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Possible origin of extragalactic HE neutrino

Single Power Law (This work)
- Broken Power Law (This work)
® Segmented (y=2) (This work)

*|ceCube has detected extragalactic neutrinos, but
has not yet fully constraint the neutrino sources.

v Active Galactic Nuclei (AGN)

v Galaxy Clusters

v Starburst Galaxies

v Low Luminosity Gamma-Ray Bursts

Diffuse-Neutrino
%, lceCube Collab. 2024
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Diffuse-Neutrino SED

* Diffuse neutrino: moderately flat (power-law index ~ 2.64) use=Neutring_

- Broken Power Law (This work)
® Segmented (y=2) (This work)

| “~=>4— IceCube Collab. 2024

SEDs (e.g., IceCube Collab. 2024)
* A neutrino hotspot NGC 1068 detected by a decadal survey:

; L
steep(power law index ~3) SED (e.g., IceCube Collab. 2022) 3 T -
— Various types of neutrino SED may exist * -

* Models for neutrino emission in AGNs ]
v (Radiatively Inefficient) Accretion Flows (e.g., Kimura + 2015) oty sy
v Disk-Corona (InoueY. + 2020, Murase + 2020, Kimura + 2022) ' Neutrino Encray [GeV]
v Disk-Wind (Inoue S.2022) o f
¢ WeakJet (Fang+2023) neutrino hotspot i I
We consider radiatively inefficient ' Q- .| IceCube Collab. 2022
accretion flow model for low- ¥ el : \
luminosity AGN, in this work. . .. VoAl

Oy .-;'

Credit: NASA/|PL-Caltech




Purpose of This Work

* [here exists a pioneering work on neutrino emission in
accretion flows ( e.g.,, Kimura+2015, see also Dermer+ 1996)

* However, single-zone (|-zone) approximation has been
adopted in all of previous works.

Q: How does the global structure of the accretion flows
affect the neutrino SEDs 7

Purpose of this work :

Studying the global effect of accretion flow on HE
neutrino SEDs considering CR acceleration (via kinetic
scale turbulences) and neutrino emission via pp

collisions.

« 3D genelal relativistic MHD (GRMHD) simulations of
accretion flows + CR acceleration & neutrino emission

computation [a new code V-RAIKOU (v-3J%) code]

D

log(E, Lg [ergs

40
39
38

> 37

36

34

L 4
®
. *
*
o
B
3

3 - 5 6

_ @ Kimura+2015

.......
A

-
v
<
*
\
. \
‘-
- L a N
l~" Y l

log(E, [GeV])

t = 000000

40 20 0 20 40

X/r

n

c.f. odriguez-Ramirez + (2019): propagation of CRs and neutrino emission using GRMHD simulation




Computation Method ¢4, = 108, 7 = 1072L,,,/c?)

(1) Trajectory of tracer particles of Cosmic-Ray proton (CRp)

based on 3D GRMHD data
* CRps are treated as Tracer particles (~| million particles)

* Assumption: CRps moves along the streamlines being trapped by
subgrid-scale turbulent B-filed.

# we are interested in acceleration upto ~PeV (gyro radii < mesh size)

e GRMHD dataset of semi-MAD (moderately magnetized state) (TK+2023) -;f:‘.EX
simulated using GR(R)MHD code UWABAMI (Takahashi + 2016). rajecto

At update (sometimes, snapshot update) *

(3) Computation of Neutrino SED (2) Computation of SED of CRp

* pp collisions of tracer particle of CRps with * Fokker-Planck Eqs of tracer particle in the
thermal protons of GRMHD simulation data. * fluid-rest frame. Test calculation comparing w/
n

* Gravitational redshift are taken into consideratio * Number of Energy Bin: 5600 Asano & Meszaros (2016)

105 3

 Turbulent Acceleration

10° |

w/hard sphere approximation - .

*(1)-(3) are computed with using time-evolved (D(&) = Ke2) =
snapshots of simulation data. ' T

, : , * Compression/expansions
*Finally, Time=averaged neutrino SEDs are 0 0
computed

effects are also included.




Time=-Averaged Neutrino SEDs

*SEDs flatter than | -zone
models appear

*Neutrino SEDs decomposed into
origin of CRps in inflow, outflow,
(residual)

*Neutrinos originated from (finally)-
outflow-CRp 2 inflow-CRp.

€, eV
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(a) Inflow CRP
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(c) Ouflow CRP (It was inflowing in early phase)
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CRp trajectory

& timescale

*CRp-SEDs depend on the
position and trajectories.

*Summation of various CRp

SEDs are flatter in
our global models



Escape timescale from the simulation region

t.. (=01 ¢ . (ad=0.01)

aCCr aCCr

_ _ 11 I 1 1 1 I 1T 11l I 1 1 1 I 1T 1T 11 I
. Accretion timescale agrees :

- inflow [ _
well with the escape 108k outflow ! .
(swallowed by BH) timescale : residual ' :
of inflowing CRps. ~

-bimodal distribution of
Outflowing CRp.

