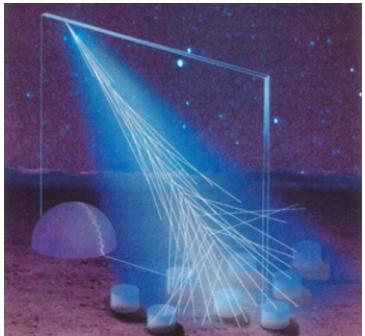
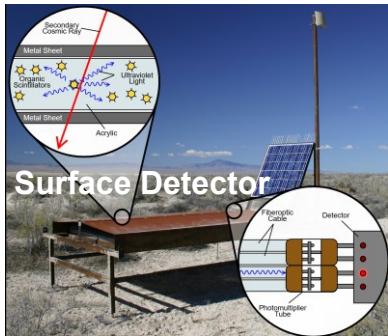


Bayesian Hierarchical Model for cross calibration of hybrid air shower detectors

Anatoli Fedynitch, Anton Prosekin, Kozo Fujisue
Academia Sinica, Taipei, Taiwan

TeVPA 2025,
3-7 November 2025

Hybrid air shower detectors



Fluorescence Detector



Surface Detectors (SD):

- Operate continuously (~100% duty cycle)
- Large event statistics but higher uncertainty in energy estimation

Fluorescence Detectors (FD):

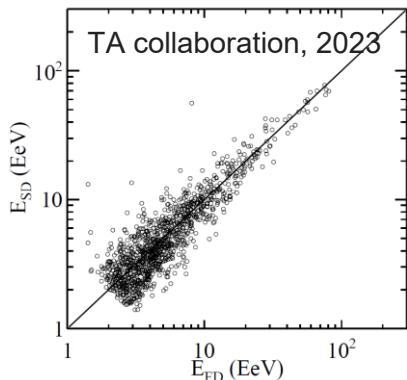
- Operate only on clear, moonless nights (~10–15% duty cycle)
- Provide nearly calorimetric energy measurement with smaller systematic uncertainty

Hybrid Detection:

- Events observed simultaneously by SD and FD
- Combine precise FD energy with SD's high-statistics sampling
- Used to calibrate the SD energy scale

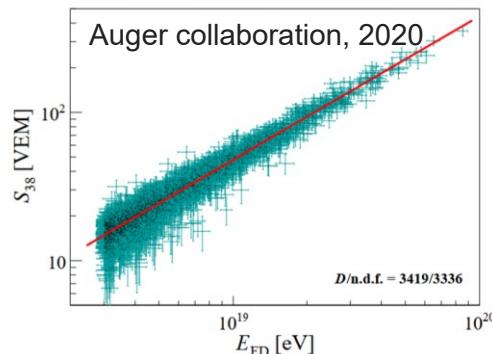
SD–FD cross-calibration approaches

Least square fit



$$E_{\text{FD}} = E_{\text{SD}} / 1.27$$

Loglikelihood minimization

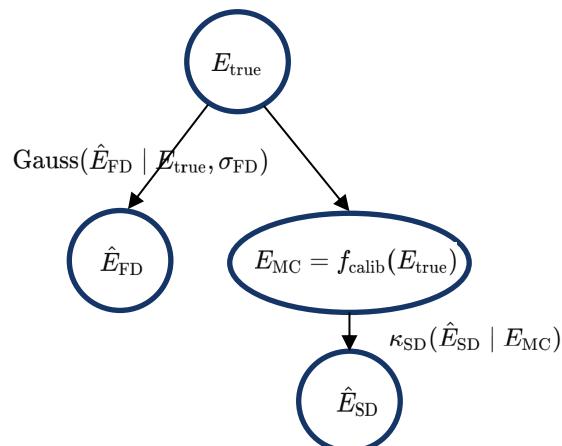


$$E_{\text{FD}} = A \ S_{38}^B$$

$$A = (1.86 \pm 0.03) \times 10^{17} \text{ eV}$$

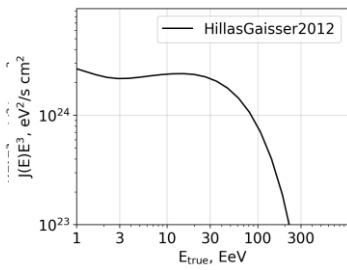
$$B = 1.031 \pm 0.004$$

Hierarchical MCMC

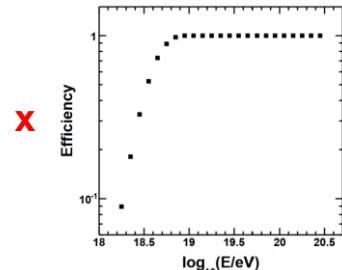


Motivation: Forward folding

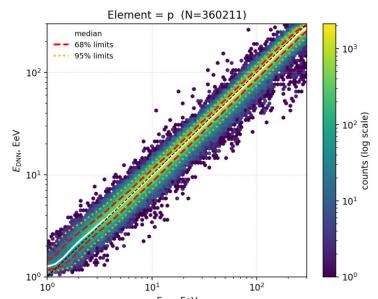
CR spectrum



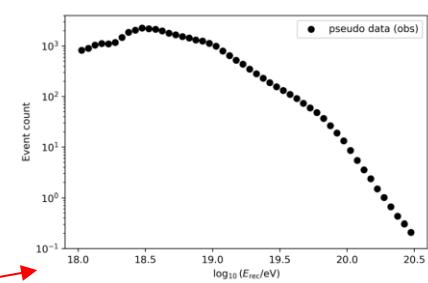
Efficiency



Response matrix/function



Event counts distribution

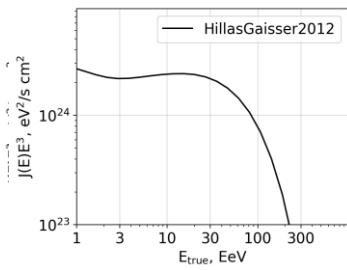


$$J^{\text{raw}}(E_{\text{SD}}; \mathbf{s}) = \frac{\int d\Omega \cos \theta \int dE \epsilon(E, \theta) J(E; \mathbf{s}) \kappa(E_{\text{SD}}|E; \theta)}{\int d\Omega \cos \theta}$$

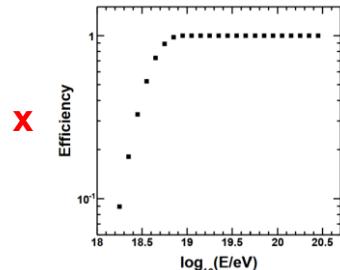
- Forward folding maps model energy spectrum through detector response to compare with observed measurements

