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Note

There has been a great (maybe too much,) interest in this during TeVPA 2025

Experimental

• XENON Collaboration
(Latest WIMPs and CEvNS result)

• PandaX Collaboration
(PandaX-4T Progress)

Theory

• Pablo Blanco-Mas
(CEvNS Light mediators)

• Anirban Majumdar
(CEvNS Generalized mediators)

Buut, let’s do something a bit different...
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Overview

1. PandaX-4T CEvNS (2024)

2. DM-e scattering at PandaX-4T

3. Implications for (some) DMModels

4. Conclusion and Outlook
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PandaX-4T CEvNS (2024)
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Some History

”... A total exposure of 1.20 and 1.04 tonne · year are collected for the paired
and US2, respectively. After unblinding, 3 and 332 events are observed with an
expectation of 2.8 ± 0.5 and 251 ± 32 background events, for the paired and

US2 data, respectively ...”
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S2-Only
PandaX-4T S2 channel event rate expectations and observations in their ROI.

PandaX-4T S2 Only Run0 Run1

Cathode 100 ± 24 104 ± 21
MD 25 ± 3 20 ± 4
ERs 1.3 ± 0.1 0.9 ± 0.2

Total bkg. 126 ± 24 125 ± 21
8B CE𝜈NS 18 ± 4 25 ± 6

Expected 144 ± 25 150 ± 22
Observed 158 174

Combined (Run0 + Run1)
Expected 294 ± 33
Observed 332

⟸ New Avenues for
Sub-GeV DM Detection

[For generalized mediators
see Anirban’s talk]
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DM-e scattering at PandaX-4T

Pablo Figueroa, Instituto de Física Corpuscular (CSIC-UV)



Dark matter - electron

Dark matter-electron scatterings at liquid Xenon detectors induce a differential
event rate in electron ionization energy 𝐸𝑒 [Essig et al. (2012)]:

𝑑𝑅
𝑑 ln𝐸𝑒

= 𝑁𝑇 ∑
𝑛,𝑙
𝒜(𝐸𝑒)∫𝑑3𝑣ℱ( ⃗𝑣 + ⃗𝑣𝑒)

𝑑𝜎(𝑣, 𝐸𝑒)
𝑑 ln𝐸𝑒

Efficiency Function
PANDAX-4T Dark Matter

Flux

Differential
Cross Section
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Dark Matter - electron
The differential ionization cross section is given by [Herrera and Ibarra (2021)]:

𝑑𝜎(𝑣, 𝐸𝑒)
𝑑 ln𝐸𝑒

= 𝜎̄𝑒
8𝜇2𝜒𝑒𝑣2

∫
𝑞𝑛𝑙max

𝑞𝑛𝑙min
𝑑𝑞 𝑞 ||𝑓𝑛𝑙ion( ⃗𝑘, 𝑞)||2||𝐹DM(𝑞)||

2

Cross section @ 𝑞 = 𝛼𝑚𝑒

Atomic ionization form factor

DM form factor

[See Riccardo’s talk]

Our particle physics model is encoded in:

𝐹DM(𝑞) =
(𝑚2

𝐴′ + 𝛼2𝑚2
𝑒)

(𝑚2
𝐴′ + 𝑞2)

, 𝜎̄𝑒 =
16𝜋𝛼𝛼𝐷𝜖2𝜇2𝜒𝑒
(𝑚2

𝐴′ + 𝛼2𝑚2𝑒)
2

Just𝒪1 NR operator
PF, Herrera, Ochoa (2024)
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So... What can we do?

𝐸𝑁𝑅 ⟺ 𝐸𝑒 ⟺ 𝑛𝑒

Efficiency at
PandaX-4T𝒜(𝐸𝑁𝑅)

𝑑𝑅/𝑑 ln𝐸𝑒 Counts
Number of electrons (S2)

Quenching Factors

• Lindhard

• Best Fit

• Nominal Fit

𝐸𝑒 = (𝑛𝛾 + 𝑛𝑒)𝑊

• 𝑊 = 13.8 eV:
Energy to
produce a
quanta (𝑒 , 𝛾).
[Essig et al. (2017)].
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Efficiency & Quenching Factors
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So... What can we do next?

Then, we compute the total rate in each bin 𝑖 as

𝑠𝑖(𝜎̄𝑒, 𝑚𝜒) = ℰ∫
𝑛max,i𝑒−

𝑛min,i𝑒−

𝑑𝑅
𝑑𝑛𝑒−

𝑑𝑛𝑒−

Predicted DM-e scattering signal
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DM-e at PandaX-4T
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Does it fit any better?
We define a log-likelihood function sum-
ming over all bins 𝑖 as [Brenner et al. (2022)]:

logℒ(𝜎̄𝑒, 𝑚𝜒) = ∑𝑖 [𝑛𝑖 log(𝑠𝑖 + 𝑏𝑖) − (𝑠𝑖 + 𝑏𝑖) − log(𝑛𝑖!)]

with,
• 𝑛𝑖: Number of observed events.

• 𝑏𝑖: Expected background events.