Due to the longer stay of

Outflow CRP in the simulation 1040k ~
domain, the acceleration :
works well. .

1027 F —=
— hard SED! " |



Dependence on the Acceleration/Injection Coefficients

Acceleration
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-Higher acceleration efficiency — harder neutrino SED
-Higher injection rate — softer neutrino SED. (' acceleration rate « CR energy )



Comparison w/ IceCube Diffuse Neutrino Fluxes
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- We integrated the neutrino SEDs assuming the luminosity function of Ho + (2008)
w/ assuming eL, o« M>

- Magnitudes of diffuse neutrinos are consistent w/ observed SED.
-Combination w/ Seyfert (NGC1068 type) may be required.



Summary

*The first attempt to compute CRp acceleration & Neutrino emission of global
accretion flows based on 3D GRMHD simulation data.

*Due to the global effect (superposition of various injection of accelaration of CRp),
the flatter SEDs appear in our model.

*The neutrino emission, which originated from outflowing-CRp accelerated in inflow,
predominate the SEDs.

*More code development (incl, e.g., p-y processes) will be addressed in near future.
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Why Are High Energy (HE) Neutrinos Important?

* Mystery of acceleration mechanism/site of high-energy cosmic rays (CRs)
* Smoking gun of CR acceleration, because...

(p+pandiorp+y—a’n*, n’—>y+y, at->ut+uy, ut-et+u,+0)

v Cosmic Rays - Trajectories are bent by magnetic fields
v Gamma-Rays : Optically thick agains background light (y +y = e¢™ 4+ ¢7)

v'Neutrino : Freely propagates towards us!

*

CR
Acceleration

Neutrino

Background Light

.
\g
Magnetic FieldC Cosmic-Ray (CR)




c.f. Energy of Neutrinos
— )

GeV-TeV Neutrino Energy
* Thermo-Nuclear Reaction (~10MeV) Hadronic Processes of Cosmic Rays (> TeV)
* High Density: Supernova Explosion, Gamma-Ray * Low-Density: Supernova Remnant, Active Galactic
Burst (Central Englne) Stellar Interia, etc. Nuclei, Jet of Low-Lum. Gamma-ray Burst, etc.
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* Messenger of Steller Interla and Governing the
Dynamics of Explosions/Bursts
* Super Kamiokande, etc.

* Messenger of Cosmic-Ray Acceleration and Tests
of Elementary Particle Physics
* |ceCube, etc.
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Computation Method ¢4, = 108, 7 = 1072L,,,/c?)

(1) Trajectory of tracer particles of Cosmic-Ray
proton (CRP) post-processing 3D GRMHD data

At update | (sometimes, snapshot update) l

(3) Computation of Neutrino SED (2) Computation of SED of CRPs

(Fokker-Planck Eqs w/ phenomenological
turbulent acc.)

( pp collisions w/ GRMHD protons)



Computation Method (1)

Trajectory of tracer particles of Cosmic-Ray proton (CRp)
post-processing 3D GRMHD data

*CRps are treated as Tracer particles
(~ 1 million particles)

* Assumption: CRps moves along the streamlines
being trapped by subgrid-scale turbulent B-filed.

|

#H we are interested in acceleration upto ~PeV
(gyro radii < mesh size)

* GRMHD dataset of semi-MAD (moderately
magnetized state) (TK+2023) simulated using
GR(R)MHD code UWABAMI (Takahashi + 2016).

Trajectori Rp



Computation Method (2)

Computation of SED of CRp

‘Fokker-Planck Eqs of tracer particle in the
fluid-rest frame. (Number of Energy Bin: 5600)

*Turbulent Acceleration w/hard sphere

approximation ( D(&) = Ke2). .
4
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*Injection of CRPs which may be trlggered by

reconnections i
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*Compression/expansions
effects are also included. laccel =
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Computation Method (3)

Computation of Neutrino SED
» pp collisions (p +p - 7% 7%, 2°°>y+y, 2t >ut+uy, ut—oet+u,+0,) of
tracer particle of CRps with thermal protons of GRMHD simulation data.

*Kelner’s semi-annalitic formula (Kelner + 2006) w/ pion =
production cross section (Kamae+ 2006, 2007).

relativistic

10 -

Gravitational redshift are taken into consideration

{D R accretic
*Normalization by the time-averaged mass accretion rate onto BH W
-10 3
and outflow rate: S [dt 6,87 (c,)w
e, L (inflow) __ M nj -20
Ve : Zw(nin)
- 20 -10 7 10 20
in / / T Tg
(gal/(él/)
> [dt e, & (e, )whew : L.
outflow) vy 7 spectral neutrino emissivity per
(1_/L€ utrow — Mout out : )
3 wtow unit mass of proton

*No viewing angle dependence is considered.



Prospects

-Developing w/ more sophisticated acc. and inj. models

-Fully time-dependent computation of neutrino emission Neutrino associated w/ a gamma-ray
flare in blazar TXS 0506+56 ?
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