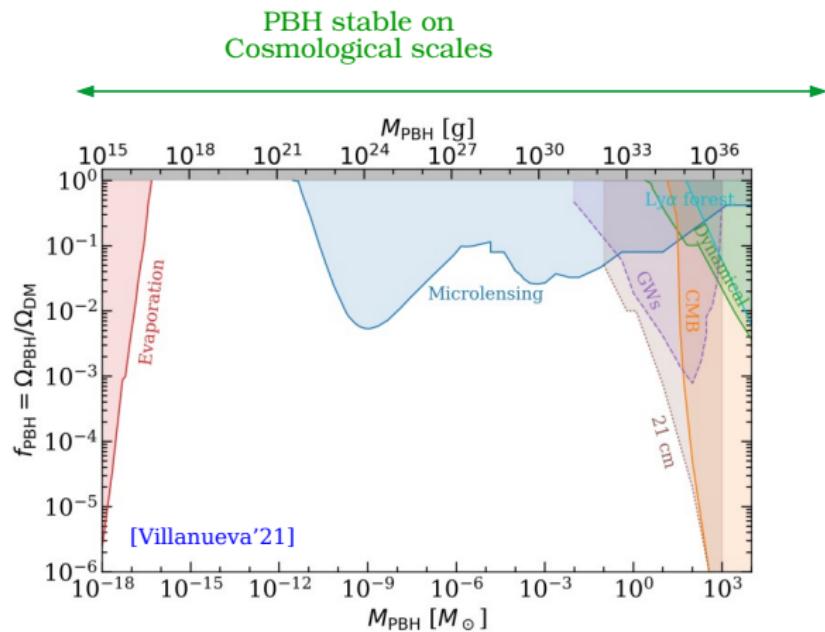
Gravitational production (not even feeble interactions)

Production of not even feebly coupled DM

- **Cosmological gravitational particle production (CGPP)**

particle production from vacuum due to time evol. of the bkgd grav. field due to the expansion of the Universe.

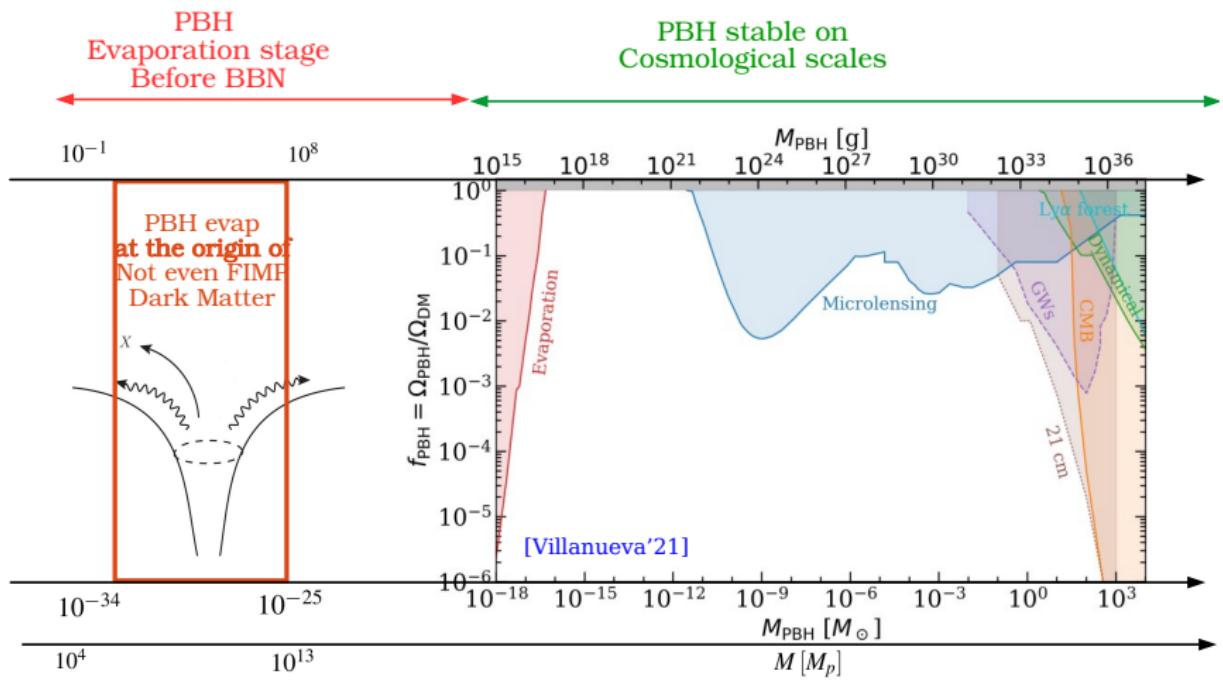
[see e.g. Kolb'23 review, Garcia'23 for NCDM]


- **DM production from evaporating PBH**

Discussed here

PBH evaporation and Dark Matter

see also e.g. [Bauman'07, Fujita'14, Allahverdi'17, Lennon'17, Morrison'17, Hooper'19+, Masina'20, Keith'20, Gondolo'20, Bernal'20+, ...]

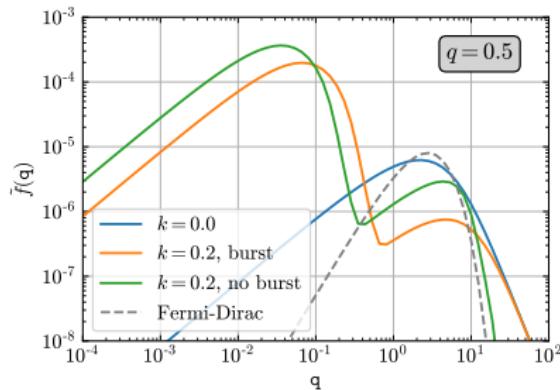

Barman'24, Haque'24 and C. Byrnes talk]

PBH evaporation and Dark Matter

see also e.g. [Bauman'07, Fujita'14, Allahverdi'17, Lennon'17, Morrison'17, Hooper'19+, Masina'20, Keith'20, Gondolo'20, Bernal'20+,...]

Barman'24, Haque'24 and C. Byrnes talk]

NCDM from PBH evaporation


PBHs may be light enough to decay via **Hawking radiation** at an early enough epoch to avoid all previous constraints.

- DM particles (and SM) will be produced from PBH evaporation given **gravitational interactions** (not even FIMPs needed).
- For $m_{DM} < T_{BH}^{init} = M_p^2 / (8\pi M_{BH}^{init})$, behave as **non-thermal NCDM**.

NCDM from PBH evaporation

PBHs may be light enough to decay via **Hawking radiation** at an early enough epoch to avoid all previous constraints.

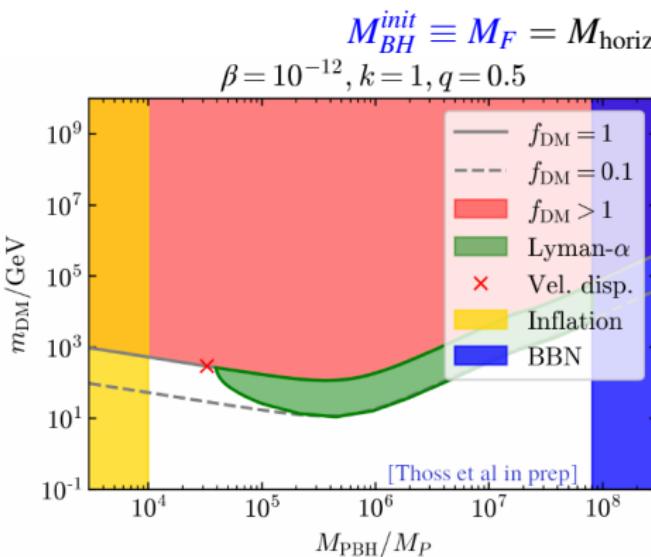
- DM particles (and SM) will be produced from PBH evaporation given **gravitational interactions** (not even FIMPs needed).
- For $m_{DM} < T_{BH}^{init} = M_p^2 / (8\pi M_{BH}^{init})$, behave as **non-thermal NCDM**.

DM production/NCDM properties depends on the initial PBH abund. β , memory burden [Dvali'18] k and q (starting for $M_{BH} = q M_{BH}^{ini}$ and evap. slow down as $dN_{DM}/dt \propto S^{-k}$), DM and PBH mass, etc see also e.g. Barman'24, Haque'24.

PBH evaporating after inflation and before BBN

see also [Barman'24, Haque'24]

PBH generation: after inflation an initially large density perturbation at sufficiently small scale can collapse to form a PBH with mass of order the horizon mass.
 [Zeldovich & Novikov; Hawking; Carr & Hawking]


$$M_{BH}^{init} \equiv M_F = M_{\text{horiz}} = \gamma \rho_{\text{tot}} \times 4\pi / (3H_F^3)$$

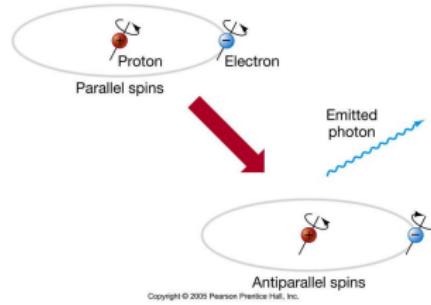
- PBH formed **after inflation**:
 $t_F > t_{\text{infl}} \rightarrow M_F > 10^4 M_p$
- PBH evaporate before BBN:
 $t_{\text{ev}} < t_{BBN} \rightarrow M_F < M_{\text{max}}^{\text{ev}}$
- DM abundance depends on the initial BH fraction: $\beta \equiv \rho_{\text{PBH}} / \rho_{\text{tot}}|_{t_F} \leq 1$

PBH evaporating after inflation and before BBN

see also [Barman'24, Haque'24]

PBH generation: after inflation an initially large density perturbation at sufficiently small scale can collapse to form a PBH with mass of order the horizon mass.
 [Zeldovich & Novikov; Hawking; Carr & Hawking]

- PBH formed **after inflation**: $t_F > t_{\text{infl}} \rightarrow M_F > 10^4 M_p$
- PBH evaporate before BBN: $t_{\text{ev}} < t_{\text{BBN}} \rightarrow M_F < M_{\text{max}}^{\text{ev}}$
- DM abundance depends on the initial PBH fraction: $\beta \equiv \rho_{\text{PBH}} / \rho_{\text{tot}}|_{t_F} \leq 1$

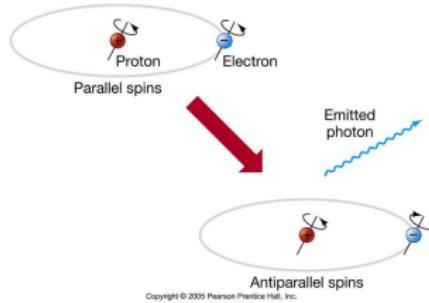

Lyman- α bound: can exclude NCDM with $m_{\text{DM}} \gg \text{keV}$.
 NCDM always excluded in MD era ($\beta > \beta_c$)

21cm Cosmology future NCDM probe?

