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Active Galactic Nuclel

An active galactic nucleus (AGN)

is the compact, highly luminous
region at the center of a galaxy,
powered by a supermassive black
hole actively accreting gas and
dust

radio-loud (RL) AGN

radio-quiet (RQ) AGN

Blazar

low power high power

BLlac  FSRQ

dusty absorber
accretion disc
electron plasma
black hole
broad line region
narrow line region

S
Seyfert 1 | Q‘%".n:‘

Beckmann and Shrader, 2012, Figure 4.16
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Active Galactic Nuclel

Blazar
high power

Rad |O low power
galaxies

BL Lac FSRQ
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Jetted
(radio loud)

radio-loud (RL) AGN
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Quasars

e Ld dusty absorber
° accretion disc
e electron plasma
\ black hole
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(Radio
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Beckmann and Shrader, 2012, Figure 4.16
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Active Galactic Nuclel
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FRI

« Typically two sided
Brightness generally
decreases with
distance from the
nucleus

Lower luminosity

Left: 3C 31, NRAO, see Laing and
Bridle(2002b).

Large scale morphology

Hotspot

A
s i

Radio
lobe

Hotspot

FR |l

Jets can be single or
double-sided

« Jetterminates in
hotspots with bright
lobe

* Higher luminosity

Right: Cyg A, NRAO, see Carilli
and Barthel (1996).
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Large scale morphology

FRI

— Decelerate between parsec-kpc scales

High
emissivity

S it

| Deceleration |

Model for FR | deceleration, Laing and
Bridle (2014)

FRII

— Remains relativistic, terminates in a shock

bow 'shoc_:k

reconfinement

@ shock 6

x
hel
©

<O

Diagram of the large scale
structure of an FR Il radio

, Diagram of flow at terminal
source, Komissarov and Falle
(1998) shock, Blandford and Rees

(1974)
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Simulating AGN jets

FR Il like morpholo 20
) 4 1.5 The Morphology and kinematics of
< 1B AGN jets can be simulated as a
S o5 thermal fluid.
§’ 0.0
05 FR Il like morphologies are “easy” to
0 5 10 15 20 S )
v (kpc) 5% reproduce by injecting supersonic jet

into a background region
FR | like morphology

FR | like structures are more
complicated to reproduce.

z (kpe)
LOg (p/pi )

Massaglia, et.al. (2017) found kinetic
luminosities of ~ 1042 erg.s™"

’ produced FRI like structures on
Kiloparsec scales

y (kpc)

Massaglia, et.al. (2017)
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Deceleration in Jets

Another way to produce
FR | type morphologies is
through deceleration

This can happen through
entrainment of the ambient
medium

CaseD
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Rossi et. al. (2024)
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PLUTO RMHD Simulations

PLUTO v4.4 https://plutocode.ph.unito.it/
Grid based hydrodynamics code

«  Designed for high Mach number flows in astrophysical
plasma dynamics

«  Opensource

- Lagrangian particles module @hargav vaidya, et. al. ApJ 865:144 (21pp), 2018)
—  Separate particle entities suspended in fluid
— Represents an ensemble of particles with a finite energy distribution
—  No back reaction on fluid
—  Follow fluid streamlines
—  Energy distribution is evolved with time

dxp 0 E w B
ir " 9E K‘ 3 Vit +Et) X"] =0,

* Adiabatic expansion
 Radiative losses
« Diffusive shock acceleration Mignone et. AL, (2010)
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https://plutocode.ph.unito.it/

Synchrotron Emission

Model the |, Q and U Stokes parameters of the Synchrotron emission

Emission coefficients:

V3 ¢°
g Al . d b ~ " (AE(z)dA'. . .
JI(V !nlos) A7 meCQ | X nlos‘ /ne(7 ) (:C) Y ]Q _ ]pol cOS 2X
i V3 _¢° 7 U = Jpol SIN 2
a0 i) = 32 b x| [ ()G @) fur = Gpasin 2%

Absorption coefﬁcientS'