Forward folding: log-likelihood minimization

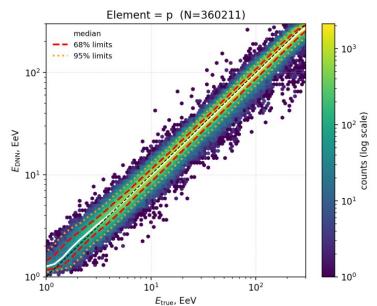
CR spectrum



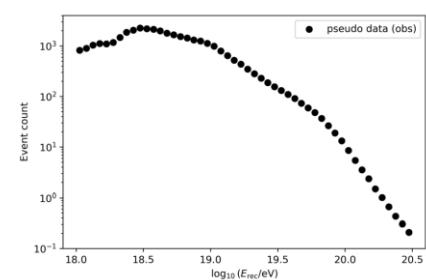
Efficiency



Response matrix/function



Event counts distribution



$$J^{\text{raw}}(E_{\text{SD}}; \mathbf{s}) = \frac{\int d\Omega \cos \theta \int dE \epsilon(E, \theta) J(E; \mathbf{s}) \kappa(E_{\text{SD}}|E; \theta)}{\int d\Omega \cos \theta}$$

binning

$$R_{ij} = \frac{\int_{\Delta E_i} dE_{\text{SD}} \int_{\Delta E_j} dE \int d\Omega \cos \theta \kappa(E_{\text{SD}}|E, \theta) \epsilon(E, \theta) J(E; \mathbf{s})}{\int_{\Delta E_j} dE \int d\Omega \cos \theta J(E; \mathbf{s})}$$

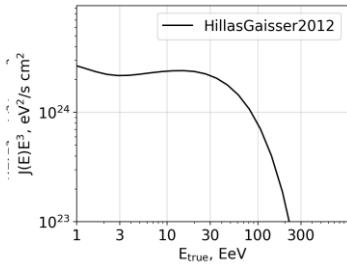
$$\nu_i = \sum_j R_{ij} \mu_j$$

Log Likelihood minimization:

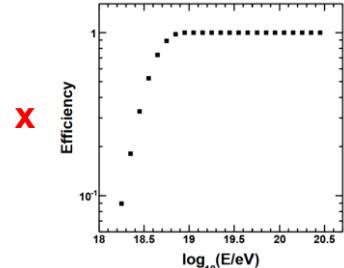
$$-\ln \mathcal{L}(\mathbf{s}) = \sum_i (\nu_i(\mathbf{s}) - N_i \ln \nu_i(\mathbf{s}))$$

Forward folding: MCMC

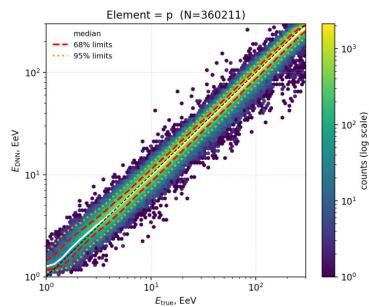
CR spectrum



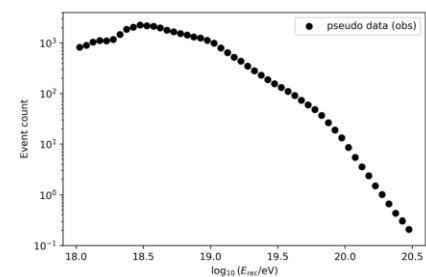
Efficiency



Response matrix/function



Event counts distribution



$$J^{\text{raw}}(E_{\text{SD}}; \mathbf{s}) = \frac{\int d\Omega \cos \theta \int dE \epsilon(E, \theta) J(E; \mathbf{s}) \kappa(E_{\text{SD}}|E; \theta)}{\int d\Omega \cos \theta}$$

binning

$$R_{ij} = \frac{\int_{\Delta E_i} dE_{\text{SD}} \int_{\Delta E_j} dE \int d\Omega \cos \theta \kappa(E_{\text{SD}}|E, \theta) \epsilon(E, \theta) J(E; \mathbf{s})}{\int_{\Delta E_j} dE \int d\Omega \cos \theta J(E; \mathbf{s})}$$

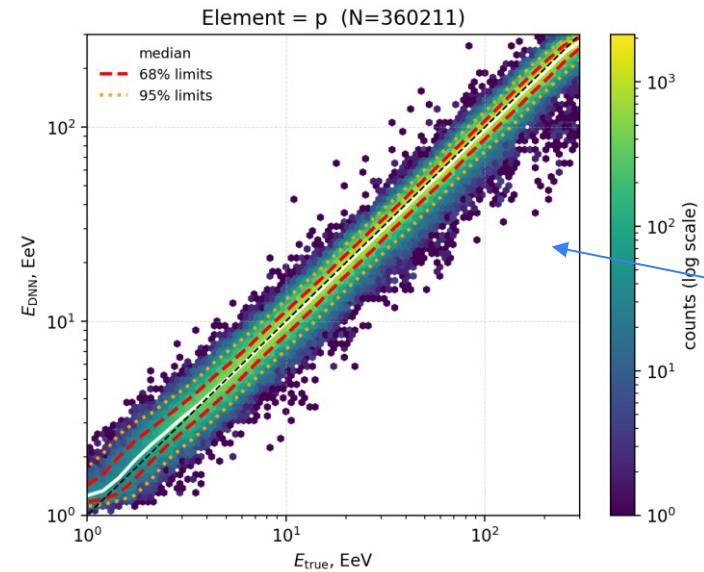
Log posterior sampling using MCMC:

$$p(\theta | \mathcal{D}) = \frac{p(\mathcal{D} | \theta) p(\theta)}{p(\mathcal{D})}$$

$$\nu_i = \sum_j R_{ij} \mu_j$$

$$\log p(\theta | D) \propto \sum_{i=1}^{N_{E,\text{rec}}} [N_i \log \nu_i(\theta) - \nu_i(\theta) - \log(N_i!)] + \log p(\theta)$$

Response matrix



$$\nu_i = \int dE f(E) \int du \varepsilon(E, u) \int_{\hat{E} \in \text{bin } i} \left[\int ds p_{\text{det}}(\hat{E} | s, E, u) p_s(s | E, u) \right] d\hat{E}$$