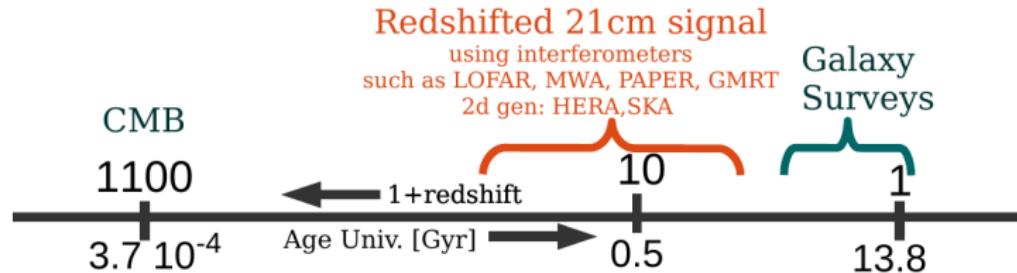
Cosmic Dawn and 21 cm Cosmology?

see also Andrei Mesinger talk

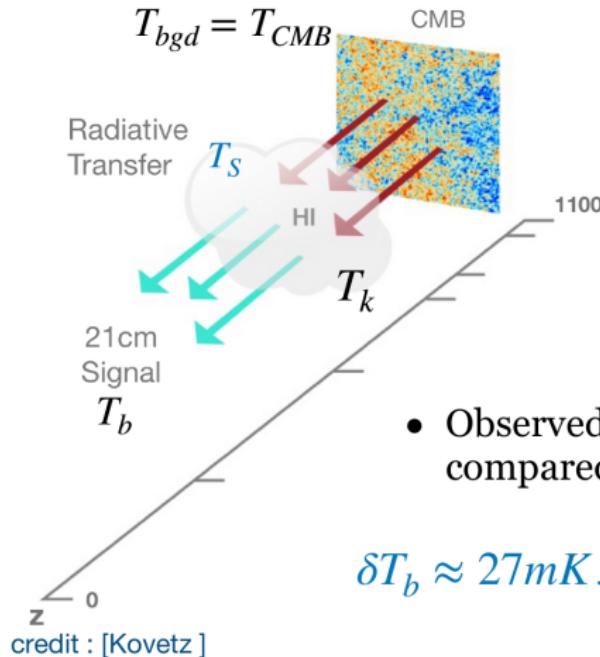
The most powerful probe of the Cosmic Dawn (\equiv period where first galaxies started to shine) up until reionization (EoR) is 21 cm spin flip line of HI :



- Transitions between the two ground state energy levels of neutral hydrogen HI
- \rightsquigarrow 21 cm photon ($\nu_0 = 1420$ MHz)

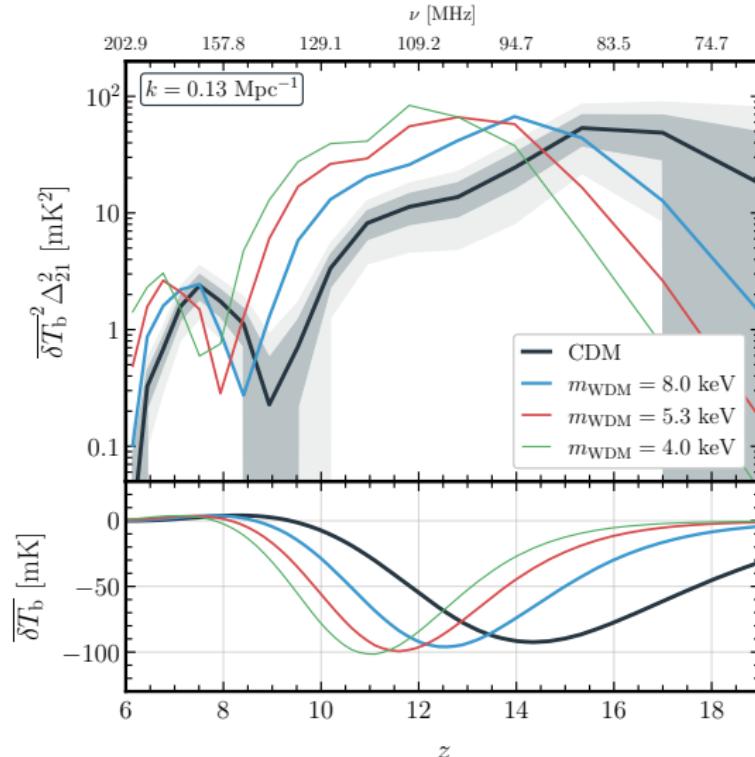

Cosmic Dawn and 21 cm Cosmology?

see also Andrei Mesinger talk


The most powerful probe of the Cosmic Dawn (\equiv period where first galaxies started to shine) up until reionization (EoR) is 21 cm spin flip line of HI :

- Transitions between the two ground state energy levels of neutral hydrogen HI
 \rightsquigarrow 21 cm photon ($\nu_0 = 1420$ MHz)
- 21 cm photon from HI clouds during Cosmic Dawn & EoR redshifted to $\nu \sim 100$ MHz
 \rightsquigarrow new cosmology probe

21 cm Cosmology in practice

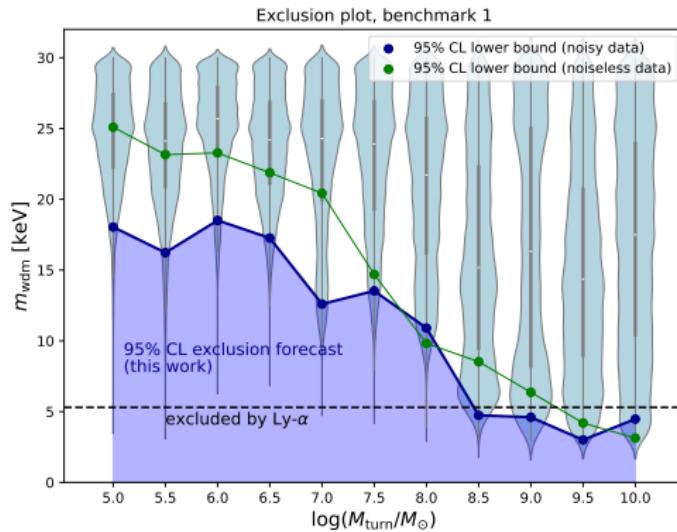

- 21cm signal observed as CMB **spectral distortions**
- The spin temperature (= excitation T of HI) characterises the relative occupancy of HI gnd state

$$n_1/n_0 = 3 \exp(-h\nu_0/k_B T_S)$$
- Observed brightness of a patch of HI compared to CMB at $\nu = \nu_0/(1+z)$

$$\delta T_b \approx 27mK x_{HI}(1+\delta) \sqrt{\frac{1+z}{10}} \left(1 - \frac{T_{CMB}}{T_S} \right)$$

Delayed 21cm features for NCDM

see also [Sitwell'13, Escudero'18, Schneider'18, Safarzadeh'18, Lidz'18, LLH'18, Muñoz'20, Schneider'22, Giri'22, Schosser'24, Decant'24]

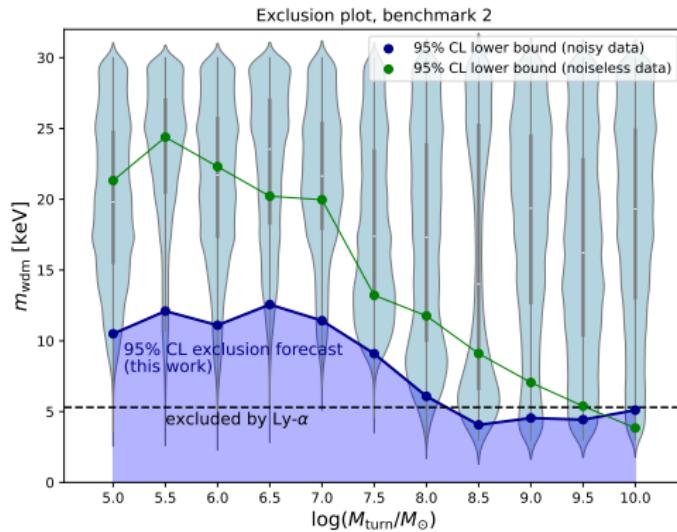

NCDM low mass halo suppression can lead to **delayed** ion, exc, heat.

21cm Cosmology might improve WDM bound

see also [Giri'22, Kovetz'22, Schosser'24, Decant'24]

Considering one single population of galaxies of fixed M_{turn}

Lower M_{turn} allow to probe higher m_{WDM}
 \equiv colder NCDM


To improve on existing bounds, we need $M_{\text{turn}} < 10^8 M_{\odot}$. [Decant'21]

For the lowest $M_{\text{turn}} = 10^5 M_{\odot}$, the improvement on the lower bound on m_{WDM} reached by HERA will depend on the CD galaxies properties.

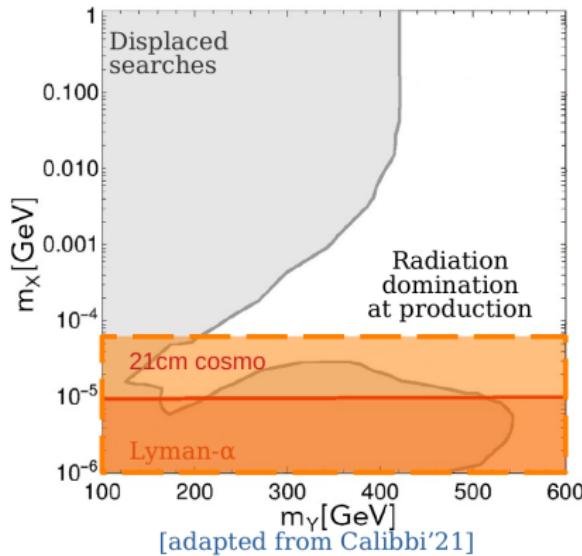
21cm Cosmology might improve WDM bound

see also [Giri'22, Kovetz'22, Schosser'24, Decant'24]

Considering one single population of galaxies of fixed M_{turn}

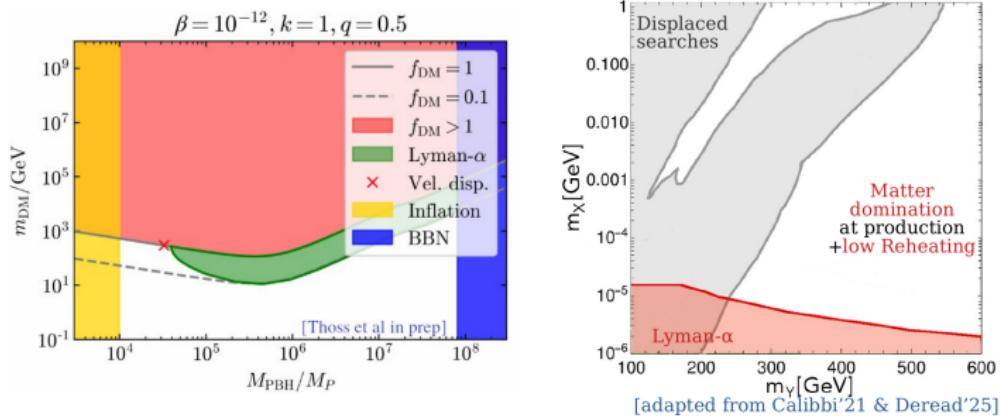
Lower M_{turn} allow to probe higher m_{WDM}
 \equiv colder NCDM

Increasing X-ray params
 \rightsquigarrow suppressed contrast
 \rightsquigarrow more challenging.


see also D. Agius talk

To improve on existing bounds, we need $M_{\text{turn}} < 10^8 M_{\odot}$. [Decant'21]

For the lowest $M_{\text{turn}} = 10^5 M_{\odot}$, the improvement on the lower bound on m_{WDM} reached by HERA will depend on the CD galaxies properties.