\/§ n.(y")
"l ) = o ' 100!
1) = =g m; 021/2 105\/ Oy [ v? ] Fle) dy i QQ = Qpol COS 2X
\/g n! (v") Qy = Qpe Sin 2,
'RK! ) = A 10/
apol(V nlos) = 3 m2c21/2 lOSl /G [ ]d’)’ dQ
Lorentz transformations: 7r(v, fies) = 6557 (v', filys), ar(v,fies) = 65 af(v', fijyg).
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Emission: Radiative transfer

Rays
/ Fluid Domain r = fiioss; + Cp(X1, Y1),
..................................................................................... >

Image

Njos = (sinf cos X, sinfsin @y, coshz).

X1 (—sin ¢X, cos ¢y, 0Z)

y1

(— cos ¢ cos 0%, — sin ¢ cos Oy, sin6z).

AN

fir o SIS I i el e I r:ﬁlosCti+Cp(XIa yI)'

Accounting for light travel time
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Emission: Radiative transfer

Integration of radiative transfer equation
along the path of the ray

1=N
/CU(XL V1) dl(x1, y1)
ds ~ E As,

IO dA AN ds ; ds
v ds / =
The integration is split for optically thick and
thin regimes
_ IS[i—l] + [JS[?Z] - MST[i]IS[i—l]] cAt, ATy <1,
dIg Isp) = _Ar _Ar
E = Js — Mgrls, SS[@](l —e I) + Aa[i]IS[i—l]e I Arr > 1.
d ] [ 1| a; ag ayl| [T Where,
ds @ = ].Q T |%e U % @ Si=]—i, T = als
_U_ _.]U_ _OéU 0 Od]_ _U_ a;
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RMHD
Simulations

Three scenarios, with different velocities

— Relativistic jet: ' = 10

— Mildly relativistic jet: I' = 1.2

— Non-relativistic jet: I' = 1.014

Simulation Relativistic Mildly relativistic Non-relativistic
Resolution [pc] 25 25 25
Lorentz factor (I") 10 1.2 1.014
Mach number (M) 30 17 5
Density ratio (n) 10-4 104 10—3
Propagation velocity (Viyg) 0.904 0.301 0.0833
Kinetic luminosity (Eg;y,) [erg.s™}] 107 10 1013
Magnetic field (By, Bi, B.) 1, 1, 0.001 1, 1, 0.001 1, 1, 0.001
[x3.8 x 107°G]

Plasma parameter (5,,) 7.7 7.7 0.77
Magnetization parameter (o) 102 1072 1073
Number of Lagrangian particles 325 550 375160 299 137

Y
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Simulations setup

Domain
— Cartesian computational grid
— Size: 64x64x128 jet radii
— Jetradius (r; = 1 unit ~ 100 pc)

Stationary ambient medium

— Stratified density p(r) = —22

2
T
1+(E)

Jet material is injected through a profiled
nozzle on the bottom z-boundary

Nozzle
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Simulations setup

Domain ,! - :
— Cartesian computational grid B — 2B, (£) ton () tann ()
— Size: 64x64x128 jet radii % = cosh ()’
— Jetradius (r; = 1 unit ~ 100 pc) B.—B.+ Bo
cosh? —) cosh(zij)
Stationary ambient medium B, - {ﬂB fa (5).for <7
— Stratified density p(r) = —2¢— ' J
1+(35)
. . e . Vg = ﬂ and,
Jet material is injected through a profiled A/
nozzle on the bottom z-boundary 1
vy = vk

NATURAL AND
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RMHD
simulations

2D slices of the simulations through
the xz-plane

Relativistic jet
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Relativistic jet

Time: 6.51e+04 Time: 9.77e+04 Time: 1.30e+05 y Time: 1.63e+05 y
120 120 120
10724 -24 -24 1072
10 10 n n
100 100
10~ 80 10-% 1 10725 10°% S I | I l u a I O I I S
If & ( ;
10-26 10-26 1028 ] 107% -
40
=27 ! 10-%7
-27 10727 10
10 20
- -20 0 20 =

V1R

=20; - 0 20

Q y Time: 1.46+06 y Time: 3.09¢+06 - J et p ro pag atl O n VWS — ,Uj

o I+ +/np

'-; A0 * FQp.? h.?

