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Why Heavy Dark Matter?

* Low number density O

* Hard to see (that’s why we haven'’t
seen 1t!) (@

* Unconstrained even at high cross
sections (0, 4 § 10”%cm?® at m,,~mpy)

e Multiple scatters
« Want to minimize overburden!

* Much heavier than backgrounds /

) ] ] & target )
* Presents a unique frontier for direct ®
dark matter searches

Boukhtouchen ‘24
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How Can Heavy Dark Matter
Form?

Dark Nucleosynthesis

ge
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How Can Heavy Dark Matter
Form?

Production from

False Vacuum
Bubbles

- |
FIG. 3. Isolated shrinking bubbles of the high-temperature
phase.

Dark Nucleosynthesis

Witten ‘84 Boukhtouchen ‘24
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How Can Heavy Dark Matter
Form?

Production from

False Vacuum
Bubbles
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FIG. 3. Isolated shrinking bubbles of the high-temperature
phase.

Dark Nucleosynthesis Dissipative Processes

Witten ‘84 Boukhtouchen ‘24 Bramante et al ‘24
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Heavy DM Interactions with Nucle1

PER-NUCLEON

* Realistic for large loosely-bound composite
DM

* Each DM constituent interacts coherently
with whole nucleus
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Heavy DM Interactions with Nucle1

PER-NUCLEON CONTACT

» Realistic for large loosely-bound composite » Realistic for large single particles or

DM tightly-bound composite DM
* Each DM constituent interacts coherently DM interacts with each nuclei with the

with whole nucleus same strength
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Heavy DM and the High Velocity
Tail

o For multiple scatters, energy
deposition is proportional to initial
energy o« vé




Heavy DM and the High Velocity
Tail

o For multiple scatters, energy
deposition is proportional to initial
energy o« vé

AE _ 2B~ Hha, R e e
dx My ma X « Standard Halo Model is cutoff at
AEM vesc — 503 km/S

* Any other sources of high-speed dark
matter?
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The Large Magellanic Cloud

* Satellite galaxy of Milky Way Local Speed Distribution
with its own halo
« Use simulated velocities of MW = Stndsaalotodel
. . Imulation wi arge agellanic ou
LMC analogues from Auriga
cosmological simulations g "o
LCT..E 0.0020
L=
o 0.0015
-
g 0.0010
0.0005
0.0000
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The Large Magellanic Cloud

* Satellite galaxy of Milky Way Local Speed Distribution
with 1ts own halo

* Use simulated velocities of MW 00050 tandard Halo Model
. . imulation with Large Magellanic Cloud
LMC analogues from Auriga
cosmological simulations g "o
« Shifts peak of speed distribution & 00020
'c_'ou 0.0015
T
g 0.0010
0.0005
0.0000

800
Speed
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The Large Magellanic Cloud

* Satellite galaxy of Milky Way Local Speed Distribution
with 1its own halo
* Use simulated velocities of MW — Sandard HaloModel

LMC analogues from Auriga

cosmological simulations g 000
- Shifts peak of speed distribution £ 00020
* Increases high speed tail S 00015

E 0.0010

0.0005

0.0000
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The Large Magellanic Cloud

» Satellite galaxy of Milky Way
with its own halo

* Use simulated velocities of MW
LMC analogues from Auriga
cosmological simulations

» Shifts peak of speed distribution
* Increases high speed tail

* Can improve heavy DM bounds
with strong velocity dependence

» Use plastic etch detectors as a
case study

2025-10-04
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Plastic Etch Detectors

) o'. - - ° :
g ° S * Detector made of thin sheets of
° ) Q( -Q ~ “L.Q Qo .. ‘0 . plaStiC
ROV A €1 o e » Particle passing through the
So O ot s ""” RS | detector damages molecular bonds
SRS :&' @ '.';* g TV,  Damage becomes visible after an
“C & :‘2‘&? :,",,‘, S ok acid wash
%o RIS d " o ¢ ~0.3 GeV/cm energy threshold
' a v ® £ : . .
o ® & . ‘:‘ “., . * Only very massive particles
ce % X $ 5 SO puncture completely through
B SR s s e Cheap, easy, and discriminable
Ol S e e background!