21cm Cosmology might improve NCDM bound

see also [Giri'22, Kovetz'22, Schosser'24, Decant'21, Ballesteros'20]

assuming that the bound on $m_{\text{DM}}^{\text{FI}} \propto (m_{\text{WDM}}^{\text{21cm}})^{4/3}$
 and $m_{\text{WDM}}^{\text{21cm}} < 15 \text{ keV}$, which would be the best case scenario.

Take home message

- WIMP DM is under pressure but not dead
- Yet there is a wide range of possibilities to be explored beyond WIMP.
- If (not even) feebly coupled DM, the challenge will be to use all probes to characterize DM.
- Complementarity between astro-cosmo-particle is an asset.

Thank you for the invitation
and for your attention!!

Backup

Translating WDM bound to NCDM?

see also [Kamada'19, Baumholzer'19, Ballesteros'20, d'Eramo'20, Decant'21]

Naive estimate for “similar velocity distributions” :

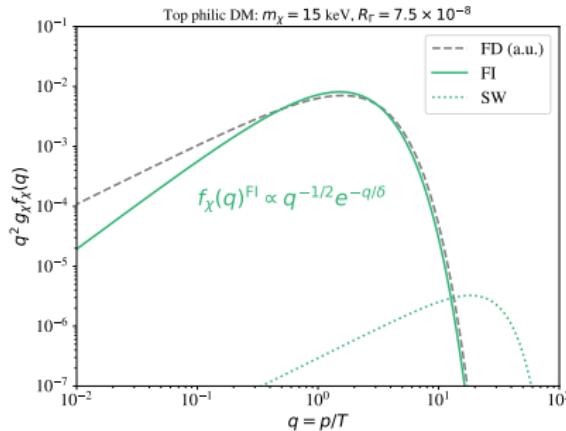
$$\langle v_\chi \rangle|_{t_0}^{\text{NCDM}} \geq \langle v_\chi \rangle|_{t_0}^{\text{WDM lim}}$$

with $\langle v_\chi \rangle|_{t_0} = \frac{\langle p_\chi \rangle}{m_\chi} \Big|_{t_0} = \frac{\langle p_\chi \rangle}{T} \Big|_{t_{\text{prod}}} \times \left(\frac{g_{*S}(t_0)}{g_{*S}(t_{\text{prod}})} \right)^{1/3} \times \frac{T_0}{m_\chi}$

Translating WDM bound to NCDM?

see also [Kamada'19, Baumholzer'19, Ballesteros'20, d'Eramo'20, Decant'21]

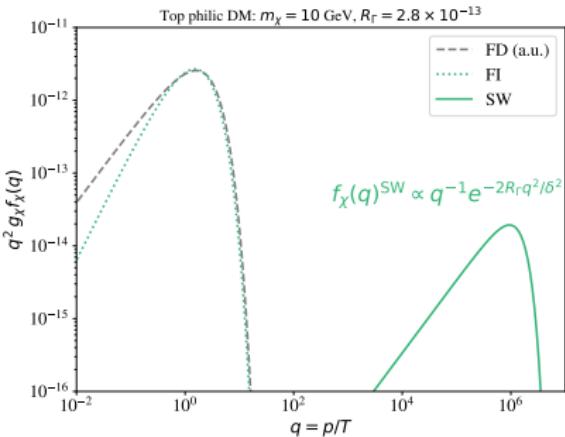
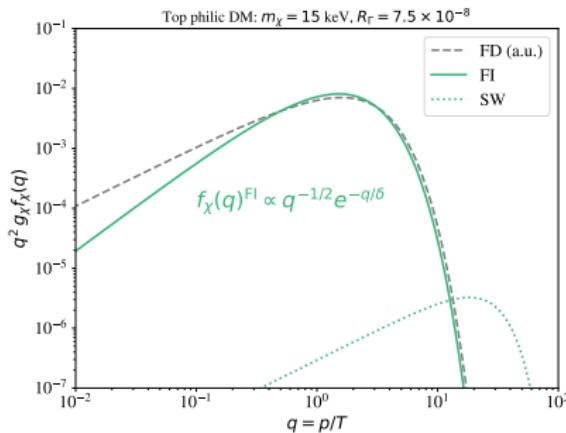
Naive estimate for “similar velocity distributions” :


$$\langle v_\chi \rangle|_{t_0}^{\text{NCDM}} \geq \langle v_\chi \rangle|_{t_0}^{\text{WDM lim}}$$

$$\text{with } \langle v_\chi \rangle|_{t_0} = \frac{\langle p_\chi \rangle}{m_\chi} \Big|_{t_0} = \frac{\langle p_\chi \rangle}{T} \Big|_{t_{\text{prod}}} \times \left(\frac{g_{*S}(t_0)}{g_{*S}(t_{\text{prod}})} \right)^{1/3} \times \frac{T_0}{m_\chi}$$

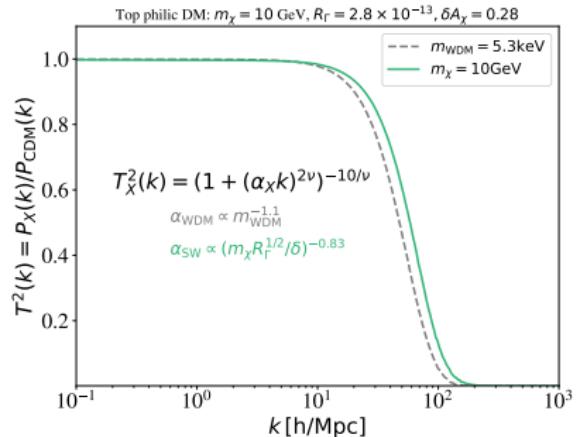
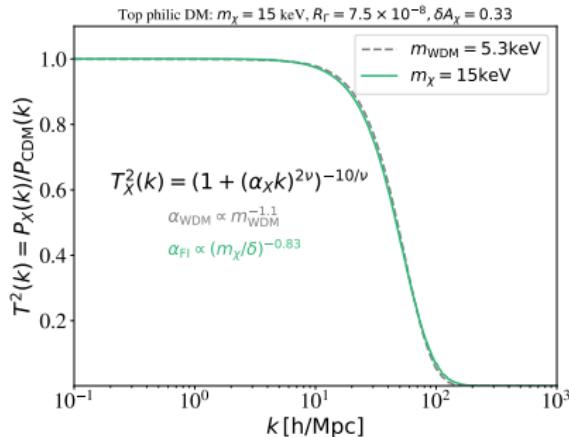
- WDM: $\Omega_\chi h^2 = 0.12 \rightsquigarrow g_{*,S}(T_D) \simeq 10^3 \times \frac{m_\chi}{\text{keV}}$
 $\Rightarrow \langle v_\chi \rangle|_{t_0}^{\text{WDM}} \propto m_{\text{WDM}}^{-4/3}$
- FI: $T_{\text{prod}} \sim m_B/3$ and $\langle p_\chi \rangle|_{t_{\text{prod}}} \sim m_B/2$
 $\Rightarrow \langle v_\chi \rangle|_{t_0}^{\text{FI}} \propto m_\chi^{-1}$
- SW: $T_{\text{prod}} \sim \sqrt{\Gamma_B M_{Pl}}$ and $\langle p_\chi \rangle|_{t_{\text{prod}}} \sim m_B/2$, with $R_\Gamma = \Gamma_B M_{Pl}/m_B^2$
 $\Rightarrow \langle v_\chi \rangle|_{t_0}^{\text{SW}} \propto m_\chi^{-1} \times R_\Gamma^{-1/2}$
- PBH: $T_{\text{prod}} \sim M_{\text{PBH}}^{-3/2}$ and $\langle p_\chi \rangle|_{t_{\text{prod}}} \sim 6.3/M_{\text{PBH}}$
 $\Rightarrow \langle v_\chi \rangle|_{t_0}^{\text{PBH}} \propto m_\chi^{-1} \times M_{\text{PBH}}^{1/2+k}$

“Pure” FI & SW: WDM-like



see also [Petraki’16, Heeck’17, Boulebnane’17, Kamada’19, Baumholzer’19, Ballesteros’20, d’Eramo’20]

- Contrarily to “usual” WDM, FIMPs are non-thermally produced. Distribution $f_\chi \propto q_\star^{-\alpha} \exp(-q_\star^\beta)$ with $\alpha = \frac{1}{2}, 1$ and $\beta = 1, 2$ for FI, SW.

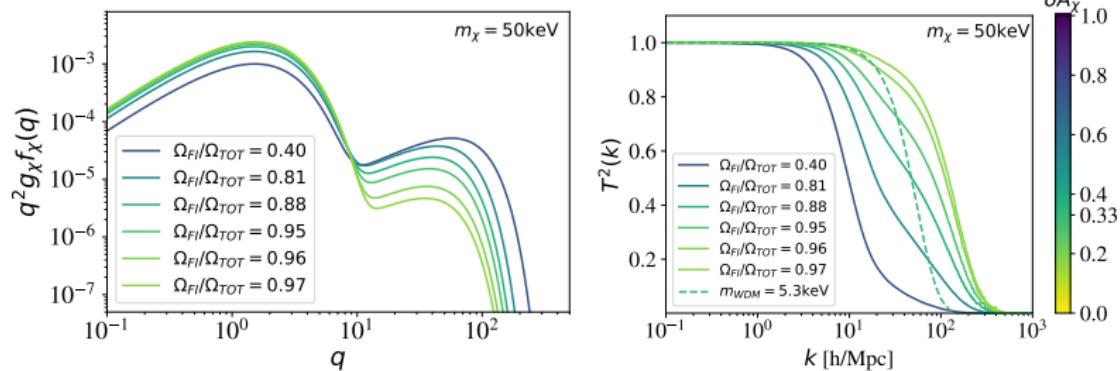
“Pure” FI & SW: WDM-like



see also [Petraki’16, Heeck’17, Boulebnane’17, Kamada’19, Baumholzer’19, Ballesteros’20, d’Eramo’20]

- Contrarily to “usual” WDM, FIMPs are non-thermally produced. Distribution $f_\chi \propto q_\star^{-\alpha} \exp(-q_\star^\beta)$ with $\alpha = \frac{1}{2}, 1$ and $\beta = 1, 2$ for FI, SW.