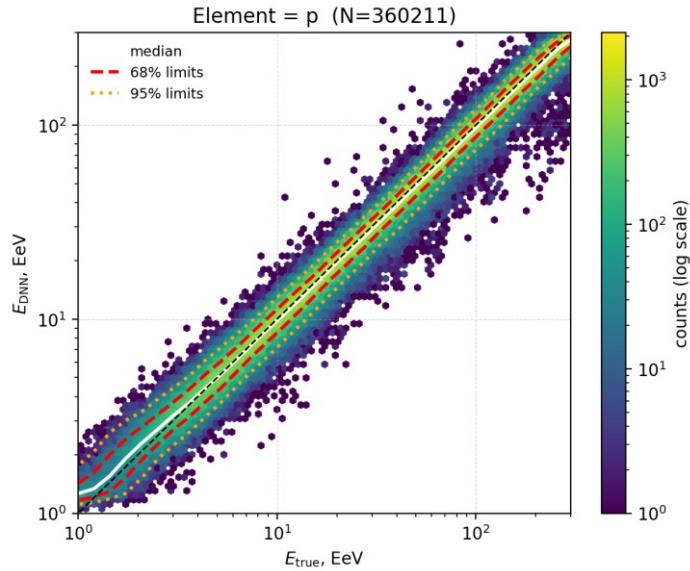
Resolution/smearing kernel:

$$\kappa(\hat{E} | E, u) = \int ds p_{\text{det}}(\hat{E} | s, E, u) p_s(s | E, u)$$

$$\nu_i = \int dE f(E) \int du \varepsilon(E, u) \int_{\hat{E} \in \text{bin } i} \kappa(\hat{E} | E, u) d\hat{E}$$

Response matrix

Simulated resolution kernel



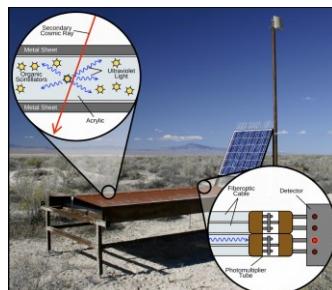
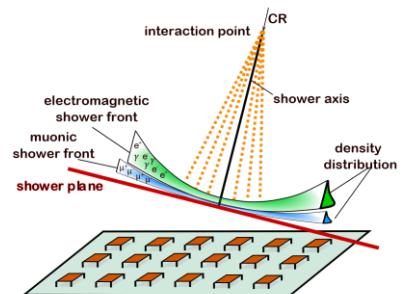
Real resolution/smearing kernel:

$$\kappa(\hat{E} \mid E, u) = \int ds p_{\text{det}}(\hat{E} \mid s, E, u) p_s(s \mid E, u)$$

Detector fluctuations/smearing:

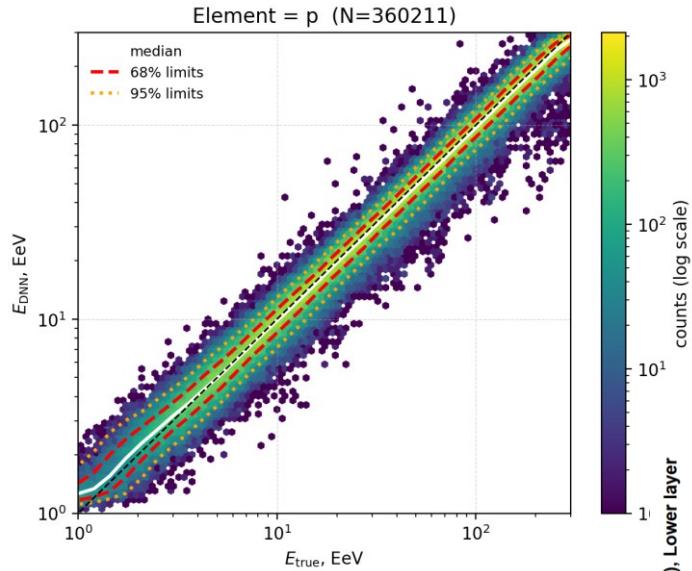
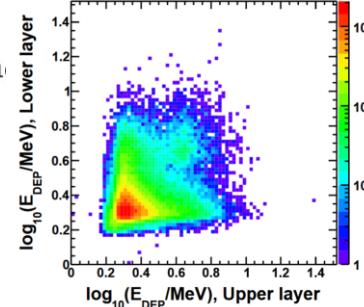
- sampling/LDF
- Scintillator/PMT

Shower size (s) fluctuations



Response matrix

Simulated resolution kernel



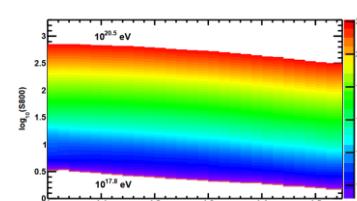
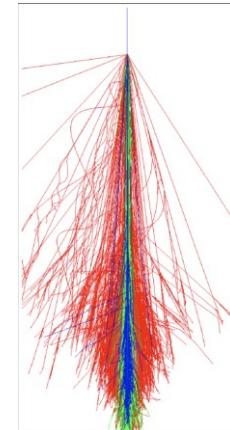
Simulated resolution/smearing kernel:

$$\kappa(\hat{E} \mid E, u) = \int ds p_{\text{det}}(\hat{E} \mid s, E, u) p_s(s \mid E, u)$$

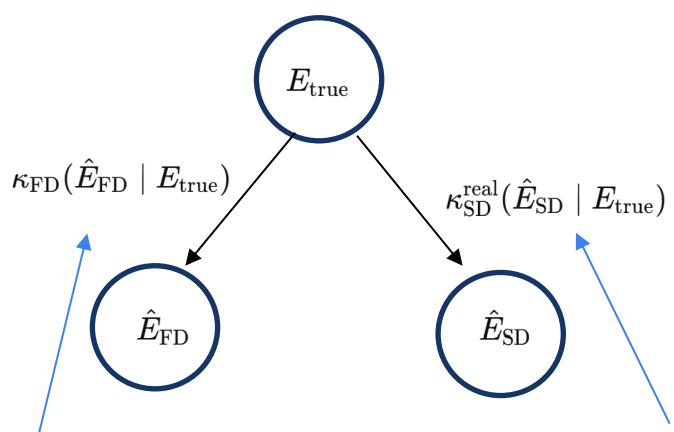
Detector fluctuations/smearing:

- Geant4
- Reconstruction (Std or DNN)

Shower size (s) fluctuations
(CORSKA MC)