K g = —

o - = Pam ha,m

% e *" | Case Time [y] Position [100 kpc] Average velocity [c] g

E 6.51 x 10* 27.1 0.136 1.43
Relativistic 9.77 x 104 451.9 0.247 2.02

1.30 x 10° 79.4 0.275 1.71

_.0_5 " Time: 1.30e+06 o Time: 2.60e+06 : Time: 3.91e+06 o L, 1.63 X 105 105.6 0.262 1-31

o 6.51 x 10° 18.1 0.00901 1.35

2 | Mildly 1.46 x 108 41.6 0.00940 1.15

S 107 o i relativistic 2.28 x 106 74.9 0.0133 1.16

T 3.09 x 10° 112.4 0.0150 0.915

© 1.30 x 10° 26.9 6.72 x 103 1.24

= Non- 2.60 x 108 54.9 7.00 x 1073 0.963

@) ‘° wr | relativistic 3.91 x 109 81.4 6.63 x 1073 0.671

Z 5.21 x 106 111.1 7.44 x 1073 0.582
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Emission modelling

Lagrangian particles were injected at random positions inside the jet inlet.
* The injection was started after the jet established itself in the domain
* The injection rate was scaled according to mass flux of each simulation

n, 1073 n,,
Ymin 107
Ymax 10°

D 2.2

zzzzzz Ma ,\ $ Z-Axis
= Z-Axis 3 0
60 - ‘ ‘ ‘ 300e+0:
; ;
§ 150e+0.
-. £
X-Axis? i X-A -20
x-arg § Yo yiox 18501
Relativistic jet Mildly relativistic jet  Non-relativistic jet
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Intensity maps: 10 GHz, 6 = 90°

Intensity maps
resemble FR Il
type radio
galaxies for all
cases

Relativistic jet

le-13

le-15
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le-21

le-23

le-25

Mildly relativistic jet

le-13

le-15

le-17

le-19

le-21

le-23

le-25

Non-relativistic jet
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Intensity maps: 10 GHz, 6 = 90°

Non-relativistic jet
—le-14 : v : : —le-12

Relativistic jet Mildly relativistic jet

Intensity maps
resemble FR Il
type radio
galaxies for all
cases

e Jets

— Stationary
emission
components

4e-15
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Intensity maps: 10 GHz, 8 = 90°

Relativistic jet Mildly relativistic jet -

—le-14

Non-relativistic jet

Intensity maps
resemble FR Il

type radio 1
galaxies for all
Ccases § ) )
 Jets
— Stationary
emission 15 14 13
components EEHEEEESSBINHE] =00 |[EESEEet a0 (R
 Lobes . ) )
— Hotspots
— Filaments
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Intensity maps: 10 GHz, 8 = 90°

Filaments and hot spots follow magnetic filaments in the lobes
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SED modelling

Relativistic model Mildly relativistic model Non-relativistic model
Features are dominated by Magnetic field geometry is Emission dominated by lobe
Doppler boosting important region
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What about FRI's?

For FRI type structure we
require deceleration

This can be achieved by a
pressure mismatch

Simulation

Under-pressured jet

Resolution [pc]

Lorentz factor (I')

Mach number (M)

Density ratio (n)

Propagation velocity (Viys)

Kinetic luminosity [erg.s 1]

Magnetic field (By, Bi, B.) [x3.8 x 107° G]
Plasma parameter ((3,,)

Magnetization parameter (o)

Number of Lagrangian particles

16.6
1.014
5
103
0.0051
1043
0.01, 0.04, 0.001
10~4
107
1140765
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Decelerated jet

For FRI type structure we
require deceleration

This can be achieved by a
pressure mismatch
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Blazar emission