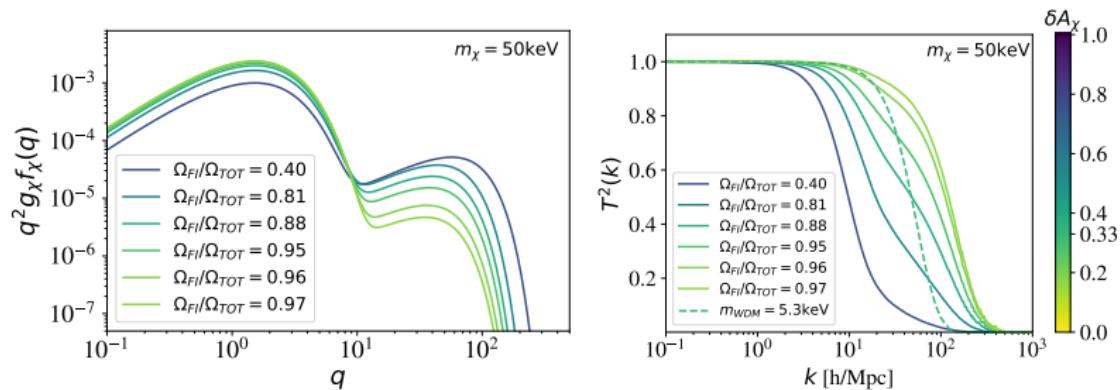
“Pure” FI & SW: WDM-like

see also [Petraki’16, Heeck’17, Boulebnane’17, Kamada’19, Baumholzer’19, Ballesteros’20, d’Eramo’20]



- Contrarily to “usual” WDM, FIMPs are non-thermally produced.
Distribution $f_\chi \propto q_*^{-\alpha} \exp(-q_*^\beta)$ with $\alpha = \frac{1}{2}, 1$ and $\beta = 1, 2$ for FI, SW.
- Modified CLASS:** Pure FI/SW transfer functions similar to thermal WDM.
~~ Lower mass bound from Lyman- α ($m_B \ll m_A$, $T_{\text{prod}} > T_{\text{EW}}$) :

$$m_\chi \gtrsim \begin{cases} 15 \text{ keV} & \text{for FI,} \\ 3.8 \text{ GeV} \times \sqrt{10^{-12}/R_\Gamma} & \text{for SW,} \end{cases} \quad \text{for } m_{WDM}^{\text{Ly}-\alpha} > 5.3 \text{ keV}$$


[Decant, Heisig, Hooper, LLH’21]

Mixed FI & SW: significant deviations from WDM

- Mixed FI-SM $q^2 f_\chi$ is multimodal $\rightsquigarrow T^2(k) = P_{\text{FIMP}}(k)/P_{\text{CDM}}(k)$ can significantly deviate from e.g. WDM, α, β, γ param. or CDM+WDM

Mixed FI & SW: significant deviations from WDM

- Mixed FI-SM $q^2 f_\chi$ is multimodal $\leadsto T^2(k) = P_{\text{FIMP}}(k)/P_{\text{CDM}}(k)$ can significantly deviate from e.g. WDM, α, β, γ param. or CDM+WDM
- We use the area criterion [Murgia'17] measuring the relative $P_{1D}(k)$ deviation over $0.5h/\text{Mpc} < k < 20h/\text{Mpc}$: $\delta A_\chi < \delta A_{\text{WDM}}^{\text{Ly}-\alpha} = 0.33$ for $m_{\text{WDM}}^{\text{Ly}-\alpha} > 5.3 \text{ keV}$
see also [Schneider'16] and e.g. [D'Eramo'20, Egana-Ugrinovic'21]

Modified early cosmology

see also e.g. [Co'15; d'Eramo'17, Calibbi'21, A. G. Garcia'21, Becker'23 etc]

It is usually assumed that the universe is Radiation Dominated (RD) at $T \gtrsim 10$ MeV.

Modified early cosmology

see also e.g. [Co'15; d'Eramo'17, Calibbi'21, A. G. Garcia'21, Becker'23 etc]

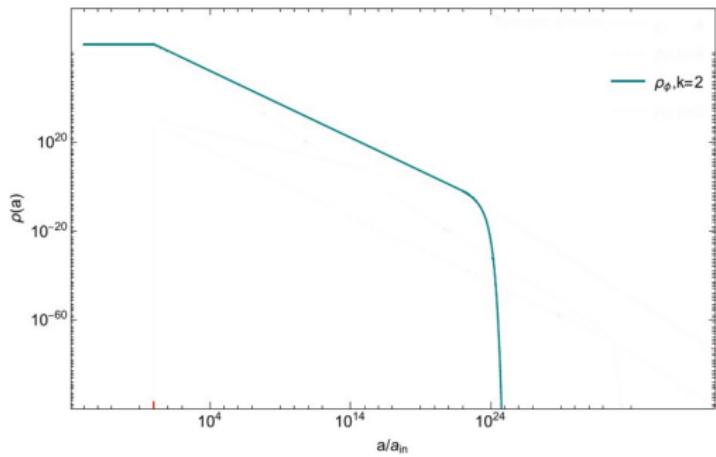
It is usually assumed that the universe is Radiation Dominated (RD) at $T \gtrsim 10$ MeV.

Nothing prevents other early cosmologies: [early Matter](#), [Kination](#), etc domination.

Modified early cosmology

see also e.g. [Co'15; d'Eramo'17, Calibbi'21, A. G. Garcia'21, Becker'23 etc]

It is usually assumed that the universe is Radiation Dominated (RD) at $T \gtrsim 10$ MeV.


Nothing prevents other early cosmologies: **early Matter, Kination, etc domination.**

We consider late time reheating (RH) with inflaton potential $V(\phi) \sim \lambda(\phi/M_p)^k$.

During RH [see Garci'21]:

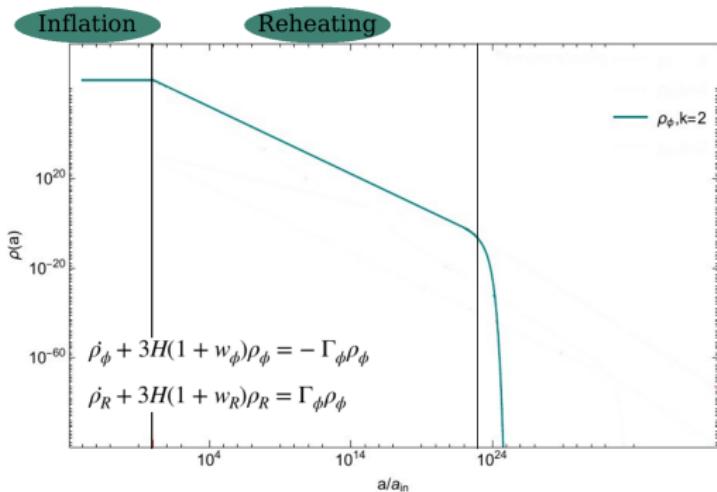
- $w_\phi = \frac{k-2}{k+2}$
- ϕ decays to e.g. fermionic species F: $\Gamma_\phi \sim y_F^2 m_\phi(t)$

\rightsquigarrow sets $T(t) \propto a^{-\frac{3k-3}{2k+4}}$ during the RH period and $T_{RH}(\lambda, y_F, k)$

Modified early cosmology

see also e.g. [Co'15; d'Eramo'17, Calibbi'21, A. G. Garcia'21, Becker'23 etc]

It is usually assumed that the universe is Radiation Dominated (RD) at $T \gtrsim 10$ MeV.


Nothing prevents other early cosmologies: **early Matter, Kination, etc domination.**

We consider late time reheating (RH) with inflaton potential $V(\phi) \sim \lambda(\phi/M_p)^k$.

During RH [see Garc'21]:

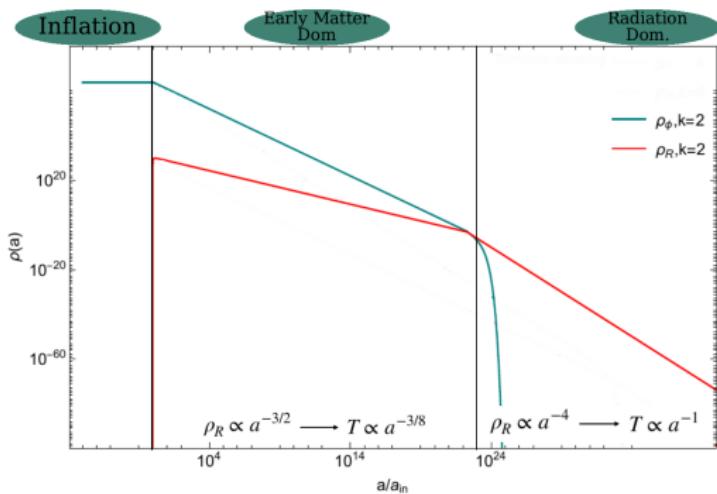
- $w_\phi = \frac{k-2}{k+2}$
- ϕ decays to e.g. fermionic species F: $\Gamma_\phi \sim y_F^2 m_\phi(t)$

\rightsquigarrow sets $T(t) \propto a^{-\frac{3k-3}{2k+4}}$ during the RH period and $T_{RH}(\lambda, y_F, k)$

Modified early cosmology

see also e.g. [Co'15; d'Eramo'17, Calibbi'21, A. G. Garcia'21, Becker'23 etc]

It is usually assumed that the universe is Radiation Dominated (RD) at $T \gtrsim 10$ MeV.


Nothing prevents other early cosmologies: **early Matter, Kination, etc domination.**

We consider late time reheating (RH) with inflaton potential $V(\phi) \sim \lambda(\phi/M_p)^k$.

