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Hybrid air shower detectors
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Fluorescence Detector

Surface Detector

Surface Detectors (SD):

• Operate continuously (∼100% duty cycle)

• Large event statistics but higher uncertainty in energy 

estimation

Fluorescence Detectors (FD):

• Operate only on clear, moonless nights (∼10–15% duty cycle)

• Provide nearly calorimetric energy measurement with smaller 

systematic uncertainty

Hybrid Detection:

• Events observed simultaneously by SD and FD

• Combine precise FD energy with SD’s high-statistics sampling

• Used to calibrate the SD energy scale 



SD–FD cross-calibration approaches
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Fluorescence Detector
TA collaboration, 2023

Least square fit Loglikelihood minimization

Auger collaboration, 2020

Hierarchical MCMC



Motivation: Forward folding
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Response matrix/function

x x

EfficiencyCR spectrum Event counts distribution

• Forward folding maps model energy spectrum through detector response to compare with observed 

measurements



Forward folding: log-likelihood minimization
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binning

Log Likelihood minimization:

Response matrix/function

x x

EfficiencyCR spectrum Event counts distribution



Forward folding: MCMC
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binning

Log posterior sampling using 

MCMC:

Response matrix/function

x x

EfficiencyCR spectrum Event counts distribution



Response matrix
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Resolution/smearing kernel:



Response matrix
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Real resolution/smearing kernel:

Shower size (s) fluctuationsDetector fluctuations/smearing:

• sampling/LDF

• Scintillator/PMT

Simulated resolution kernel



Response matrix
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Simulated resolution/smearing kernel:

Shower size (s) fluctuations

(CORSKA MC)

Detector fluctuations/smearing:

• Geant4

• Reconstruction (Std or DNN)

Simulated resolution kernel



Calibration with Hierarchical MCMC
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Assume to be 

known:

Should be found

• Response function can, in principle, be derived from 

hybrid events

• Hybrid statistics are limited vs. full SD sample

• Use MC-based 𝜅SD modeled with Gauss/Student-t 

(mixture) models

• Calibrate the model using hybrid events



Motivation: Calibration and forward folding
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Forward folding 

(MCMC sampling) 

Observed counts

Spectrum model

Posterior

• MCMC calibration yields posterior distributions of calibration parameters

• Enables propagation of these uncertainties into forward folding

• Captures parameter correlations and avoids bias from fixed (point-estimated) values



Parametrization
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Gauss (or Student-t) mixture model



Case: full resolution reconstruction
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Response functions reconstruction

The model is identifiable if we

know bias of FD detector

True energy reconstruction



Case: toy model
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Response functions residuals vs Etrue

• SD response is normal distribution:

• FD response:

Energy distributions

ESD vs EFD  plane



Case: toy model
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Posterior (recovery of a, b, c)

Trace plot

Etrue recovery



Uncertainties
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Posterior (recovery of a, b, c)

Posterior distribution translates 

into uncertainty band



Priors (model selection)
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b*x + c (a=0)a*x^2 + b*x + c c (a=0, b=0)

• Flexible models capture the true trend and yield realistic uncertainties

• Restrictive models miss dependencies, causing bias and narrow bands



MCMC vs least square minimization (LSQ)
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Nsample = 1100

a_true = 0

b_true = 0.1

c_true = 0.05

mu_resid = 0.2

sigma_resid = 0.3

sigma_fd_frac = 0.2

LSQ: 
a = -0.001 ± 0.033 
b = -0.034 ± 0.064 
c = 0.372 ± 0.028

MCMC: 
a = -0.004 ± 0.045 
b = 0.117 ± 0.085 
c = 0.038 ± 0.035



MCMC vs least square minimization (LSQ)
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Nsample = 1100

a_true = 0

b_true = 0.1

c_true = 0.05

mu_resid = 0.2

sigma_resid = 0.3

sigma_fd_frac = 0.2

LSQ

MCMC



Conclusions
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● Calibration of the response function is required to correctly perform forward folding

● Least-squares fits are biased because they neglect uncertainties in the FD (x-axis) 

variable

● MCMC is a powerful analog of the log-likelihood approach, as it does not require 

explicit multidimensional integration

● Bayesian MCMC calibration allows a natural extension of the MCMC forward folding 

method and enables uncertainty propagation



Atypical realizations
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• Some realizations are atypical and lead to posterior outliers:

• Their number is small
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