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Introduction

The Nuclei in cosmic rays can be separated into two classes according to their origins: the primary
cosmic rays are produced during the lifetime of stars and accelerated in supernovae shocks; The
secondary cosmic rays are produced by the collisions of primary nuclei with the interstellar medium.

Measurements of secondary cosmic ray nuclei fluxes are fundamental to understanding the
propagation processes of cosmic rays in the Galaxy.
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Alpha Magnetic Spectrometer (AMS)
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AMS Measurement on Cosmic Ray Nuclei Charge
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AMS Nuclei Flux Measurements

Rigidity p,...Fe 1...3\500 GV Selected Events
s N. €<------- -- Background removed
X ®= ! -- Corrected for Bin to Bin Migration
- ”T’ 1 E AR <
- - _ ) ,]1(&1 1‘-\ | ~. .
Time 220,000,000 sec R> 30 GV e ~ N
JRs So Bin width
” ~
/” \\\
Effective Acceptance * Trigger Efficiency

Measurements require knowledge of detector performance details, the resolution
functions, acceptance ... obtained by AMS Monte Carlo Simulations

In AMS 2 to 4 independent analysis are done to compute N, A, ¢, T; for each flux



Unique of AMS: Measure Nuclear Reaction Cross Section with Cosmic Rays
AMS can collect cosmic particles entering the detector from both the right and the left directions when the detector is
flying horizontally. This allows the measurement of reaction cross-sections of various nuclei colliding on the AMS

material within the GV to TV rigidity ranges.
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Based on the measurements, AMS adjusted the relevant parameters of nuclear interaction models in the simulation data
to guarantee a better precision for the spectra measurements.



Secondary Cosmic Rays Selections

Y
Tracker L2-L8

Thanks to redundant charge measurements and good charge
resolution, AMS is able to identify Li, Be, B and F nuclei with a

(<0.5%) arising from charge
misidentification over the whole rigidity range.

Events
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Background from Nuclei Interaction in AMS Materials

The background mainly comes from heavier nuclei interaction with
AMS material, they are accurately measured (with typical error of few
percents). A clean sample is obtained by subtracting the background
from measured event numbers.

Example of the measurements of the background arising from the
interaction with TRD and UTOF material:
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AMS measured the Lithium (Li), Beryllium (Be) and Boron (B) fluxes with unprecedented precision.




Secondary Primary Fluxes Comparison
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The secondary Li-Be-B fluxes have the same rigidity dependence above 30 GV, and it is distinctly

different with primary cosmic rays.
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Secondary to Primary Fluxes Ratios
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Cosmic Rays Fluorine Flux
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AMS measured the Fluorine (F) flux with unprecedented precision and extended the
measured rigidity to a much higher range.
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The F/Si flux ratio also show a spectral
hardening with

which is compatible with that of
B/O flux ratio hardening with

Fluorine Spectral Structures
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described by a single power law with

(>70 difference from 0) show
that the heavier secondary-to-primary F/Si flux
ratio is distinctly different from the light B/O,
which indicates that secondary cosmic rays
also have two classes. 13



Summary

The latest AMS measurements of secondary cosmic ray Li, Be, B and F fluxes are presented
All fluxes exhibit a hardening above 200 GV, however, the secondary fluxes harden more
than the primary fluxes, which favors a propagation origin of the observed hardening

F/Si

The B/O ratio deviates from a constant by more than 70 demonstrating that F belongs to

different class of secondary cosmic ray with Li-Be-B
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