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Broadly probing the deep internal structure of the Earth tells us a lot!

~ Age of the Earth, and
- when did the core &

" mantle separate?

" - Thedynamics we see today - . ="

- earthquakes, volcanoes, continents .« %
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The Preliminary Reference Earth Model: the
current model of the earth density from
geophysical/seismic data
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PREM density profile

PREM: A. Dziewonski, D. Anderson (Physics of the

Earth and Planetary Interiors 25, 297-356) 1981
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Types of signals

Observed event

lceTop

/ 81 Stations

50m 324 optical sensors

lceCube Array

86 strings including 8 DeepCore strings
5160 optical sensors

1450 m

DeepCore

8 strings-spacing optimized for lower energies
480 optical sensors
' iIEiffeI Tower I raCkS

324 m

2450 m
2820 m

Predominantly

e (Cosmic muons

e Muons from v, charged-

//t °
current interaction Throughgoing tracks

Ahlers et al. Eur. Phys. J. C (2018) 78: 924



Sources of neutrinos at IceCube (non-exhaustive)

Astrophysical

, * (Cosmic rays
30000 m _ -, hlttlng the
o N atmosphere

Gamma rays -
They point to their sources, but the

holes can be absorbed and are created by
multiple emission mec hanisms.

e Pions, kaons
decay to
neutrinos

“V-‘ \"“

T V. 20000 m
Neutrinos o
They are weak, neutral
particles that point to their
sources an d carry information
from deep within their origins.

They are charged particles and
are deflected by magnetic fields.

10000 m

* X

* Black holes, galaxies, supernovae

e Individual sources, or diffuse flux

“Astrobites” )



The earth blocks these neutrinos
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Previous measurement

I -
—— PREM Model
Max 1D pos.

Letter | Published: 05 November 2018
| 30.0

Neutrino tomography of Earth

Andrea Donini, Sergio Palomares-Ruiz &3 & Jordi Salvado

]

=
o
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Nature Physics 15, 37-40 (2019) | Cite this article

Compared to current IceCube
measurement:

* simplified systematics
freatment
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Data

IceCube has a large, pure sample of atmospheric muon neutrino events (~380,000)

Number of events
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Data event
IceCube, Phys. Rev. D 110, 092009 . distribution




Binning the earth into shells

cos(f) at tangent
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SheHS - the parameters to infer Donini et al. (Nature Physics 15, 37-40)
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Systematic uncertainties

Conventional
neutrino flux
properties

Non-
conventional

neutrino flux
properties

Detector and
Ice properties

11

Nuisance Central | 10 width Allowed
parameter value| of prior range
Conventional Flux Parameters

Atm. density (patm) 0.00 1.00{ -3.00,3.00
Kaon energy loss (oK-Air) 0.00 1.00| -3.00,3.00
Kiso 0.00 1.00| -2.00,2.00
K£58G 0.00 1.00| -2.00,2.00
TooT 0.00 1.00| -2.00,2.00
TooT 0.00 1.00| -2.00,2.00
Kop 0.00 1.00| -1.00,2.00
K,p 0.00 1.00| -1.50,2.00
7r32'P 0.00 1.00| -2.00,2.00
Top 0.00 1.00| -2.00,2.00
pP2op 0.00 1.00| -2.00,2.00
nop 0.00 1.00| -2.00,2.00
GSF; 0.00 1.00| -4.00,4.00
GSF2 0.00 1.00| -4.00,4.00
GSF3 0.00 1.00| -4.00,4.00
GSF4 0.00 1.00| -4.00,4.00
GSF'5 0.00 1.00| -4.00,4.00
GSFg 0.00 1.00| -4.00,4.00
Non-conventional Flux Parameters

Normalization (%) 0.787 0.36| 0.00,3.00
log,o of pivot energy, ngak - - 4.00,6.00
AYHE | ilt from -2.5 0.00 0.36| -2.00,2.00
AYHE | tilt from -2.5 0.00 0.36| -2.00,2.00
Earth Absorption Parameters

v attenuation 1.00 0.10| 0.82, 1.18
v attenuation 1.00 0.10f 0.82, 1.18
Detector Parameters

Overall normalization 1.00 0.2 0.10,3.00
DOM efficiency 1.00 0.10 0.97,1.06
Forward hole ice -1.00 10.00| -5.35,1.85
Ice amplitude 0 0.00 1.00f -3.00,3.00
Ice amplitude 1 0.00 1.00f -3.00,3.00
Ice amplitude 2 0.00 1.00f -3.00,3.00
Ice amplitude 3 0.00 1.00| -3.00,3.00
Ice amplitude 4 0.00 1.00| -3.00,3.00
Ice phase 1 0.00 1.00| -3.00,3.00
Ice phase 2 0.00 1.00| -3.00,3.00
Ice phase 3 0.00 1.00| -3.00,3.00
Ice phase 4 0.00 1.00| -3.00,3.00

