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What’s this about? I

* Atomic scattering experiments
are the realm of heavy DM

* For light DM, small momentum
transfer makes detection via
scattering hard

* Any other way of detecting
light DM?
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e Atomic transitions are in the
ueV — eVrange...

* These are dominated by
photons... or are they?

2P

15

e

it e

4--

2P3/2

2Pq /5



\
|

Atomic transitions
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e Atomic transitions are in the
ueV — eVrange...

* These are dominated by
photons... or are they?

* Some transitions are heavily
suppressed for photons (vector
couplings with SM) but not for DM
(any coupling a priori)
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Spin flip transition |

* |n this talk I’'ll use electronic spin
flip as an example

* Suppressed for photons but
leading order for axial-vector
couplings (like axions!)

* We can make a super simple
experimental setup with these
[1409.2806]
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Atomic system with an external
magnetic field and a laser SR IR AR SR Y (B BT Rt ‘ 1)
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Atomic system with an external
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State connected to the other states

Atomic system with an external via a photon transition
magnetic field and a laser . ‘ 1)
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The spin flip transition can be
modulated with B, CAE R A R L T R ‘ 1)
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Some DM particle is absorbed by
the electron... ‘ 1)
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Some DM particle is absorbed by
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...and it gets to the first excited state

For non-relativistic DM AE ~ Mpum

Bext ~ Mpm
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The laser is tuned to the gap
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The laser is tuned to the gap
between |TT) and |1)...
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...and so the electron gets
to the |1) state
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This final state is connected to the
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This final state is connected to the
GS via a photon transition... ‘ 1)

...and so it rapidly decays to the GS




All this rests on us having a
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All this rests on us having a
sizeable rate for the DM transition ___ ‘ 1)

What'’s the DM (
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Transition rates 101 %

* Fermi’s golden rule dl\ = Zn‘J\/[fi‘ch (2 E; —
i
* Needs an amplitude M= (f] J d3x Hipy 1)

* Coming from a hamiltonian H;,,; = electrons X DM



Transition rates 101 i

* Fermi’s golden rule dl' = Zn‘J\/[fi‘zc? (z Bt 2 Ef) dp @
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* Needs an amplitude M= (f] J d>x Hipe |0) @
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Initial state (N, j, m)
W, (x) = z a U(x) + bt V()

Quantum
numbers

. Dirac equation with Coulomb potential

(ly“()‘ = Zaem )U(x) =0

Hint —.F{/,L).>< O{M} (i)




Initial state (N, j, m)

Hine = @ F{u}lpe X O{M} (¢:)



Initial state (1, j, m)

Incident particle/s
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Initial state (7, J, M) ’

Incident particle/s

Whatever interacts with the electron

Axion — il 6 a Photon — eAH
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Initial state (N, j, m)

7
/7
7’
7
° Incident particle/s
. Lorentz structure of the

interaction

Determines the selection rules

Axion — y,¥s  Photon — y,

Hint = @ e X 0{u}(¢i>
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Initial state (7, j, M) Final state (n',j', m’)

We can compute the amplitude with
semi-analytical methods [2407.12913]

M= (f] f d>x Hipne |i)



Initial state (7, j, M) Final state (n',j', m’)

Integrate over the phase
space and,

Done!

We can compute the amplitude with
semi-analytical methods [2407.12913]

dr = 27| M;|*6 EEi—EEf dp
l
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Single DM operators lead to
decay into photons

Hint = ¢ @Vsl/)e

DM - 2y




Quadratic operators don’t have this issue...

DM + DM - 2y
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And they induce
pair absorption transitions!

DM + DM + e - e*

Hine = (7$) Yer >



And they induce
pair absorption transitions!

DM + DM + e - e*

(n,j,m) (n',j',m' We studied these in
[2507.14287]

Hint = (¢T¢) @Vsllje


https://arxiv.org/abs/2507.14287
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Why pair absorption? |

* Working in pairs means the DM can be
charged under whatever quantum
numbers

* Transition rates are proportional to
n?~(ppu/Mpy) * SO it gets big for low
DM masses

* Final comment: molecular systems
may be more interesting for detection
(more variety) but hard to study (WIP)




Thank you!
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