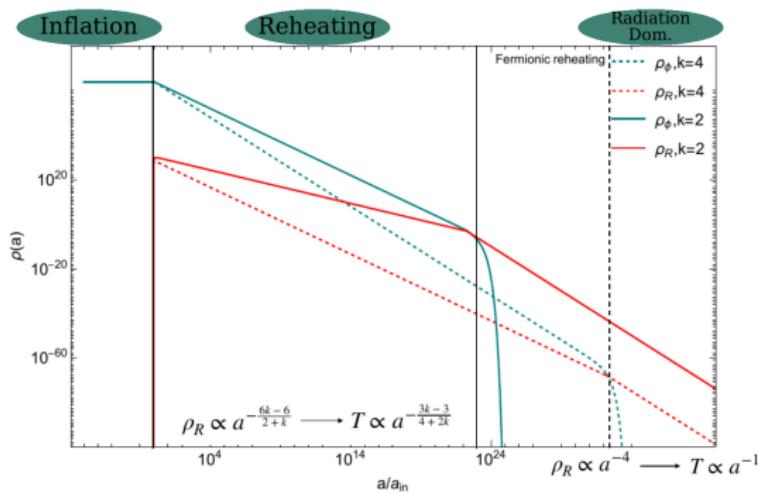
During RH [see Garci'21]:

- $w_\phi = \frac{k-2}{k+2}$
- ϕ decays to e.g. fermionic species F: $\Gamma_\phi \sim y_F^2 m_\phi(t)$

\rightsquigarrow sets $T(t) \propto a^{-\frac{3k-3}{2k+4}}$ durin the RH period and $T_{RH}(\lambda, y_F, k)$

Modified early cosmology

see also e.g. [Co'15; d'Eramo'17, Calibbi'21, A. G. Garcia'21, Becker'23 etc]


It is usually assumed that the universe is Radiation Dominated (RD) at $T \gtrsim 10$ MeV. Nothing prevents other early cosmologies: **early Matter, Kination, etc domination.**

We consider late time reheating (RH) with inflaton potential $V(\phi) \sim \lambda(\phi/M_p)^k$.

During RH [see Garci'21]:

- $w_\phi = \frac{k-2}{k+2}$
- ϕ decays to e.g. fermionic species F: $\Gamma_\phi \sim y_F^2 m_\phi(t)$

\rightsquigarrow sets $T(t) \propto a^{-\frac{3k-3}{2k+4}}$ durin the RH period and $T_{RH}(\lambda, y_F, k)$

DM production during RH while entropy is being injected ($T > T_{RH}$)
 $\rightsquigarrow D(T) = S(T)/S(T_{RH}) \simeq (T_{RH}/T)^{\frac{7-k}{k-1}}$ dilution of Y_{DM} and $\langle p_{DM} \rangle$

Modified History affects the momentum distribution

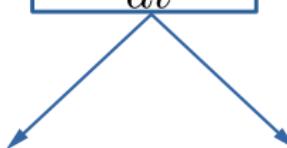
Cosmology

$$\frac{df_\chi(t, p)}{dt} = \mathcal{C}[f_\chi]$$

Particle Physics : FIMP
from B decays

“Standard” Cosmo

$$H = \frac{\sqrt{\rho_R}}{\sqrt{3}M_{pl}} = \frac{T^2}{M_0}$$


$$f(q)|_{RD} \propto q^{-1/2} e^{-q}$$

Modified History affects the momentum distribution

Cosmology

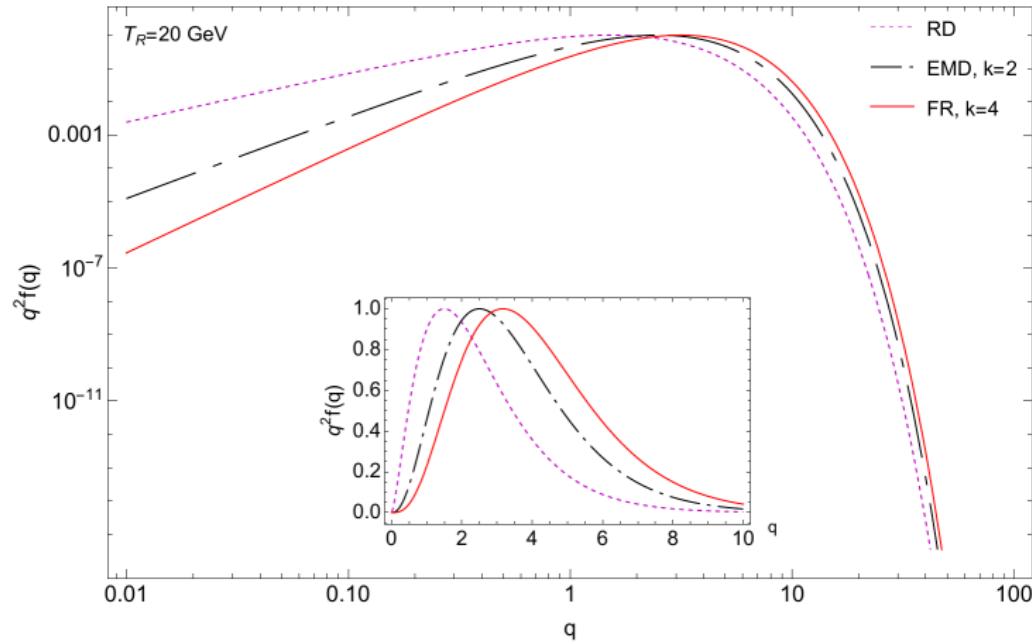
$$\frac{df_\chi(t, p)}{dt} = \mathcal{C}[f_\chi]$$

Particle Physics : FIMP
from B decays

“Standard” Cosmo

$$H = \frac{\sqrt{\rho_R}}{\sqrt{3}M_{pl}} = \frac{T^2}{M_0}$$

Early “k-dominated”

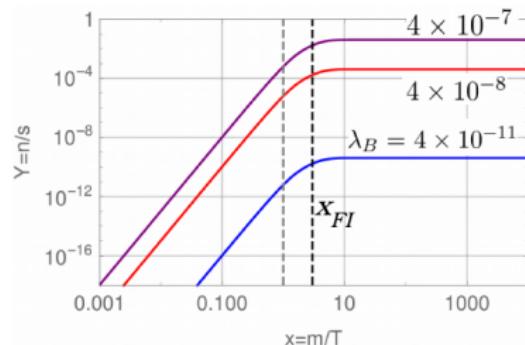

$$H = \frac{\sqrt{\rho_\phi}}{\sqrt{3}M_{pl}} = \frac{1}{M_0} \frac{T^{\frac{2k}{k-1}}}{T_R^{\frac{2k}{k-1}-2}}$$

$$f(q)|_{RD} \propto q^{-1/2} e^{-q}$$

$$f(q)|_{FR} \propto \left(\frac{T_R}{m_B}\right)^{\frac{2k}{k-1}-2} q^{\frac{3k-5}{2k-2}} e^{-q}$$

low momentum $f_\chi(q)$ is k dependent
due to Liouville op. k dependence (through H)

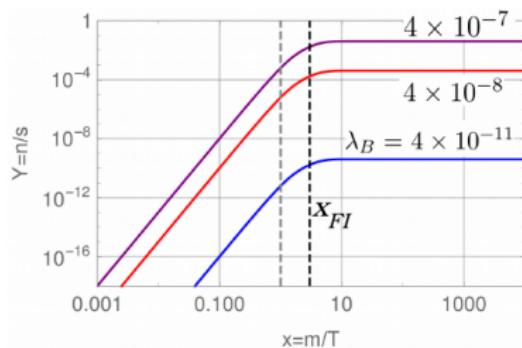
Modified History affects the momentum distribution

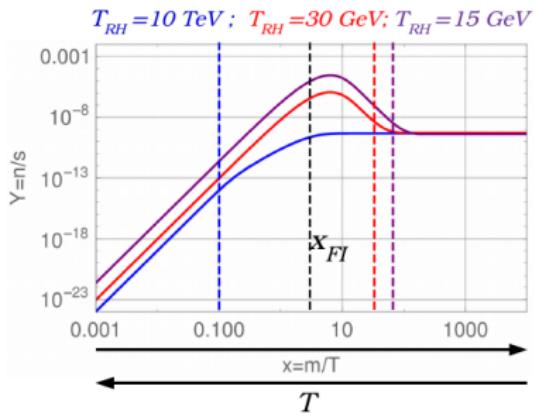

low momentum $f_\chi(q)$ is k dependent

due to Liouville op. k dependence (through H) \rightsquigarrow variations in $\langle p/T \rangle|_{t_{\text{prod}}}$

Higher FIMP couplings and shorter partner life times

Freeze-in DM production ($m_{DM} = 10$ GeV and $m_B = 1$ TeV)


in Radiation Dominated (RD) era


Higher FIMP couplings and shorter partner life times

Freeze-in DM production ($m_{DM} = 10$ GeV and $m_B = 1$ TeV)

in Radiation Dominated (RD) era

in RD vs MD era

DM yield is diluted due to extra entropy production from inflaton decay:

$$Y_\chi^\infty / Y_\chi(T_{FI}) \propto D(T_{FI}) \sim (T_{RH}/T_{FI})^{\frac{7-k}{k-1}},$$

~ The lower T_{RH} , the smaller is $D(T)$, and the lower is Y_χ^∞ compared to $Y_\chi(T_{FI})$, the higher is λ_χ to account for DM abundance and the shorter is $c\tau_B$.

Lower FIMP velocities today

Naive estimate for “similar velocity distributions” :

$$\langle v_\chi \rangle|_{t_0}^{\text{NCDM}} \geq \langle v_\chi \rangle|_{t_0}^{\text{WDM lim}}$$

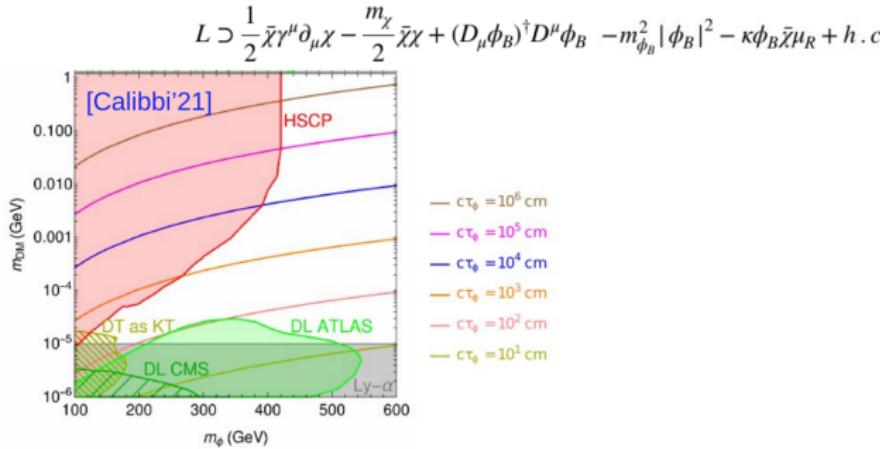
with $\langle v_\chi \rangle|_{t_0} = \frac{\langle p_\chi \rangle}{m_\chi} \Big|_{t_0} = \frac{\langle p_\chi \rangle}{T} \Big|_{t_{\text{prod}}} \times \left(\frac{g_{*S}(t_0)}{g_{*S}(t_{\text{prod}})} \right)^{1/3} \times \frac{T_0}{m_\chi}$