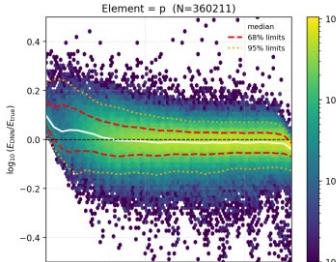
Calibration with Hierarchical MCMC



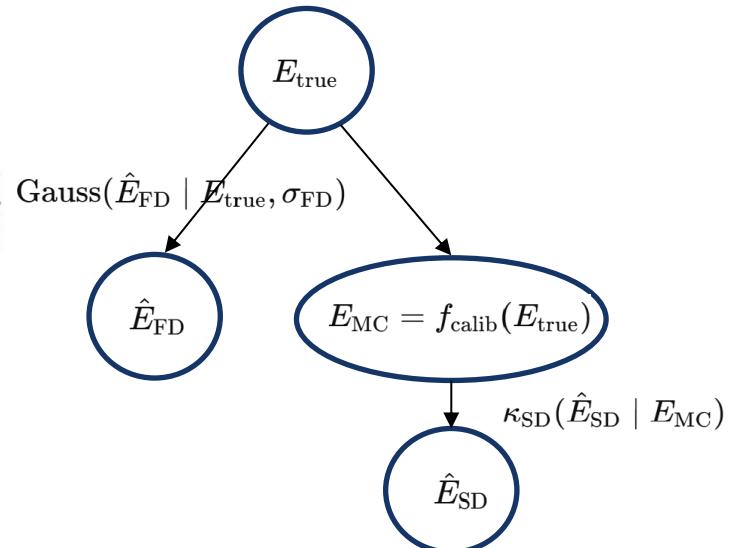
Assume to be

$$\text{Gauss}(E_{\text{FD}} | E_{\text{true}}, \sigma_{\text{FD}})$$

Should be found



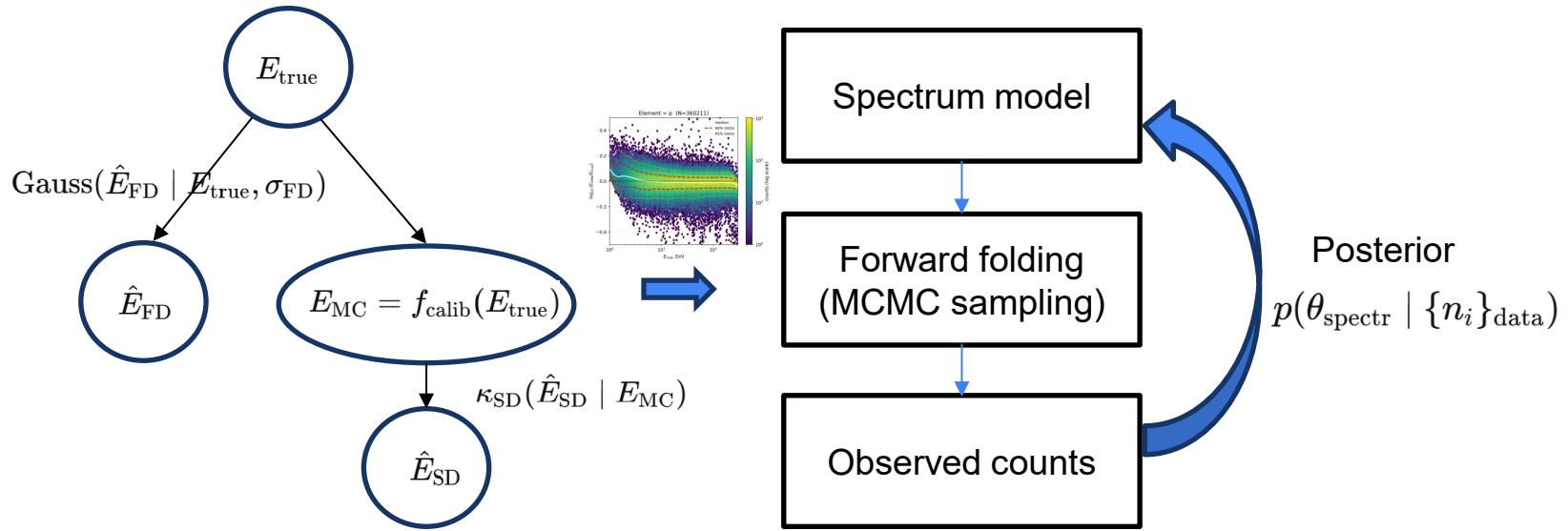
$$\kappa_{\text{SD}}(\hat{E}_{\text{SD}} | E_{\text{MC}})$$



- Response function can, in principle, be derived from hybrid events
- Hybrid statistics are limited vs. full SD sample

- Use MC-based κ_{SD} modeled with Gauss/Student-t (mixture) models
- Calibrate the model using hybrid events

Motivation: Calibration and forward folding



- MCMC calibration yields posterior distributions of calibration parameters
- Enables propagation of these uncertainties into forward folding
- Captures parameter correlations and avoids bias from fixed (point-estimated) values

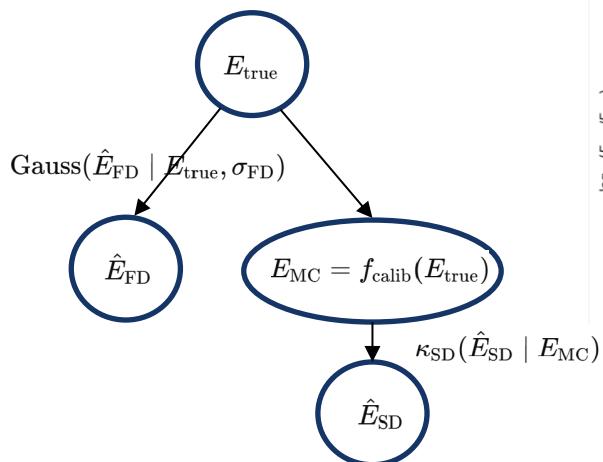
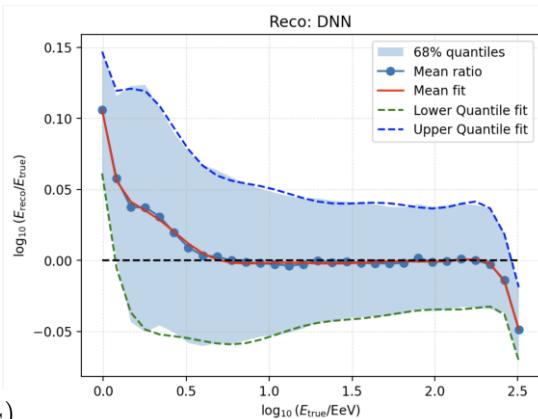
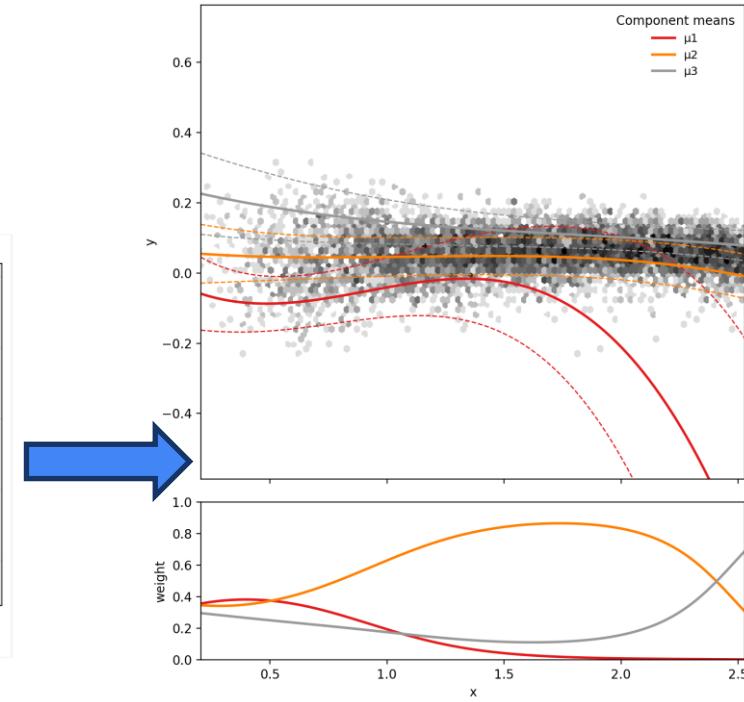
Parametrization