El-Badry et al ‘07
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Plastic Etch Experiments

OHYA QUARRY

» Search for magnetic monopoles at
the Ohya underground mine north
of Tokyo 1n the 1990s

Ohya History
Museum
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Plastic Etch Experiments

OHYA QUARRY SKYLAB
» Search for magnetic monopoles at » Search for highly charged cosmic
the Ohya underground mine north rays (Z > 60) at Skylab, the ISS
of Tokyo 1n the 1990s predecessor in the 1970s

‘{;\_ L e
el Bl
B Y pas

. P TR T
Ohya History

Museum Both detected nothing above background. nana
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Existing Bounds

* In 2020, my colleagues used the Skylab and Ohya data to derive heavy DM
bounds for contact and per-nucleon interactions (hep-ph 2012.13406)

» Useful test case for the effect of LMC

N Per-Nucleon Contact
10 3
E107'8
=
g107 "
1074
1074
1074
SN0+
.Iﬂ—i-'l
Model Il
104 oy, A'F(q)
Snowmass2021 108 10" 10 10" 12?2‘ 108 10" 10 10" !
[GeVic [GeV/
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Directionality Matters

* Detector 1s planar and has
acceptance angle 0,

TEVPA 2025



Directionality Matters

* Detector 1s planar and has « DM Wind from Sun’s motion

acceptance angle Oy « LMC’s effects are concentrated in a
small region of the sky

\
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Dealing with Detector Orientation

OHYA

 Daily oscillation in orientation with
respect to solar system frame

T =2.1yrs
« Average over sidereal day
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Dealing with Detector Orientation

OHYA SKYLAB
 Daily oscillation in orientation with * No record of Skylab’s motion through sky (I
respect to solar system frame tried!)
T =21yrs * Must assume random orientation over time
» Average over sidereal day » Average over all orientations

* Reasonable since 6., = 60°

SR

2025-10-04 TEVPA 2025



Halo Model vs Halo + LMC

Per-Nucleon Bounds at Ohya

107°4

Too much energy loss
in overburden

'—l
o
&

10—10_

10-12] '4 Too few particles
pass through detector

10—14 J

10—16,

DM-Nucleon Cross Section oy [cmz]

10—18_

107 10° 10" 10  10'°  10V7
Dark Matter Mass [GeV1

[Interaction too weak to trigger detector ]
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Halo Model vs Halo + LMC

2025-10-04
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Catching the LMC Wind

> Ohya was well-positioned to catch

many of the faster particles even
with 6, = 18°

* Detector on the southern
hemisphere would see a smaller
flux

 In future, one can catch more at
latitude = 30 - 40° N
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Particles faster than 750 km/s
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Conclusion

« Can improve bounds for heavy dark matter with fast dark matter due to
the Large Magellanic Cloud

* Improvements can be applied straightforwardly to any multi-scattering
heavy DM search

* Better bounds for free!

* Motivates more precise modelling of the effect of the LMC on the local
dark matter distribution

» Choice of detector positioning can improve heavy DM detection prospects
by a factor of 2!
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Backup Shides




The LMC over Time

 LMUC is in southern sky
* Incoming LMC DM is from northern direction

« Why?

—— LMC orbit
DEC =0
LMC
SMC

Tie 1
Tile 2
Tile 3

Tile 4

-"'
s

EEOEF-

Cavieres et al ‘25

______
.........
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Deriving The Bound

1. Simplify energy deposition rate
dE
dx
* 1 depends on material + interaction
type
* 0 = o¢ (contact) or 0 = g, (per-
nucleon)

= —nok

2. No dark matter was observed.
As a 90% confidence value, assume
N. = —1In(0.1) = 2.3 events.

3. Vg 1s the smallest speed above
which N, particles pass through the
detector

Ne = NEUG(mX)

2025-10-04

4. Given a fixed m,, the bound on o is
1

E{, < mevgﬁpa exp[—(zpnp + zoNho)o|
* Ef, - energy threshold per unit length,

* Xy, My - length and ‘effective number
density’ for overburden/detector

5. Solve in terms of Lambert-W
function

1 W (_ 2(3?1)?3;1) —+ ﬁioﬁo)Eih)
Tpip +zono

1 ( 2(33Dﬁg + .’I?()ﬁ,o)E{h)
— —Wo | —
Tpnp + Tono

Tupper — — =
PP NpMy V3

Olower =— — = 2
npMA UG
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Comparison with Other Bounds

PER-NUCLEON CONTACT
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Galactic Speed Distribution

[ ] Standard Halo Model
0.0035 [ Simulation with Large Magellanic Cloud
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Handling Simulated Results

* Only = 50 data points > 750 km/s
1n the simulation compared to .
~12600 total

* Robust statistics on the three-
dimensional LMC velocity
distribution not feasible

* Must interpolate number of
particles between discrete data
sets

# Particles Faster than vg

2025-10-04 TEVPA 2025



Computing the Particle Number

* Rewrite flux through a planar detector above a speed v,

AT , I
NE'UD (TH’X) — T”px [ 5 dSV f(V) ?/0 dt ﬁ;(t) -V E(’E’?i)
X V|~=10

f(v) - DM velocity distribution
A - Detector Area
T - Detector Time
py - DM Density
my - DM Mass (5. 4) {1 if n(t) -0 < —cos(bio1)
71 - Detector Normal Vector €(v,1) = e on .
Ny £ . _
€ - Detector Efficiency 0 if nt) -0 > — cos(ro))
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