- WDM: $\Omega_\chi h^2 = 0.12 \rightsquigarrow g_{*,S}(T_D) \simeq 10^3 \times \frac{m_\chi}{\text{keV}}$
 $\Rightarrow \langle v_\chi \rangle|_{t_0}^{\text{WDM}} \propto m_{\text{WDM}}^{-4/3}$
- FI: $T_{\text{prod}} \sim m_B/3$ and $\langle p_\chi \rangle|_{t_{\text{prod}}} \sim m_B/2$
 $\Rightarrow \langle v_\chi \rangle|_{t_0}^{\text{FI}} \propto m_\chi^{-1}$

Lower FIMP velocities today

Naive estimate for “similar velocity distributions” :

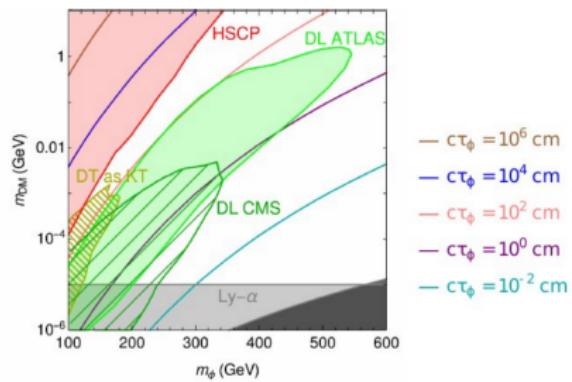
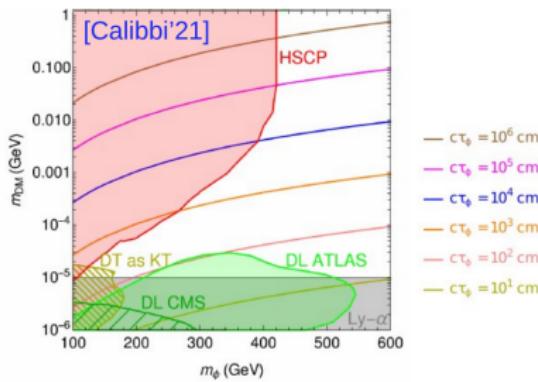
$$\langle v_\chi \rangle|_{t_0}^{\text{NCDM}} \geq \langle v_\chi \rangle|_{t_0}^{\text{WDM lim}}$$


with $\langle v_\chi \rangle|_{t_0} = \frac{\langle p_\chi \rangle}{m_\chi} \Big|_{t_0} = \frac{\langle p_\chi \rangle}{T} \Big|_{t_{\text{prod}}} \times D(T_{\text{FI}})^{1/3} \times \left(\frac{g_{*,S}(t_0)}{g_{*,S}(t_{\text{prod}})} \right)^{1/3} \times \frac{T_0}{m_\chi}$

- WDM: $\Omega_\chi h^2 = 0.12 \rightsquigarrow g_{*,S}(T_D) \simeq 10^3 \times \frac{m_\chi}{\text{keV}}$
 $\Rightarrow \langle v_\chi \rangle|_{t_0}^{\text{WDM}} \propto m_{\text{WDM}}^{-4/3}$
- FI: $T_{\text{prod}} \sim m_B/3$ and $\langle p_\chi \rangle|_{t_{\text{prod}}} \sim m_B/2$
 $\Rightarrow \langle v_\chi \rangle|_{t_0}^{\text{FI}} \propto m_\chi^{-1} \times \left(\frac{T_{RH}}{T_{\text{FI}}} \right)^{(7-k)/3(k-1)}$

Lyman- α constraints can relax for $T_{RH} < T_{\text{FI}}$

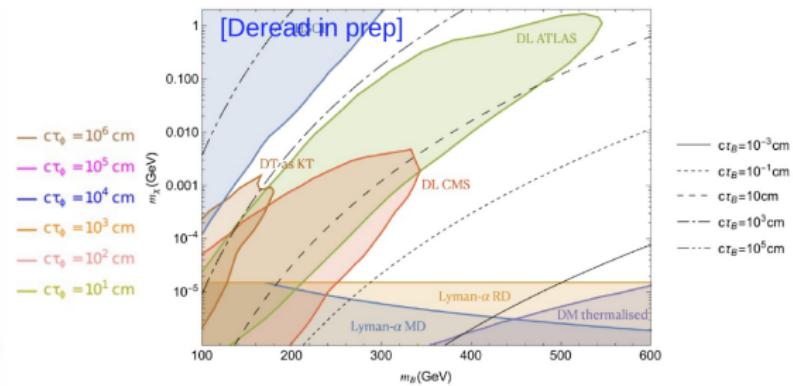
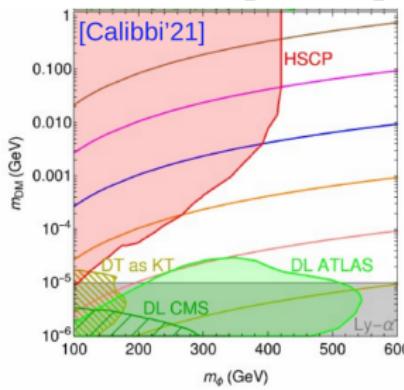
Exemplary case of Leptophilic DM



Case of an early matter dominated era (k=2) with $T_{RH} = 20$ GeV:

Exemplary case of Leptophilic DM

Case of an early matter dominated era ($k=2$) with $T_{RH} = 20$ GeV:

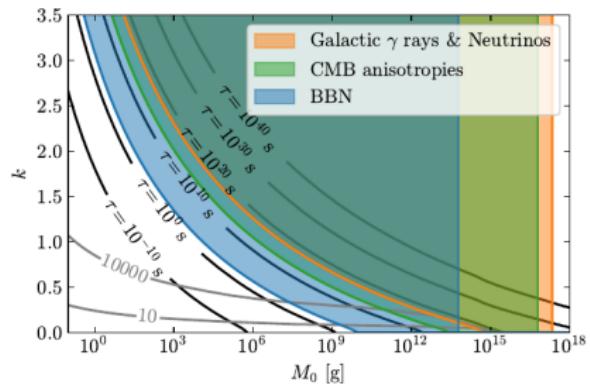
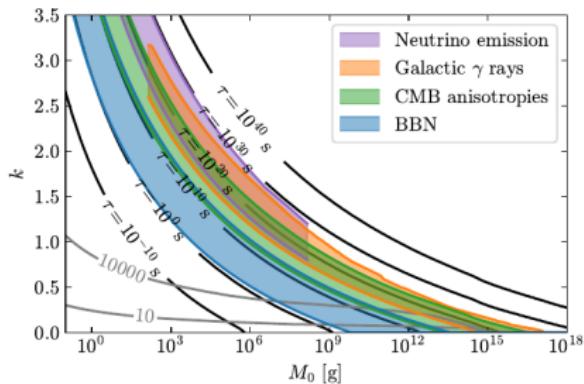
$$L \supset \frac{1}{2} \bar{\chi} \gamma^\mu \partial_\mu \chi - \frac{m_\chi}{2} \bar{\chi} \chi + (D_\mu \phi_B)^\dagger D^\mu \phi_B - m_{\phi_B}^2 |\phi_B|^2 - \kappa \phi_B \bar{\chi} \mu_R + h.c$$

- Dilution of $Y_\chi \rightsquigarrow$ larger couplings and shorter $c\tau_B$
 \rightsquigarrow **diphoton signatures can be probed** at colliders in different points of the parameter space

Exemplary case of Leptophilic DM

Case of an early matter dominated era ($k=2$) with $T_{RH} = 20$ GeV:



$$L \supset \frac{1}{2} \bar{\chi} \gamma^\mu \partial_\mu \chi - \frac{m_\chi}{2} \bar{\chi} \chi + (D_\mu \phi_B)^\dagger D^\mu \phi_B - m_{\phi_B}^2 |\phi_B|^2 - \kappa \phi_B \bar{\chi} \mu_R + h.c$$

- Dilution of $Y_\chi \rightsquigarrow$ larger couplings and shorter $c\tau_B$
 \rightsquigarrow **dipole signatures can be probed** at colliders in different points of the parameter space
- Lower velocities \rightsquigarrow **relaxed Lyman- α constraints** for $T_{FI} > T_{RH}$

PBH and memory burden

see also [Barman'24, Haque'24, Dvali'25, Montefalcone'25]

Memory Burden : entropy prevents efficient evaporation from $M=q M_{\text{ini}}$

$$\frac{dN^{\text{mb}}}{dEdt} = \frac{1}{S^k} \frac{dN^{\text{sc}}}{dEdt} \quad S = 4\pi \frac{M^2}{M_P^2} \cdot \quad [\text{Dvali'18+}]$$

Transition from Semi-Classical to Memory Burden can be smooth (non drastic Slowdown and close the « new window » for PBH to account all DM at large M and k values [Dvali'25, Montefalcone'25]

DM relic abundance

See [Haque'24]

$$m_j < T_{\text{BH}}^{\text{in}}$$

$$\frac{\Omega_j h^2}{0.12} = 2.85 \times 10^6 \frac{\xi g_j}{q^2} \left(2^k(3+2k)\right)^{1/2} \left(\frac{M_P}{q M_{\text{in}}}\right)^{\frac{2k+1}{2}} \frac{m_j}{\text{GeV}}. \quad \beta > \beta_c$$

In MD, strong k dependence but also q (MB params),

$$\frac{\Omega_j h^2}{0.12} = 2.54 \times 10^6 \beta \xi g_j \left(\frac{M_{\text{in}}}{M_P}\right)^{\frac{1}{2}} \frac{m_j}{\text{GeV}} \simeq \xi g_j \left(\frac{\beta}{10^{-20}}\right) \left(\frac{M_{\text{in}}}{1 \text{g}}\right)^{\frac{1}{2}} \left(\frac{m_j}{8.2 \times 10^{10} \text{GeV}}\right) \quad \beta < \beta_c$$