Gauss (or Student-t) mixture model

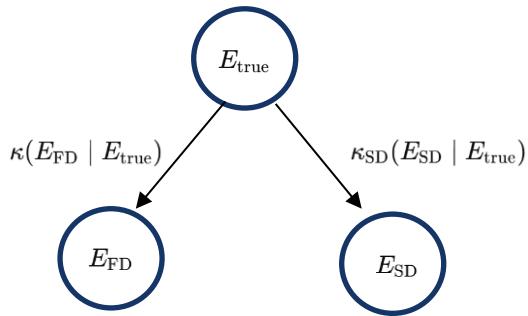
$$\kappa_{\text{SD}}(E_{\text{SD}} \mid E_{\text{true}}) = \sum_{n=1}^N w_n(x) G(r \mid \mu_n(x), \sigma_n(x))$$

$$r = \log_{10}(E_{\text{SD}}/E_{\text{true}}) \quad x = \log_{10} E_{\text{true}}$$

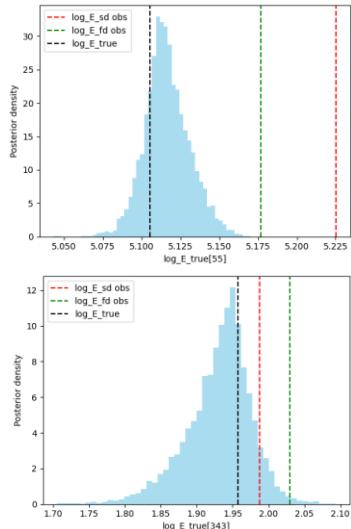
$$f_{\text{calib}} = ax^2 + bx + c + x$$



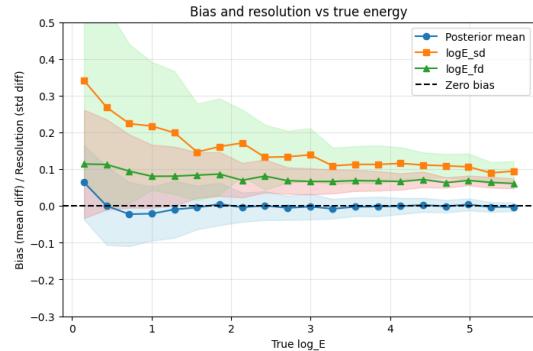
Case: full resolution reconstruction



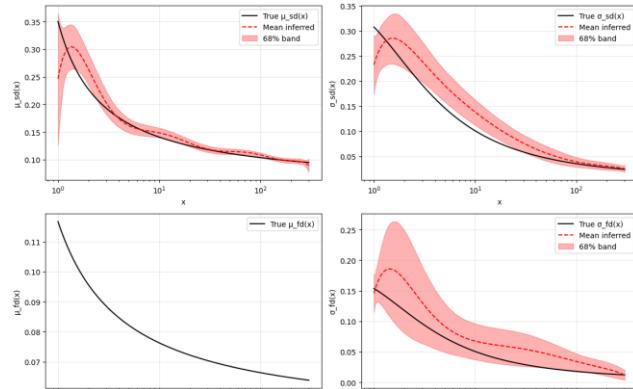
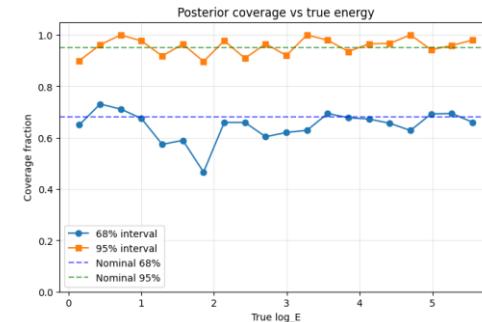
The model is identifiable if we know bias of FD detector



