
Dark matter detection via atomic
spectroscopy

Javier Perez-Soler (IFIC, CSIC-UV)
in collaboration with Jack D. Shergold (Liverpool

University) and Martin Bauer (Durham University) 

( Javier.Perez.Soler@ific.uv.es )

Based on [2407.12913] and [2507.14287] 

mailto:Javier.Perez.Soler@ific.uv.es
https://arxiv.org/abs/2407.12913
https://arxiv.org/abs/2507.14287


What’s this about?

• Atomic scattering experiments 
are the realm of heavy DM
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What’s this about?

• Atomic scattering experiments 
are the realm of heavy DM

• For light DM, small momentum 
transfer makes detection via 
scattering hard

• Any other way of detecting 
light DM?
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Atomic transitions

• Atomic transitions are in the 
𝝁𝐞𝐕 − 𝐞𝐕 range…
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Atomic transitions

• Atomic transitions are in the 
𝝁𝐞𝐕 − 𝐞𝐕 range…

• These are dominated by 
photons… or are they?

• Some transitions are heavily 
suppressed for photons (vector 
couplings with SM) but not for DM 
(any coupling a priori)
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• In this talk I’ll use electronic spin 
flip as an example
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• In this talk I’ll use electronic spin 
flip as an example

• Suppressed for photons but 
leading order for axial-vector 
couplings (like axions!)

• We can make a super simple 
experimental setup with these 
[1409.2806] 

Spin flip transition
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Antiparallel spins
(ground state)

↑↓

↑↑

1

↓

↑

Atomic system with an external
magnetic field and a laser

𝐵𝑒𝑥𝑡



↑↓

↑↑

1

Parallel spins
(𝝁eV – meV gap to the GS) 
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State connected to the other states
via a photon transition
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magnetic field and a laser
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The spin flip transition can be 
modulated with 𝐵𝑒𝑥𝑡

𝐵𝑒𝑥𝑡
Δ𝐸 ∼ 𝐵𝑒𝑥𝑡
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Some DM particle is absorbed by
the electron… 

𝐵𝑒𝑥𝑡

𝐵𝑒𝑥𝑡 ∼ 𝑚𝐷𝑀

Δ𝐸 ∼ 𝐵𝑒𝑥𝑡

…and it gets to the first excited state

For non-relativistic DM    Δ𝐸 ∼ 𝑚𝐷𝑀
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1
The laser is tuned to the gap 
between ↑↑ and 1 …

𝐵𝑒𝑥𝑡

Δ𝐸 ∼ 𝐸𝑙𝑎𝑠𝑒𝑟

…and so the electron gets
to the |𝟏⟩ state
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↑↑

1
This final state is connected to the
GS via a photon transition…

𝐵𝑒𝑥𝑡

…and so it rapidly decays to the GS

𝐸𝛾 = 𝐸𝑙𝑎𝑠𝑒𝑟 +𝑚𝐷𝑀
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1
All this rests on us having a 
sizeable rate for the DM transition

𝐵𝑒𝑥𝑡
Γ ?

What’s the DM 
interaction rate?
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• Fermi’s golden rule

• Needs an amplitude
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Initial state (𝑛, 𝑗, 𝑚)

𝑍

𝐻𝑖𝑛𝑡 = 𝜓𝑒 Γ 𝜇 𝜓𝑒 × 𝒪 𝜇 (𝜙𝑖)



𝜓𝑒(𝑥) = ෍
𝑄𝑢𝑎𝑛𝑡𝑢𝑚
𝑛𝑢𝑚𝑏𝑒𝑟𝑠

𝑎 𝑈 𝑥 + 𝑏† 𝑉†(𝑥)

𝐻𝑖𝑛𝑡 = 𝜓𝑒 Γ 𝜇 𝜓𝑒 × 𝒪 𝜇 (𝜙𝑖)

𝑍

(𝑛, 𝑗, 𝑚)Initial state



𝜓𝑒(𝑥) = ෍
𝑄𝑢𝑎𝑛𝑡𝑢𝑚
𝑛𝑢𝑚𝑏𝑒𝑟𝑠

𝑎 𝑈 𝑥 + 𝑏† 𝑉†(𝑥)

𝑖𝛾𝜇𝜕𝜇 − 𝛾0
𝑍𝛼em
𝑟

− 𝜇 𝑈(𝑥) = 0

Dirac equation with Coulomb potential

𝐻𝑖𝑛𝑡 = 𝜓𝑒 Γ 𝜇 𝜓𝑒 × 𝒪 𝜇 (𝜙𝑖)
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Incident particle/s
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Incident particle/s

𝐻𝑖𝑛𝑡 = 𝜓𝑒 Γ 𝜇 𝜓𝑒 × 𝒪 𝜇 (𝜙𝑖)

Whatever interacts with the electron

Axion →
𝑔𝑓

2𝑓𝑎
𝜕𝜇𝑎

𝑍

(𝑛, 𝑗, 𝑚)

Photon → 𝑒𝐴𝜇

Initial state



Incident particle/s

𝐻𝑖𝑛𝑡 = 𝜓𝑒 Γ 𝜇 𝜓𝑒 × 𝒪 𝜇 (𝜙𝑖)

Lorentz structure of the 
interaction

𝑍

(𝑛, 𝑗, 𝑚)

Determines the selection rules

Initial state

Axion → 𝛾𝜇𝛾5 Photon → 𝛾𝜇
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𝑍

(𝑛, 𝑗, 𝑚)Initial state (𝑛′, 𝑗′, 𝑚′)Final state

We can compute the amplitude with
semi-analytical methods [2407.12913]

𝑑Γ = 2𝜋 ℳ𝑓𝑖
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Done!

Integrate over the phase
space and,



ℋ𝑖𝑛𝑡 = 𝜙 𝜓𝑒𝛾
5𝜓𝑒



Single DM operators lead to
decay into photons

ℋ𝑖𝑛𝑡 = 𝜙 𝜓𝑒𝛾
5𝜓𝑒

𝐷𝑀 → 2𝛾



ℋ𝑖𝑛𝑡 = (𝜙†𝜙) 𝜓𝑒𝛾
5𝜓𝑒

Quadratic operators don’t have this issue…

𝐷𝑀 + 𝐷𝑀 → 2𝛾



And they induce
pair absorption transitions!
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ℋ𝑖𝑛𝑡 = (𝜙†𝜙) 𝜓𝑒𝛾
5𝜓𝑒

𝐷𝑀 + 𝐷𝑀 + 𝑒 → 𝑒∗



(𝑛′, 𝑗′, 𝑚′)

ℋ𝑖𝑛𝑡 = (𝜙†𝜙) 𝜓𝑒𝛾
5𝜓𝑒

We studied these in
[2507.14287]

(𝑛, 𝑗, 𝑚)

And they induce
pair absorption transitions!

𝐷𝑀 + 𝐷𝑀 + 𝑒 → 𝑒∗

https://arxiv.org/abs/2507.14287
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• Working in pairs means the DM can be 
charged under whatever quantum 
numbers

• Transition rates are proportional to 
𝑛2~(𝜌𝐷𝑀/𝑚𝐷𝑀) 2 so it gets big for low 
DM masses

• Final comment: molecular systems 
may be more interesting for detection 
(more variety) but hard to study (WIP)

Why pair absorption?



Thank you!
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