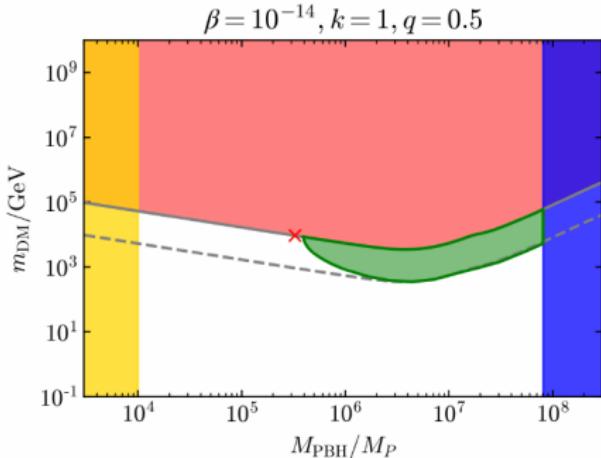
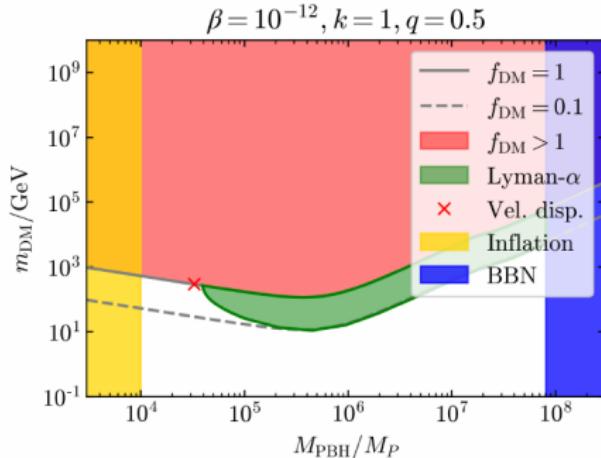
In RD, no k dependence (MB), but beta dependence

PBH lifetime and Lyman- α bound estimate

Memory Burden implies a delayed evaporation

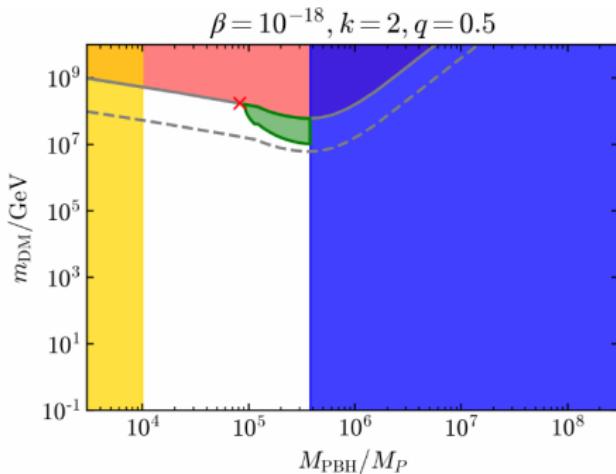
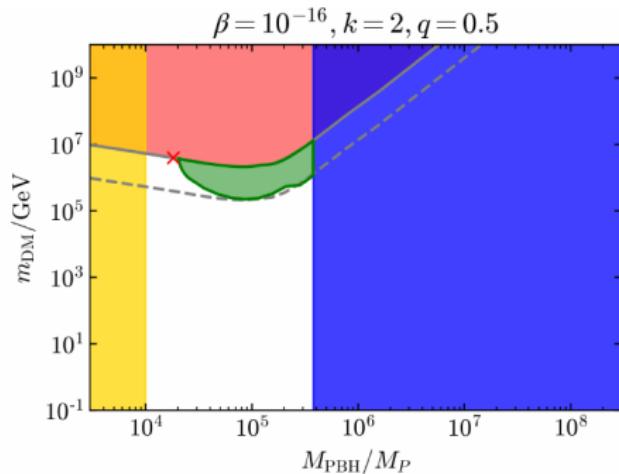
$$\tau_{\text{sc}} = \frac{1}{3eT} \frac{M_{\text{F}}^3}{M_{\text{P}}^4} \simeq 1.1 \times 10^{-14} \text{ s} \left(\frac{M_{\text{F}}}{3 \times 10^4 \text{ g}} \right)^3. \quad \tau_{\text{mb}} = \zeta_{\text{burst}} q^{3+2k} S(M_{\text{F}})^k \times \tau_{\text{sc}}.$$

$$t_{q=0.5} \simeq 4.2 \times 10^{-17} \text{ s} \left(\frac{M_{\text{F}}}{4.9 \times 10^3 \text{ g}} \right)^3 \quad \text{and} \quad \tau_{\text{mb}} = 4.6 \times 10^{17} \text{ s} \left(\frac{M_{\text{F}}}{4.9 \times 10^3 \text{ g}} \right)^7$$
$$q = 0.5 \text{ and } k = 2$$



The delayed evaporation easily play the major rôle in Lyman-alpha bound

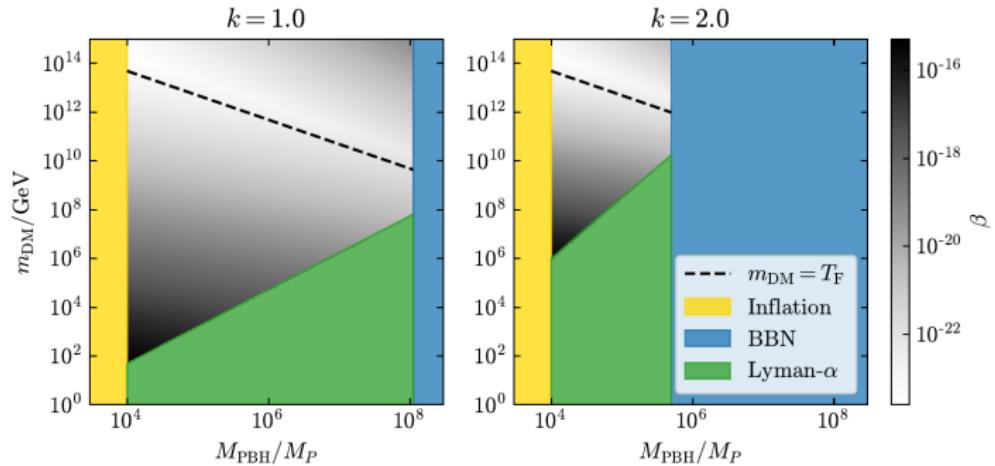
$$\begin{aligned} m_{\text{DM}} &\gtrsim 1.74 \text{ keV} \times \sqrt{\langle \mathbf{q}_{\star}^2 \rangle} T_{\text{NCDM}} \times \left(\frac{m_{\text{WDM}}^{\text{Ly}\alpha}}{\text{keV}} \right)^{4/3} \\ m_{\text{DM}} &\gtrsim 1.2 \text{ keV} \times \left(\frac{m_{\text{WDM}}^{\text{Ly}\alpha}}{\text{keV}} \right)^{4/3} \sqrt{\frac{M_{\text{F}}}{M_p}} \frac{1}{\sqrt{1 + (\xi - 1)q^2}} \\ &\times \left[(1 - q^2)(1 - q^3) \langle \mathbf{q}_{\text{DM}}^2 \rangle_{\text{sc}} + \left(\xi(1 - q^3) + \xi(4\pi)^k q^{3+2k} \zeta_{\text{burst}} \left(\frac{M_{\text{F}}}{M_p} \right)^{2k} \right) \langle \mathbf{q}_{\text{DM}}^2 \rangle_{\text{mb}} \right]^{1/2}. \end{aligned} \quad (4.10)$$

PBH parameter space



see also [Barman'24, Haque'24]

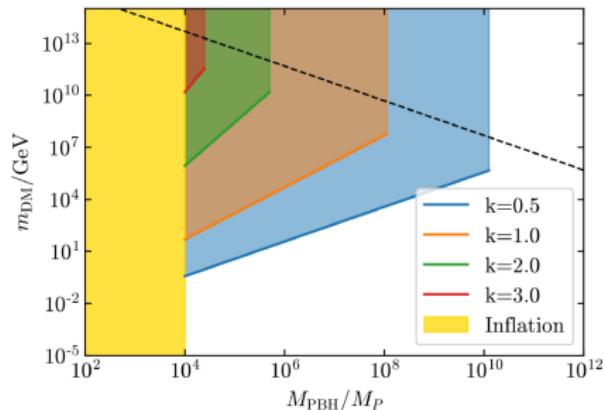
- relic DM abundance depend on β in RD era and on k in MD era
- Larger $\beta \rightsquigarrow$ less viable parameter space.
- Increasing k suppresses more evaporation in the memory burden phase making BBN constraints more stringent (for $k > 4$ no viable parameter space left).
- For DM fraction lower than 10%, no Ly- α constraints.

PBH parameter space


see also [Barman'24, Haque'24]

- relic DM abundance depend on β in RD era and on k in MD era
- Larger $\beta \rightsquigarrow$ less viable parameter space.
- Increasing k suppresses more evaporation in the memory burden phase making BBN constraints more stringent (for $k > 4$ no viable parameter space left).
- For DM fraction lower than 10%, no Ly- α constraints.

PBH parameter space


see also [Barman'24, Haque'24]

- relic DM abundance depend on β in RD era and on k in MD era
- Larger $\beta \rightsquigarrow$ less viable parameter space.
- Increasing k suppresses more evaporation in the memory burden phase making BBN constraints more stringent (for $k > 4$ no viable parameter space left).
- For DM fraction lower than 10%, no Ly- α constraints.

PBH parameter space

see also [Barman'24, Haque'24]

- relic DM abundance depend on β in RD era and on k in MD era
- Larger $\beta \rightsquigarrow$ less viable parameter space.
- Increasing k suppresses more evaporation in the memory burden phase making BBN constraints more stringent (for $k > 4$ no viable parameter space left).
- For DM fraction lower than 10%, no Ly- α constraints.

Intermediate mass-range: Hidden sectors

Hidden sector: new particles and new forces

~~ allows to populate wider mass range with multiple mechanisms (freeze-in, freeze-out, SIMP, asymmetric, DM etc). Example **dark vector portal A'_μ** .

Challenge: Experiments to look for

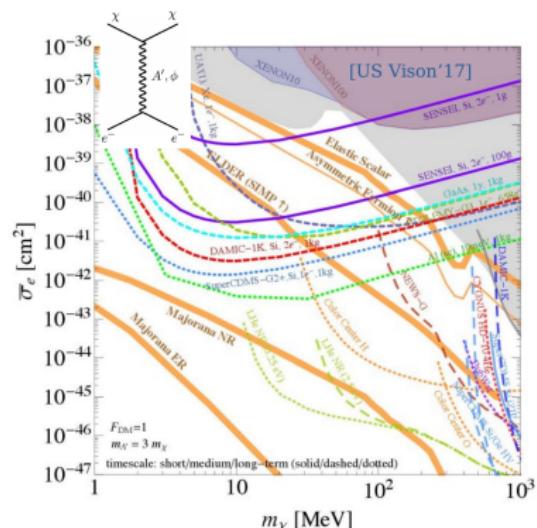
those new forces

~~ viable DM in sub-GeV range.

Intermediate mass-range: Hidden sectors

Hidden sector: new particles and new forces

~~ allows to populate wider mass range with multiple mechanisms (freeze-in, freeze-out, SIMP, asymmetric, DM etc). Example **dark vector portal A'_μ** .