True energy reconstruction

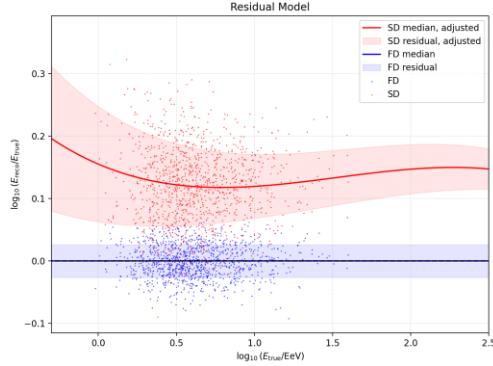


Response functions reconstruction

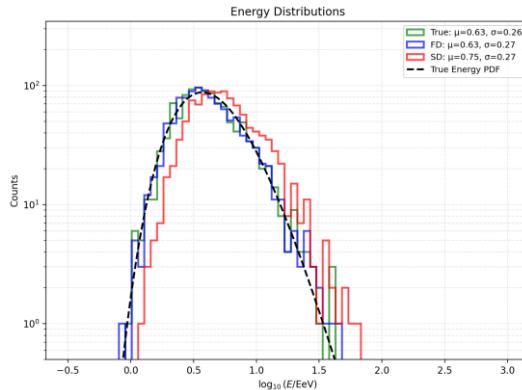


Case: toy model

Response functions residuals vs E_{true}



Energy distributions



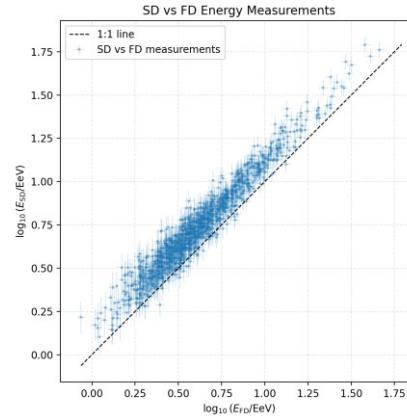
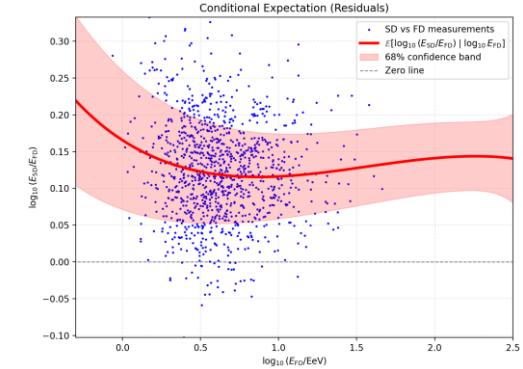
- SD response is normal distribution:

$$\text{Gauss}(\hat{E}_{\text{SD}} \mid \mu_{\text{SD}}(E_{\text{true}}) + E_{\text{true}}, \sigma_{\text{SD}}(E_{\text{true}}))$$

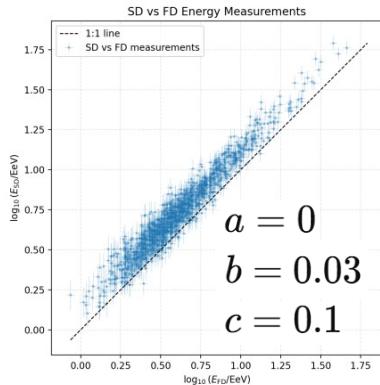
- FD response:

$$\text{Gauss}(\hat{E}_{\text{FD}} \mid E_{\text{true}}, \sigma_{\text{FD}}(E_{\text{true}}))$$

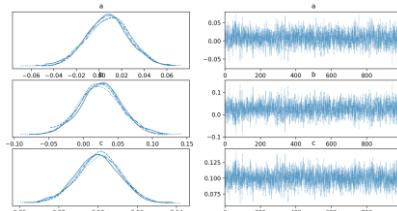
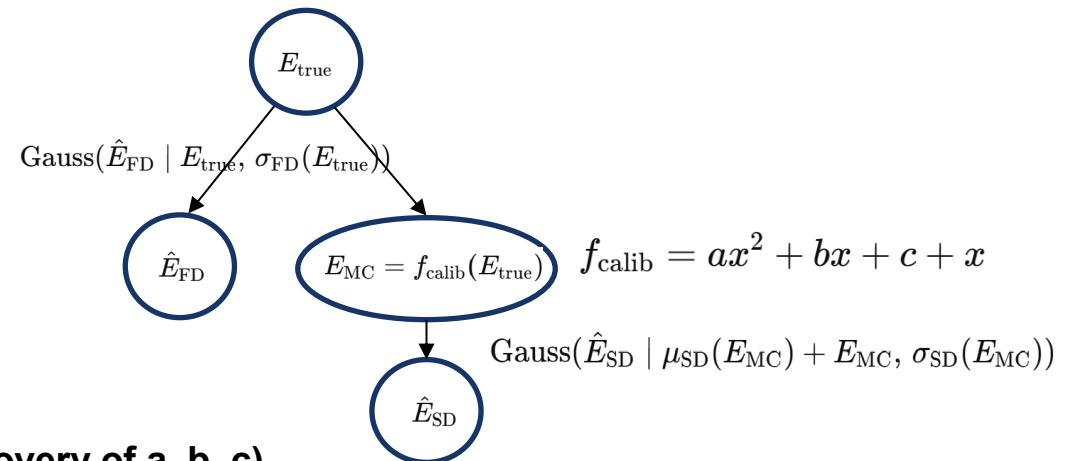
E_{SD} vs E_{FD} plane



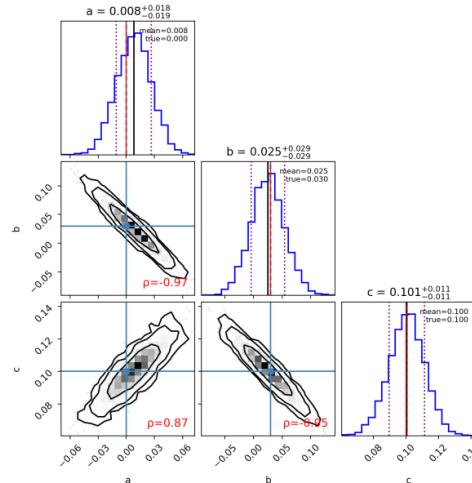
Case: toy model



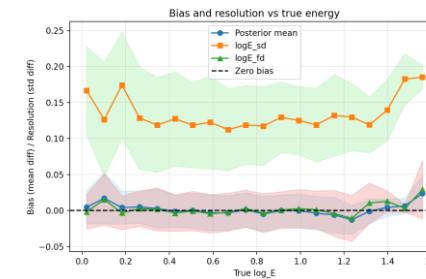
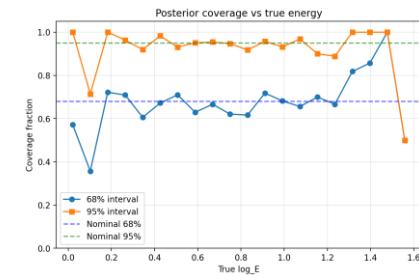
Trace plot



Posterior (recovery of a, b, c)