—6.[Fermi-LAT] ' ‘i | | SR I Optical
sgge|rermeAm R .
sgs” :E L 13 | é_ 2 — s UL Shock Front
" : M&% \ [ h1”
% T
o ' A \ \/ / B field vectors
3 \ \ before compression
w .. byshock
2 6x107 ~ \ > Shock front
— motion relative
1 /
1

— to ambient jet

\/1\

B 000 ON
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e

0| T aniumn - / \\ /\ \
st o N
- Eg ~+ 79002:32002 . ¥ e Increased level of Same B field
£ 10 + Bml — ‘ ‘ . & | . | turbulence farther vectors after
P00 odifed juian Date (WD) 50000 from shock being shocked
Barnard, et al. (2024). MNRAS, 532, Marscher, A. P., et al. (2024). Galaxies, 12(4), 50
https://doi.org/10.1093/mnras/stae1576 https://doi.org/10.3390/galaxies12040050
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Blazar emission

Recent IXPE observations show X-
ray polarization is typically higher than
Optical (see e.g. Kouch, et. al., 2024)

This is consistent with the shock in jet
model (see e.g. Marscher, A. P, et al.
2024).
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Parsec scale Jet model

Initial setup consists of cylindrical jet in a | -
uniform background |
Parameter: Spine: | Sheath: =
Lorentz factor (I') 10 3
Jet Radius (R) 0.33 pc | 1.0 pc I
Density ratio (7,) 10~3 10~2
Pressure ratio (7,) 4.0 2.0
Magnetic field (B) 50 mG 5 mG
Pitch profile parameter (o) 0.5 —2.0 , _
Booine (7 ) 5 0 < R < Ry
] ] ] B¢ — < R Qsheath/2 |
Helical magnetic field : Bosean (72 ) 3 if Repine < B < Repear
(Meliani and Keppens, APJ, 705:1594—-1606, 2009) L 0; if R > Rgheath
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Jet cross-section
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Lagrangian particles

Lagrangian particles were injected at random positions inside the jet inlet.

« The injection was started after the jet established itself in the domain

— 50 Particles per time step
— 100 000 Particles total

* Injected with a single power-law distribution
n(y') =ngy"".

« The injection was normalized to 10-3 the density of the thermal fluid

r)/min ’Ymam

102 107

a3

Spatial distribution
of particles in
simulation
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Intensity maps

1107

1078

Different frequencies
(6 = 30°)

Radio (v = 10° Hz):
* Entire jet is bright

107°

10—10

Optical (v = 101* Hz):
* Recollimation shock brighter
than jet

10—11

X-rays (v = 10* Hz):
* Only at recollimation shock
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Variability

Variability is simulated

. . . -27 20.0 -21
through the injection of a I:LO (N
region of increased R Bt
density and magnetic 07 YT R N .
field
300 :10_29 g 300 %‘n 300 100% 3001 ‘ 10_27:%
S S £
p 103 pO 200 200 < 200 7.5 200 10-29
B 10 BO 100 1073 100 100 >-0 1001 | 10-31
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R 0.5 RSpine ~250 25
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Intensity maps and light curve
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Conclusions

In this study the synchrotron emission of 3D RMHD simulations of the PLUTO code.

« Lagrangian particles were used to represent non-thermal electrons in the jet and used to calculate the
synchrotron emission
— Included synchrotron self absorption
— Included relativistic effects and light travel time for any viewing angles
— 1,Q, U Polarization calculations
— Reproduce SED’s

. Reproduced some morphologies and characteristics seen in observations

—  Most simulations showed FR |l morphology
* Radio lobes with hotspots and filaments

— Reproduced FRI type morphology by inducing deceleration in the jet after injection
—  Bright stationary emission components that correspond to recollimation shocks
— Filaments and hotspots in lobes correspond to magnetic field structure in cocoon correspond to magnetic

«  Variability was investigated in the form of a dense region injected into the jet.
— Increased in flux coincided with component propagating through recollimation shock
—  X-ray increase lag behind optical
— Increased flux coincided with an increase in polarization, peak polarization lags behind flux in optical
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