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Hybrid air shower detectors

Surface Detectors (SD):

* Operate continuously (~100% duty cycle)
* Large event statistics but higher uncertainty in energy
estimation

Fluorescence Detector

Fluorescence Detectors (FD):

* Operate only on clear, moonless nights (~10-15% duty cycle)
* Provide nearly calorimetric energy measurement with smaller
systematic uncertainty

Hybrid Detection:

* Events observed simultaneously by SD and FD
» Combine precise FD energy with SD’s high-statistics sampling
» Used to calibrate the SD energy scale
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SD—FD cross-calibration approaches

Least square fit

Loglikelihood minimization
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Motivation: Forward folding
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— HillasGaisser2012 | | ieessseses o ; w0 ..-'-'"-.."""-.,..
X 1 .'.""-.,

.4
o
Efficiency

1023

1 3 10 30 100 300 zlu 205

18 188 19 18.6
Etrue, E€V log, (EleV)

[ dQcosO [ dEe(E,0).J(E;s)r(Esp|E;0)
J dQ2cos b

» Forward folding maps model energy spectrum through detector response to compare with observed
measurements



Forward folding: log-likelihood minimization

CR spectrum
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Log Likelihood minimization:

Element = p (N=360211)

binning
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Forward folding: MCMC

CR spectrum
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Log posterior sampling using

MCMC:
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Response matrix
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Response matrix

Simulated resolution kernel Real resolution/smearing kernel:
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Response matrix

Simulated resolution kernel Simulated resolution/smearing kernel:
Element = p (N=360211)
. KB | Bou) = [ dspau(B |5, B,0)pils | Bou)

=+ 95% limits

107 4
102§ /
£  Detector fluctuations/smearing: Shower size (s) fluctuations
10! < e Geant4
w  * Reconstruction (Std or DNN) (CORSKA MC)
10° 1 1'2; .

10° 10t 102
10°

10

DEP

10

log, (E__ /MeV), Lower layer
-]
T

1

L R R Y
Iog1 ll(EDEP.'Me\a'), Upper layer




Calibration with Hierarchical MCMC
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« Response function can, in principle, be derived from  * Use MC-based ks, modeled with Gauss/Student-t
hybrid events (mixture) models

» Hybrid statistics are limited vs. full SD sample » Calibrate the model using hybrid events
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Motivation: Calibration and forward folding
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Esp

Spectrum model

Forward folding
(MCMC sampling)

Observed counts

* MCMC calibration yields posterior distributions of calibration parameters

» Enables propagation of these uncertainties into forward folding

» Captures parameter correlations and avoids bias from fixed (point-estimated) values

Posterior
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Parametrization

Gauss (or Student-t) mixture model
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Case: full resolution reconstruction

Response functions reconstruction
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Case: toy model

Response functions residuals vs E,, .
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Case: toy model

SD vs FD Energy Measurements
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Uncertainties

Posterior (recovery of a, b, c)
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10916 (Esp/Etrue)

Priors (model selection)
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MCMC vs least square minimization (LSQ)

Gauss(Erp | Eirue, 0FD)
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MCMC vs least square minimization (LSQ)
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Conclusions

e (Calibration of the response function is required to correctly perform forward folding

e |east-squares fits are biased because they neglect uncertainties in the FD (x-axis)
variable

e MCMC is a powerful analog of the log-likelihood approach, as it does not require
explicit multidimensional integration

e Bayesian MCMC calibration allows a natural extension of the MCMC forward folding
method and enables uncertainty propagation
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Atypical realizations

« Some realizations are atypical and lead to posterior outliers:
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