Challenge: Experiments to look for

those new forces

~~ viable DM in sub-GeV range.

- **Direct detection experiments:** with electrons scatterings/exitations, making use of different materials (ferromagnets, superfluid He, etc) .
~~ Diversity of new proposed experiments for low momentum transfer

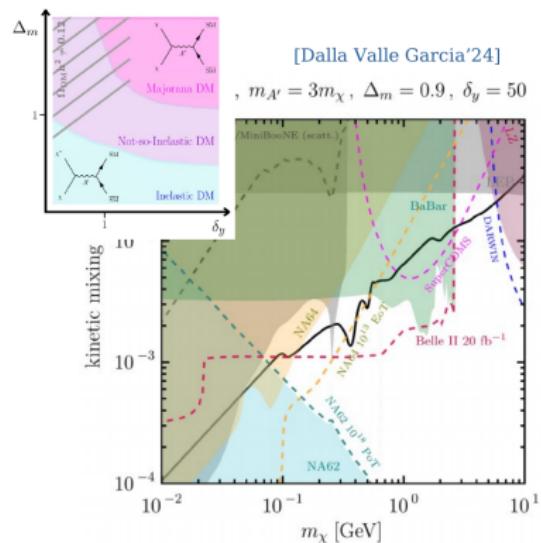
[see talks Tue& Thu, see also blazar boosted DM of Laura Manenti.]

Intermediate mass-range: Hidden sectors

Hidden sector: new particles and new forces

~~ allows to populate wider mass range with multiple mechanisms (freeze-in, freeze-out, SIMP, asymmetric, DM etc). Example **dark vector portal A'_μ** .

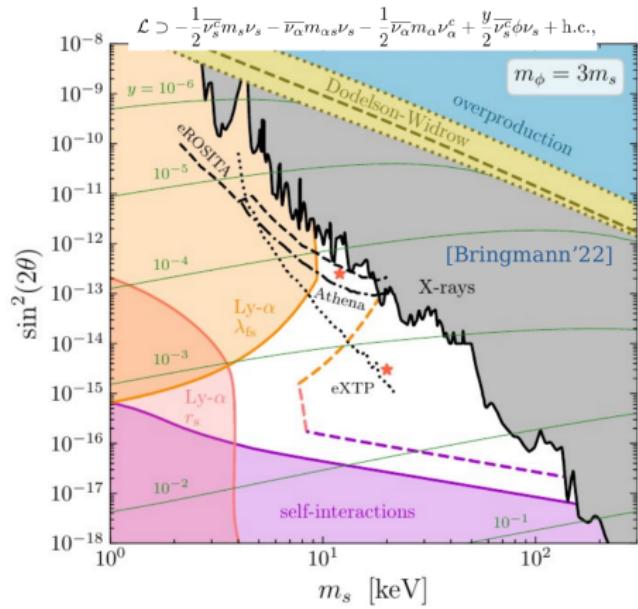
Challenge: Experiments to look for those new forces


~~ viable DM in sub-GeV range.

- beam dump exp. & LLP detectors:

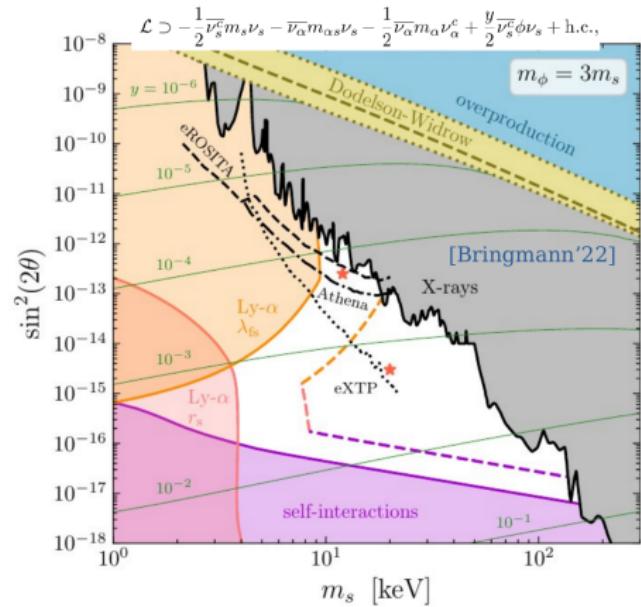
- Inelastic DM or not so:
gives displaced decays
 $A' \rightarrow \chi\chi^* \rightarrow \chi\chi l\bar{l}$

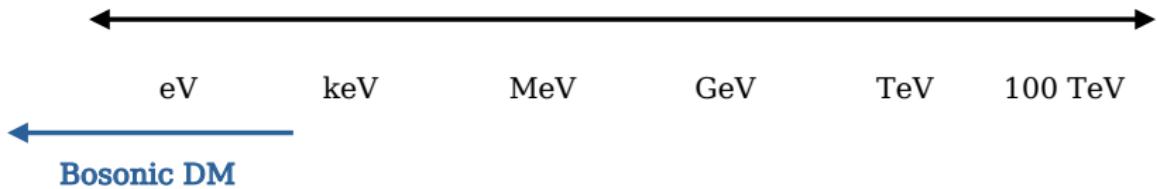
[G. Dalla Valle Garcia talk]


- SIMP: Dark pion from confined dark sectors: $3\pi_D \rightarrow \pi_D \rho_D$
populates $m > 100$ MeV long lived ρ_D can give rise to DV at Beam dump exp. [N. Hemme talk]

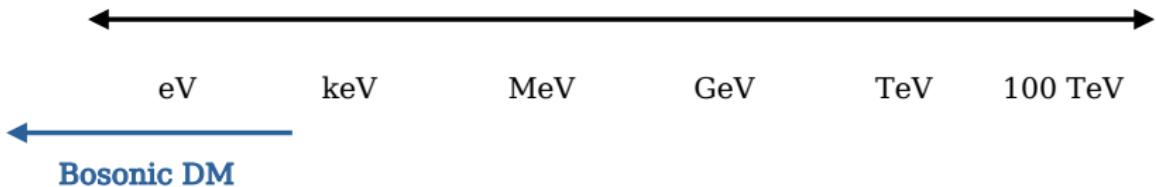
Intermediate mass-range: Sterile Neutrino

Connection between SM neutrinos and keV DM


- Minimal sterile neutrino DM:
Majorana ν_s mixing with SM ν and
light scalar ϕ .
Challenge: strong constraints from
X-rays and Ly- α and self interactions.
[e.g. Bringmann'22]


Intermediate mass-range: Sterile Neutrino

Connection between SM neutrinos and keV DM


- Minimal sterile neutrino DM:
Majorana ν_s mixing with SM ν and
light scalar ϕ .
Challenge: strong constraints from
X-rays and Ly- α and self interactions.
[e.g. Bringmann'22]
- Adding gauge interactions Z'_μ and light
dark fermions χ, Ψ with $\Psi = \text{DM}$:
Evade X-ray constraints and relax
tension between neutrino mass from
Cosmo and particle phys.
[see talk Cristina Benso]

Lower mass-range: Bosonic DM

Lower mass-range: Bosonic DM

Typically non-thermal :
Axions, ALP, Dark photon

Cosmology :
Lyman-alpha (ULDM),
 ΔN_{eff} , energy injection.

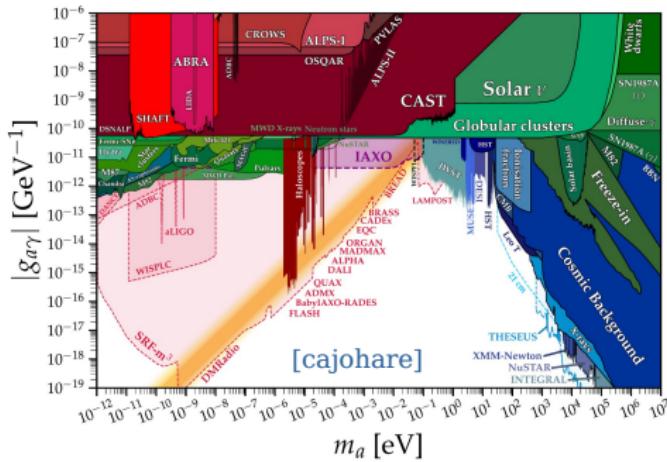
Lower mass-range: Bosonic DM

eV

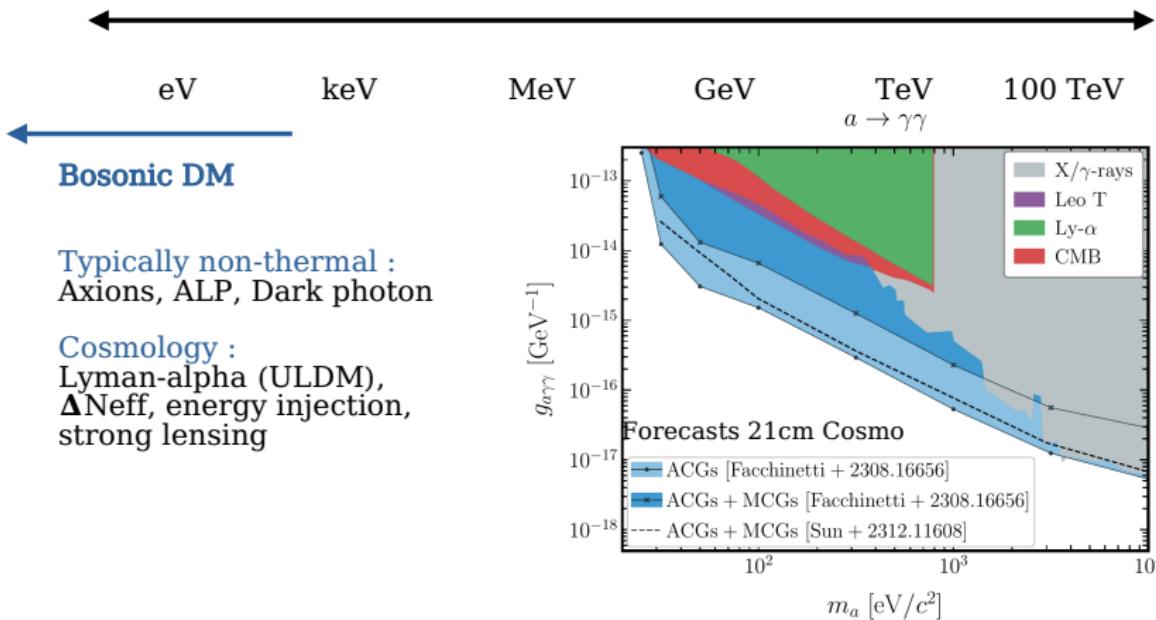
keV

MeV

GeV


TeV

100 TeV


Bosonic DM

Typically non-thermal :
Axions, ALP, Dark photon

Cosmology :

Lower mass-range: Bosonic DM

This is really the end