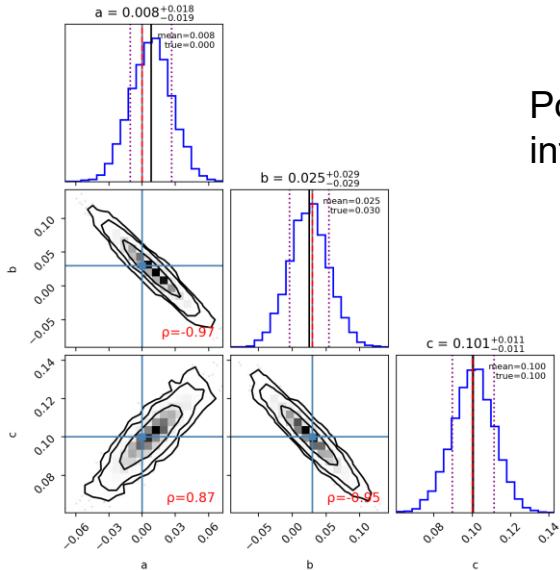


E_{true} recovery

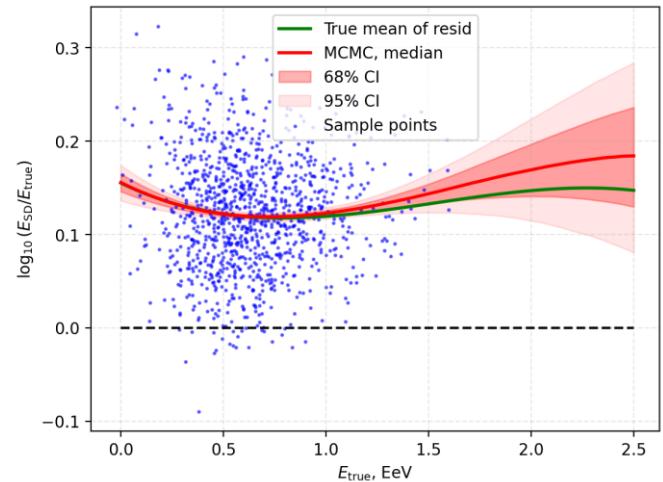


Uncertainties

Posterior (recovery of a, b, c)

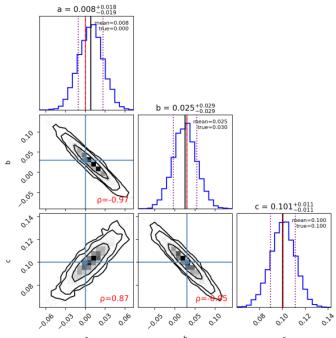


Posterior distribution translates
into uncertainty band

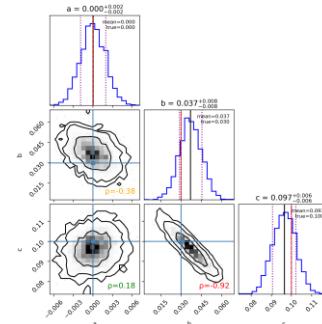


Priors (model selection)

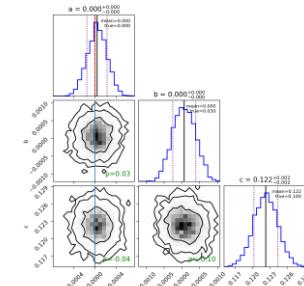
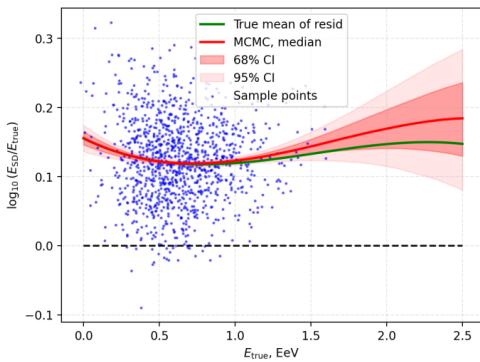
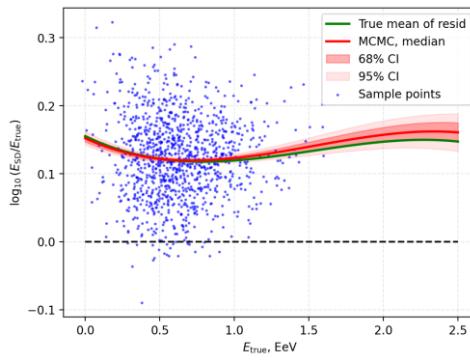
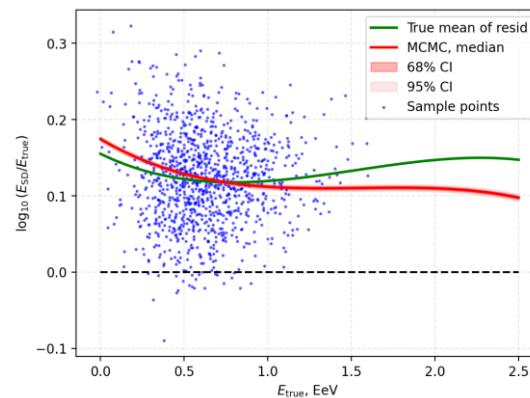
$$a^*x^2 + b^*x + c$$



$$b^*x + c \text{ (a=0)}$$

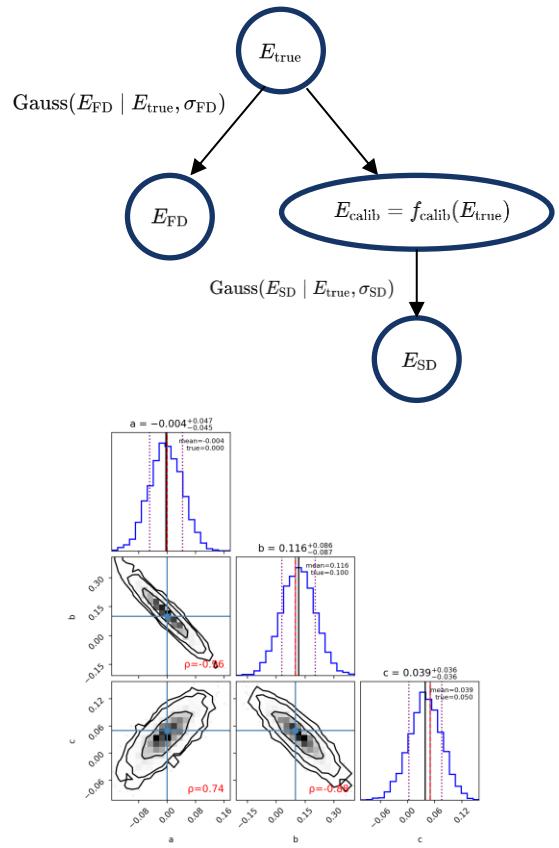
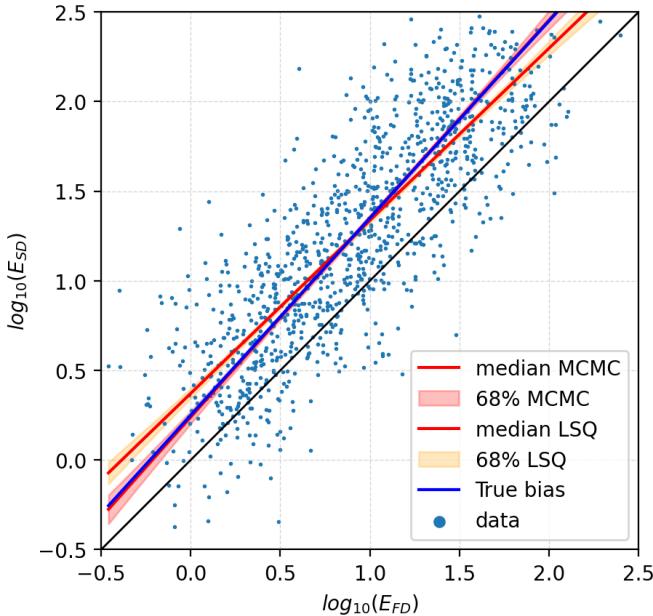


