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Ultra-high energy (UHE) neutrinos

UHE neutrino: E > 10'%eV

v probe the most powerful sources in the Universe
v/ understand the origin of ultra-high energy cosmic rays

CR




RNO-G: The Radio Neutrino Observatory in Greenland Simon Chiche (IIHE)

1 station: 24 radio antennas Cf. talk by E.

35 autonomous stations :
Huesca Santiago

at Summit Station (Greenland)
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In-ice radio detection: promising technique to detect ultra-high energy neutrinos



In-ice radio emission from cosmic-ray air showers Simon Chiche (IIHE)

Radio emission of cosmic-ray air showers can also reach the deep antennas
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Radio emission of cosmic-ray air showers can also reach the deep antennas
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In-ice radio emission from cosmic-ray air showers Simon Chiche (IIHE)

Radio emission of cosmic-ray air showers can also reach the deep antennas
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The cosmic-ray flux should be much larger than the neutrino flux:



In-ice radio emission from cosmic-ray air showers Simon Chiche (IIHE)

Radio emission of cosmic-ray air showers can also reach the deep antennas cf. talk by N. Alden
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The cosmic-ray flux should be much larger than the neutrino flux:

» Cosmic-ray detection would validate in-ice radio detection principle
» Cosmic-ray/neutrino discrimination is needed to ensure successful neutrino detection



Radio emission from air showers Simon Chiche (lIHE)

2 main sources for the radio emission
of cosmic rays

Geomagnetic emission Askaryan emission
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Radio emission from air showers Simon Chiche (lIHE)

2 main sources for the radio emission
of cosmic rays

Geomagnetic emission Askaryan emission
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Radio emission from air showers Simon Chiche (lIHE)

2 main sources for the radio emission

of cosmic rays CR
Geomagnetic emission Askaryan emission Ineai
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Radio emission from air showers Simon Chiche (lIHE)

2 main sources for the radio emission

of cosmic rays CR
Geomagnetic emission Askaryan emission Ineai
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Radio emission from air showers Simon Chiche (lIHE)

2 main sources for the radio emission

of cosmic rays CR
Geomagnetic emission Askaryan emission Ineai
n-air.
: : Geomagnetic + Askaryan
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axis axis
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Simon Chiche

Simulation setup (IIHE)

We aim to characterize cosmic-ray radio emission using the Monte-Carlo tool FAERIE
(De Kockere et al., 2024 [2403.15358]))



(IIHE)

Simon Chiche
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(IIHE)

Simon Chiche
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(IIHE)

Simon Chiche
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Emission pattern Simon Chiche (IIHE)

vertical shower

at a depth of 100 m Simulated electric field maps at the antenna level
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—> |n-air emission: Destructive interferences between geomagnetic and Askaryan

——> In-ice emission: Rotationally symmetric emission pattern



Air/lce relative contribution Simon Chiche (IIHE)

We want to evaluate the relative contribution of the air/ice component

f(x,y)dxdy| Radiation energy
(Glaser et al., 2016)



Air/lce relative contribution Simon Chiche (IIHE)

We want to evaluate the relative contribution of the air/ice component

- 'xl’Il X ymax
Results from one single shower: a C
Error-bars (shower-to shower fluctuations) to be included Erad — J [ f(X, y)dx dy Radiation energy
X dy o (Glaser et al., 2016)
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Air/lce relative contribution Simon Chiche (IIHE)

We want to evaluate the relative contribution of the air/ice component

- 'xl’Il X ymax
Results from one single shower: a C
Error-bars (shower-to shower fluctuations) to be included Erad — J [ f(X, y)dx dy Radiation energy
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— Decreasing in-ice contribution with increasing zenith angle



Air/lce relative contribution Simon Chiche (IIHE)

We want to evaluate the relative contribution of the air/ice component

: X Y
Results from one single shower: max | -max C
Error-bars (shower-to shower fluctuations) to be included Erad — J' J f(x, y)dx dy Radiation energy
X dy o (Glaser et al., 2016)
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—> Dominant in-air contribution for showers with zenith angle 8 = 20°



Air/lce relative contribution Simon Chiche (IIHE)

We want to evaluate the relative contribution of the air/ice component

: X Y
Results from one single shower: max | -max C
Error-bars (shower-to shower fluctuations) to be included Erad — J' J f(x, y)dx dy Radiation energy
X dy o (Glaser et al., 2016)
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Frequency signatures Simon Chiche (IIHE)

In-ice emission should be more coherent than the in-air component
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Frequency signatures Simon Chiche (IIHE)

In-ice emission should be more coherent than the in-air component
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Frequency signatures Simon Chiche (IIHE)

In-ice emission should be more coherent than the in-air component
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Frequency signatures Simon Chiche (IIHE)

In-ice emission should be more coherent than the in-air component
CR
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—> Frequency content can help identify and discriminate each mechanism at the single antenna level

—> Spatial variations of the frequency content bring further constraints on the emission



Polarization signatures Simon Chiche (IIHE)

We evaluate the horizontal to vertical polarization ratio for both in-air and in-ice emissions

Vertical polarization: E P! = E® ,  Horizontal polarization: Eftpol — \/ (EX ) + (E” )?

rad rad rad rad
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Polarization signatures Simon Chiche (IIHE)

We evaluate the horizontal to vertical polarization ratio for both in-air and in-ice emissions

. e Vpol _ g - i rHpol _ ¥ 2 4 (FY 2
Vertical polarization: £ ™ = E° , Horizontal polarization: £ ¢ —\/ (ELp)” +(E )
In-air In-ice

In-air, Depth =100 m In-ice, Depth =100 m
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Two orders of magnitude between the in-air and the in-ice component

—> Efficient observable for cosmic ray/neutrino discrimination
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ldentifying cosmic rays Simon Chiche (IIHE)

CR Double pulse signature
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Simon Chiche (IIHE)

ldentifying cosmic rays
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ldentifying cosmic rays

CR
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Simon Chiche (IIHE)

E=10'>eV, Thresolds =100, 60 uV/m
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Simon Chiche (IIHE)

ldentifying cosmic rays

CR

Double pulse signature

E=10'>eV, Thresolds =100, 60 uV/m
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Simon Chiche (IIHE)

Polarization

In-ice, Depth =100 m

Using FAERIE simulations we characterized radio signatures from cosmic ray showers
as seen by deep in-ice observers
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These specific features of the radio specific will help identifying the first cosmic ray events

——> Validate detection principle of in-ice experiments and FAER

—>

—_— Provide valuable insights for cosmic ray/neutrino discrimination

Support the calibration of the detectors
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