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Upscattering and Deexcitation
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We propose a dark matter model in which the signal in direct detection experiments arises B e I I et a I . ( a rX I V . 2 OO 6 . 1 2 4 6 1 )
from electromagnetic, not nuclear, energy deposition. This can provide a novel explanation -
Graham et al. (arXiv:2409.07768)

for DAMA while avoiding many direct detection constraints. The dark matter state is taken

nearly degenerate with another state. These states are naturally connected by a dipole

moment operator, which can give both the dominant scattering and decay modes between

the two states. The signal at DAMA then arises from dark matter scattering in the Earth E k t | ( X e 2 1 1 2 O 69 3 O)
into the excited state and decaying back to the ground state through emission of a single m e n e a * a r IV ' *

photon in the detector. This model has unique signatures in direct detection experiments.

The density and chemical composition of the detector is irrelevant, only the total volume

affects the event rate. In addition, the spectrum is a monoenergetic line, which can fit

the DAMA signal well. This model is readily testable at experiments such as CDMS and

XENONI100 if they analyze their low-energy, electronic recoil events.
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DM From the Large Magellanic Cloud
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DM From the Large Magellanic Cloud
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Limits from XENON100
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