$$c \text{ (a=0, b=0)}$$



- Flexible models capture the true trend and yield realistic uncertainties
- Restrictive models miss dependencies, causing bias and narrow bands

MCMC vs least square minimization (LSQ)



```

Nsample = 1100
a_true = 0
b_true = 0.1
c_true = 0.05
mu_resid = 0.2
sigma_resid = 0.3
sigma_fd_frac = 0.2

```

$$f_{\text{calib}} = ax^2 + bx + c + x$$

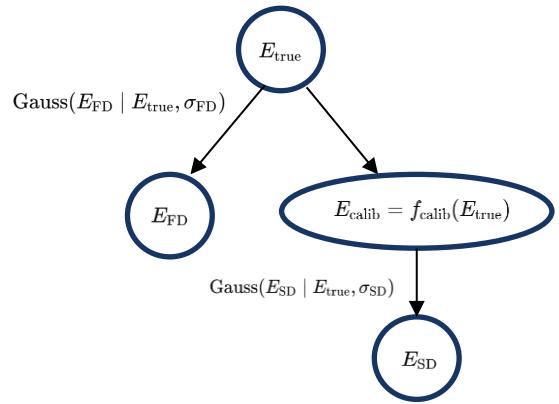
MCMC:

$$\begin{aligned}
 a &= -0.004 \pm 0.045 \\
 b &= 0.117 \pm 0.085 \\
 c &= 0.038 \pm 0.035
 \end{aligned}$$

LSQ:

$$\begin{aligned}
 a &= -0.001 \pm 0.033 \\
 b &= -0.034 \pm 0.064 \\
 c &= 0.372 \pm 0.028
 \end{aligned}$$

MCMC vs least square minimization (LSQ)



Nsample = 1100

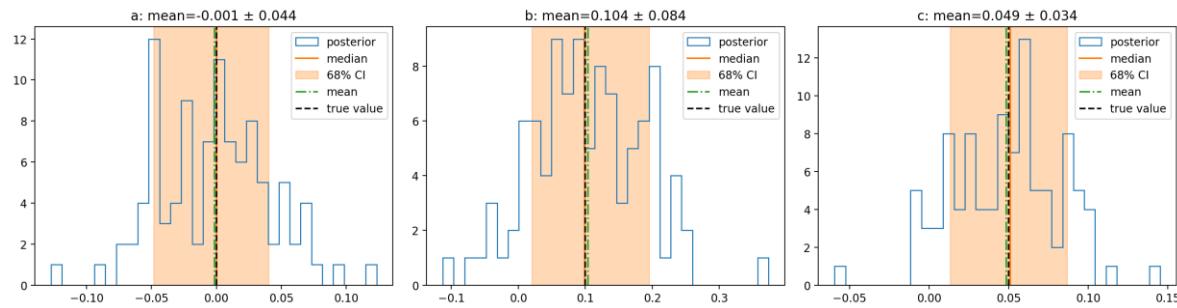
```

a_true = 0
b_true = 0.1
c_true = 0.05

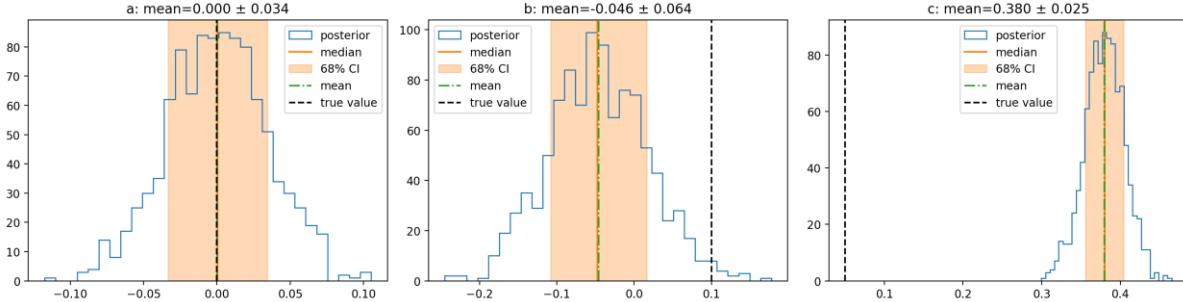
mu_resid = 0.2
sigma_resid = 0.3
sigma_fd_frac = 0.2

```

MCMC



LSQ

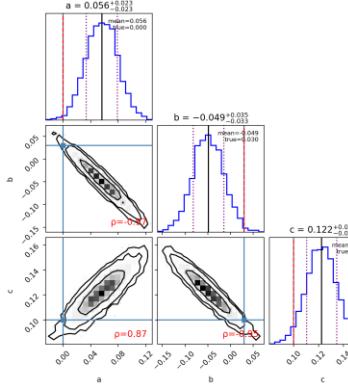
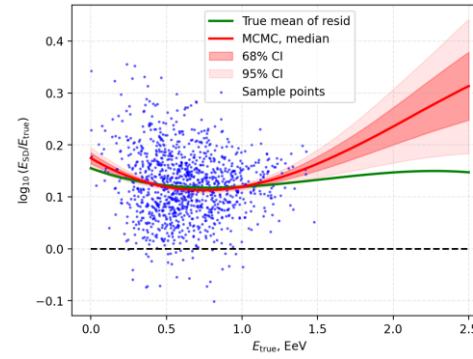


Conclusions

- Calibration of the response function is required to correctly perform forward folding
- Least-squares fits are biased because they neglect uncertainties in the FD (x-axis) variable
- MCMC is a powerful analog of the log-likelihood approach, as it does not require explicit multidimensional integration
- Bayesian MCMC calibration allows a natural extension of the MCMC forward folding method and enables uncertainty propagation

Atypical realizations

- Some realizations are atypical and lead to posterior outliers:



- Their number is small