DAEMONFLUX - Yaniez

& Fedynitch, Phys. Rev.
D 107, 123037

SnowStorm method -

IceCube Collaboration,
JCAP 10, 048 (2019)




Estimation using Bayesian parameter estimation

* Use a MCMC to sample the posterior depending on
* physics parameters, i.e. the shell densities
* and nuisance parameters

e Likelihood supplied by GollumFit

e Sampling done by emcee

emcee GollumFit

https://emcee.readthedocs.io/en/stable IceCube, “GollumFit: An IceCube Open-Source
Goodman & Weare, Commun. Appl. Math. Framework for Binned-Likelihood Neutrino

Comput. Sc. 5 (2010) 1, 65-80 Telescope Analyses”. arXiv:2506.04491

https://github.com/icecube/GollumFit
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Energy distributions - data-MC agreement
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Zenith distributions - data-MC agreement
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Zenith distributions - data-MC agreement

As before, but now broken down into different energy ranges
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Measurement
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lceCube lceCube
Work in Progress Work in Progress

What the “error
bars” correspond to... :

1 5 1 5

shell density 2 shell density 3
12.5 - —  PREM
-===5-bin model
" 10.0 7
5
o 7.5 -
EIZ’? 5.0 - —
" \\
0.0 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
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Density [g/cm3]

Density profile result - 5 bin model

cos(f) at tangent
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1.0

* Measurement
compared with
projected sensitivity,
PREM-averaged
density and simulated
fluctuations

* (QOverall goodness of
fit p-value: ~20%



Density [g/cm3]

Density profile result - comparison
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Density profile result - 8 bin model
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e Same as before, but
with 8-layer model

* QOverall goodness of
fit p-value: ~6%



Earth mass

x 1072

|p—value: 0.0911 |

= == frue mass
—@— Mean = 7.328e+24 kg
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Earth mass

x 102

Main force used | Relative uncertainty

== == true mass
—@— Mean = 7.328e+24 kg
—— (8% HPD Gravity ~ 0.01%

[p—value: 0.091 1]

lceCube

Work in Progress EM (seismology) ~ 1%

Weak ~10%

normalized counts
(V)
|

0.4 0.6 0.8 1.0 1.2

earth mass [kg] x10%° Sources: AU 2009 Recommendation;
Masters & Gubbins, On the Resolution of

Density within the Earth. https://doi.org/
10.1016/j.pepi.2003.07.008
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normalized counts

Earth mass

x 10727

Main force used | Relative uncertainty
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I - : Earth hypothesis at >5¢'
|
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O T ' T T T
0.4 0.6 0.8 1.0 1.2
earth mass [kg| x10%° Sources: AU 2009 Recommendation;

Masters & Gubbins, On the Resolution of

Density within the Earth. https://doi.org/
10.1016/j.pepi.2003.07.008
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normalized counts

x 1038
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Looking ahead: tomography using global constellation of neutrino telescopes =
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| .i ' Summay

* JceCube is well-suited to a measurement of the Earth using high energy neutrinos

* We have performed the most precise measurement of the earth density and mass as
measured by the weak force

The end. Thank youl!

alexwen@icecube.wisc.edu
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Measurement of nuisance parameters & correlations

~
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Binning the earth into shells

cos(f) at tangent
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Approximate PREM profile with constant density
shells - use uniform priors
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iy\* ‘ Physics of the Earth and Planetary Interiors

ELSEVIER Volume 140, Issues 1-3, 28 November 2003, Pages 159-167

On the resolution of density within the
Earth

Guy Masters @ & X, David Gubbins °

density resolution

200

400 -

N
O
O

width (km)

200

100

O 2000 4000 6000
center radius (km)

Fig. 1. Theoretical resolution of density in the Earth by the free-oscillation data set for various target error levels. Starting from the top
curve, the target errors are 0.5, 1, 5, and 10%. As an example of how to read this plot, the density at a radius of 2000 km is known to an
error of 0.5% if averaged over a resolving length of about 270 km.
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One previous earth inference analysis performed
in 2018 s LETTERS

e 2011-2012 IC86 data (344 days)
e 20145 muons

Neutrino tomography of Earth

AndreaDonini®?, Sergio Palomares-Ruiz®™ and JordiSalvado ©2

e 400 GeV -20TeV

* Event selection from Phys. Rev. Lett. 115, 081102 - : ,
10°015 ¢ s Zenith
S oC distribution

Parameterization

IceCube | 34



density g/cm3

—1.00

The Preliminary Reference Earth Model: the current model of the earth

density from geophysical/seismic data
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Donini et al. (Nature Physics 15, 37-40)
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PREM: A. Dziewonski, D. Anderson (Physics of the

Earth and Planetary Interiors 25, 297-356) 1981
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Systematic Uncertainties

We use the DaemonFlux model and its parameters,

: : which describe CR spectrum and hadronic shower
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Systematic Uncertainties

Non-conventional flux

Assume a broken power law with
enough variation to encompass
existing measurements of
astrophysical flux
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