• 𝑠𝑖: Predicted DM-e signal 𝑠𝑖( ̄𝜎𝑒, 𝑚𝜒).

Test statistic:

𝜒2(𝜎̄𝑒, 𝑚𝜒) ≡ −2 logℒ(𝜎̄𝑒, 𝑚𝜒).
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No Problem
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...and find upper bounds on 𝜎̄𝑒 from:

Δ𝜒2 = 𝜒2(𝜎̄𝑒, 𝑚𝜒) − 𝜒2𝑚𝑖𝑛 = 𝜒2𝜎
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Implications for (some) DMModels
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Heavy Mediator
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Massless Mediator
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NOTE ADDED

While this work was being completed, the

PandaX-4T collaboration released an analysis

of sub-GeV DM from their ionization S2-only

data [Zhang et al. (2025)]. Our limits for heavy

mediators agree well with theirs, but our limits

for light mediators are less stringent by a factor

of ∼ 2. The collaboration explicitly mentions

that their limits for light mediators rely on a

different treatment on the expected signal than

the prescription we described here.
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𝐿𝜇 − 𝐿𝜏 symmetry
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In this model, the muon and tau lepton
doublets also possess a current
[Foldenauer (2019); Hapitas et al. (2022)]:

ℒ ⊃ 𝑔𝜇𝜏(𝜇̄𝛾𝜇𝜇− ̄𝜏𝛾𝜇𝜏+ ̄𝜈𝜇𝛾𝜇𝑃𝐿𝜈𝜇− ̄𝜈𝜏𝛾𝜇𝑃𝐿𝜈𝜏)𝐴′
𝜇

while the dark current is given by:

𝐽𝜇 = 𝑔𝜒𝑄𝜒 ̄𝜒𝛾𝜇𝜒
The dark gauge coupling is 𝑔𝜒 = 𝑔𝜇𝜏𝑄𝜒,
and 𝑄𝜒 is the DM charge under 𝐿𝜇 − 𝐿𝜏.
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Conclusion and Outlook
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Conclusions

We have derived novel bounds from the PandaX-4T S2-only ionization search for
CE𝜈NS, finding that these are world-leading for heavy mediators in the range
𝑚𝜒 ∼ 20 − 200 MeV, but weaker than DAMIC-M for light or massless mediators.

The recent data from DAMIC-M and PandaX-4T also dives well into other models
such as SIMPs/ELDERs, and approaches benchmarks for freeze-in, and concrete
gauged symmetries such as the 𝑈(1)𝐿𝜇−𝐿𝜏 .

Wehaveassessed theuncertainty in the PandaX-4Tmodels arising fromdifferent
choices of the charge-yield and quenching factors.
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Thank you for your attention

Pablo Figueroa

In collaboration with: Andrew Cheek (SJTU), Gonzalo Herrera (MIT), and Ian M. Shoemaker (VT)
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S2-Only (In a nutshell)
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CEvNS and EvES spectrum
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Theoretical SvDD

We compute the CE𝜈NS scattering rate as

𝑑𝑅
𝑑𝐸𝑅

= 𝒜(𝐸𝑅)∫𝑑𝐸𝜈
𝑑𝜙
𝑑𝐸𝜈

𝑑𝜎𝜈𝑁
𝑑𝐸𝑅

where
𝑑𝜎𝜈𝑁
𝑑𝐸𝑅

refers to the SM 𝜈 − 𝑁 cross section.

• 𝒜(𝐸𝑅) is the experiment-dependent efficiency, which we discussed previously.

• We make use of the best-fit charge yield.

• We take the default flux of 8B solar neutrinos, 𝑑𝜙/𝑑𝐸𝜈 with normalization
5.46 × 106 cm−2 s−1 from S𝜈DD Amaral et al. (2023).
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Theoretical SvDD
The data in [Collaboration (2024)] is presented in bins of S2 𝑛𝑒− . The translation between
𝐸𝑁𝑅 and 𝑛𝑒− is carried out through the charge yield 𝑄𝑦(𝐸𝑅) as [De Romeri et al. (2025)]:

𝑛𝑒− = 𝐸𝑅𝑄𝑦(𝐸𝑅).
The differential event rate as a function of 𝑛𝑒− is then expressed through:

𝑑𝑅
𝑑𝑛𝑒−

= 𝑑𝑅
𝑑𝐸𝑅

𝑑𝐸𝑅
𝑑𝑛𝑒−

and the events per bin are

𝑅𝑖 = ℰ ∫
𝑖

𝑑𝑅
𝑑𝑛𝑒−

𝑑𝑛𝑒− ,

where the integral is performed over the size of each bin 𝑖.
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Theoretical SvDD
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Majorana DM

In this model, the DM is a Majorana
fermion with current

𝐽′𝜇 =
1
2 ̄𝜒𝛾𝜇𝛾5𝜒.

This model is poorly tested by direct de-
tection due to the suppression of the
scattering cross sectionwith relative ve-
locity as 𝜎 ∼ 𝑣2, since the typical DM ve-
locity in the galactic halo is 𝑣 ∼ 10−3c. 100 101 102
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